CN116459850A - 一种用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法 - Google Patents

一种用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法 Download PDF

Info

Publication number
CN116459850A
CN116459850A CN202310352049.2A CN202310352049A CN116459850A CN 116459850 A CN116459850 A CN 116459850A CN 202310352049 A CN202310352049 A CN 202310352049A CN 116459850 A CN116459850 A CN 116459850A
Authority
CN
China
Prior art keywords
nicop
composite photocatalyst
preparation
degrading
ncp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310352049.2A
Other languages
English (en)
Inventor
顾沁怡
李忠玉
徐松
冯楚君
张雨哲
郑旭东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202310352049.2A priority Critical patent/CN116459850A/zh
Publication of CN116459850A publication Critical patent/CN116459850A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化纳米材料制备和降解领域,具体涉及一种用于降解四环素的NiCoP/g‑C3N4复合光催化剂的制备方法。本发明采用简单的超声浸渍法将NiCoP(NCP)纳米颗粒耦合在不规则孔状g‑C3N4(CN)表面,形成NiCoP/g‑C3N4复合光催化剂用于降解四环素(TC)中。与NiCoP和g‑C3N4相比,NCP/CN在模拟阳光下的光催化降解TC效率显著提高。本工作为探索过渡金属磷化物(TMPs)和石墨相氮化碳(g‑C3N4)在光催化降解四环素中的应用提供了新的途径。

Description

一种用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备 方法
技术领域
本发明属于光催化纳米材料技术领域,特别涉及一种用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法。
背景技术
四环素(TC)被广泛应用于动物治疗、水产养殖和畜牧业等领域。而由于不加控制的使用,过期药品处理或排泄后,这些抗生素不可避免地会残留在环境中。此外,它们长期暴露在环境中可能诱发耐药基因也是一大问题。目前,人们采用吸附、生物氧化、高级氧化技术等多种技术去除TC。而与传统方法相比,光催化技术具有氧化能力强、反应条件简单、效率高、成本低等优点,被认为是一种处理抗生素废水的高效技术。此外,制备廉价高效的光催化剂也十分重要。
石墨氮化碳(g-C3N4)是一种无金属、环保、稳定性好的二维共轭聚合物,具有优良的电子能带结构和光学性能,因此,在光催化研究领域备受关注。g-C3N4作为n型半导体,具有约2.7eV的合适带隙,合适的可见光响应范围,且具有较高的理化稳定性和较低的制备成本。然而,光生载流子的快速重组、比表面积低等问题极大地限制了块状g-C3N4的光催化应用。为了解决这些问题,人们提出了许多增强g-C3N4光催化性能的策略,如元素掺杂、形貌调控和异质结构建等。如中国专利CN112007679A通过热聚合法一步合成Co/V双金属掺杂g-C3N4光催化剂,用于可见光催化降解盐酸四环素的降解率在68%左右,未能达到理想的状态;中国专利CN110756215A将双氰胺重结晶固定在镍泡沫上,经退火、酸化得到高结晶g-C3N4,再与CoP复合制备光催化剂,对盐酸四环素的降解率可达到95%,但是该制备方法繁杂,不利于工业化生产。此外,单一的过渡金属磷化材料(TMPs),如Ni2P、Co2P等由于窄带隙(约1eV)而表现出较低的光催化活性。
发明内容
本发明的目的提供一种用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法。所制得的NiCoP/g-C3N4复合光催化剂提高了光生电子-空穴对的分离效率,具有良好的可见光光催化活性。
为达上述目的,本发明采用的技术方案是:
一种用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法,包括如下步骤:
(1)g-C3N4制备:称取三聚氰胺、三聚氰酸和2,4-二氨基-6-甲基-1,3,5-三嗪溶于水中,在室温下1000~1200r/min搅拌24~25h;自然沉淀,离心收集沉淀,60℃烘干得到g-C3N4前躯体;将研磨后的g-C3N4前驱体在氮气气氛下以2℃/min的升温速率至550℃煅烧4h,自然冷却至室温,得到土黄色g-C3N4;其中,三聚氰胺、三聚氰酸和2,4-二氨基-6-甲基-1,3,5-三嗪的摩尔比为1:2:1;
(2)NiCoP的制备:将Ni(NO3)2·6H2O、Co(NO3)2·6H2O、NH4F和尿素溶于水中,再加入NaOH,室温下搅拌至反应充分;自然沉淀,离心收集沉淀,洗涤至中性,干燥,得到Ni-Co前驱体;将Ni-Co前驱体置于陶瓷坩埚的下游,NaH2PO2·H2O置于陶瓷坩埚的上游,在管式炉中氮气气氛下250℃~450℃煅烧2h,自然冷却后得到黑色NiCoP;
(3)NiCoP/g-C3N4的制备:将g-C3N4和NiCoP分别分散在乙醇溶液中,并超声使分散均匀,分别得到NiCoP溶液和g-C3N4溶液;将NiCoP溶液滴入g-C3N4溶液中并超声分散均匀,得混合溶液;将混合溶液在室温下搅拌至反应充分,自然沉淀、除去上清液后,烘箱干燥,即得NiCoP/g-C3N4复合光催化剂。
进一步地,步骤(1)中三聚氰胺、三聚氰酸和2,4-二氨基-6-甲基-1,3,5-三嗪在水中的总质量浓度为12~13mg/ml。
进一步地,步骤(2)中Ni(NO3)2·6H2O、Co(NO3)2·6H2O、NH4F、NaOH和尿素的摩尔比为1:1:8:10:10。
进一步地,步骤(2)中Ni-Co前驱体和NaH2PO2·H2O的质量比为1:10。
进一步地,步骤(2)中的煅烧温度为350℃~400℃;优选350℃。
进一步地,步骤(3)中NiCoP与g-C3N4的质量比为1~10:100;优选的,NiCoP与g-C3N4的质量比为4~10:100;更优选的,NiCoP与g-C3N4的质量比为7~10:100;最优选NiCoP与g-C3N4的质量比为7:100。
进一步地,步骤(3)中NiCoP溶液和g-C3N4溶液的体积比为1:1。
进一步地,步骤(3)中乙醇溶液是将水与无水乙醇按体积比1:4混合制得。
本发明制备的用于降解四环素的NiCoP/g-C3N4复合光催化剂在可见光催化降解四环素中的应用,其对四环素的降解率最高可达98.5%。
与现有技术相比,本发明的有益效果是:
(1)与原始三聚氰胺或尿素煅烧得到的g-C3N4相比,通过超分子自组装法(以三聚氰胺、三聚氰酸和2,4-二氨基-6-甲基-1,3,5-三嗪为原材料)制备g-C3N4前驱体,并以2℃/min的升温速率升温至550℃煅烧4h,该方法制备的g-C3N4呈现不规则多孔状,有效地提高了氮化碳的比表面积和孔隙。
(2)NiCoP双金属的协同效应有效优化了双金属磷化体的电子结构和光催化性能。由于NiCoP的金属性质,NiCoP可与其他半导体耦合形成异质结,缓解半导体可见光利用率低和光生电子空穴对分离率低等问题。另一方面,NiCoP具有出色的O2活化能力,是产生·O2 -的活性位点。从而使光催化复合材料表现出更好的光催化性能。NiCoP的引入也显著提高了NiCoP/g-C3N4的可见光吸收范围。同时,NiCoP和g-C3N4之间存在紧密的异质结界面和匹配良好的能带结构,缓解了g-C3N4光生电子-空穴对的复合。
(3)采用简单的超声浸渍法成功制备了用于降解四环素的NiCoP/g-C3N4复合光催化剂。光催化实验结果表明,NiCoP/g-C3N4比NiCoP和g-C3N4具有更高的TC降解活性。
附图说明:
下面结合附图对本发明进一步说明。
图1是实施例1制得的NiCoP、g-C3N4和NCP-t/CN的TC降解曲线(a)和动力学分析(b)图;
图2是实施例2制得的NiCoP、g-C3N4和x-NiCoP/C3N4的XRD图;
图3是实施例2制得的NiCoP(a)g-C3N4(b)、7-NCP/CN(c、d)的SEM图;
图4是实施例2制得的NiCoP、g-C3N4、7-NiCoP/g-C3N4的N2吸附-解吸等温线和孔径分布;
图5是实施例2制得的x-NCP/CN(a、b)和实施例3制得的NCP/CN-x(c、d)的TC降解曲线和动力学分析图;
图6是7-NCP/CN在不同pH(a、b)、不同初始浓度(c、d)下TC降解曲线和动力学分析图;
图7是7-NCP/CN复合光催化剂循环实验图。
具体实施方式
现在结合具体实施例对本发明作进一步说明,以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例1
探讨Ni-Co前驱体磷化温度对复合光催化剂降解TC性能的影响
(1)g-C3N4制备:称取0.631g三聚氰胺、1.291g三聚氰酸和0.625g 2,4-二氨基-6-甲基-1,3,5-三嗪于200mL水中,该溶液在室温下1100r/min剧烈搅拌24h。自然沉淀后,离心收集固体,60℃烘干得到g-C3N4前躯体。将研磨后的前驱体放入陶瓷坩埚中,坩埚在管式炉中以2℃/min的速率煅烧至550℃,在N2气氛中加热4h,自然冷却至室温后得到土黄色g-C3N4
(2)NCP-t的制备:称取0.29g Ni(NO3)2·6H2O、0.29g Co(NO3)2·6H2O、0.3g NH4F和0.6g尿素于30mL水中,搅拌0.5h形成分散均匀的溶液,再加入0.4g NaOH,将溶液在室温下继续搅拌10h。自然沉淀后,离心收集固体,洗涤至中性,60℃烘干得到Ni-Co前驱体。将100mg Ni-Co前驱体置于陶瓷坩埚的下游,上游放置1g NaH2PO2·H2O,坩埚在管式炉中以2℃/min的速率分别煅烧至250℃、300℃、350℃、400℃和450℃,在N2气氛中加热2h,自然冷却后得到黑色NiCoP,记为NCP-t(t=250℃、300℃、350℃、400℃和450℃)。
(3)NCP-t/CN的制备:将100mg步骤(1)中制备的g-C3N4和7mg步骤(2)中制备的NCP-t分散在25mL水和乙醇(1:4)溶液中并超声0.5h。将NCP-t溶液滴入g-C3N4溶液中并超声1h。分散均匀的混合溶液在室温下搅拌24h,自然沉淀后倒出上清液并放入烘箱,60℃烘干,即可制得NiCoP和g-C3N4质量比为7:100的NCP-t/CN复合光催化剂,分别标记为NCP-250/CN、NCP-300/CN、NCP-350/CN、NCP-400/CN和NCP-450/CN。
通过对四环素(TC)的降解,评价了制备样品的光催化降解性能。首先,称取0.03gNCP-t/CN光催化剂,并将其置于含有20mg/L新配置的TC溶液(pH=7)的比色管(50mL)中。搅拌均匀后,将比色管置于阴凉处30min,使其达到吸附-解吸平衡。接着,将这些比色管置于光催化装置中,用500W氙灯模拟可见光下进行降解实验。每隔30分钟取3mL溶液,用0.22μm针式过滤器过滤以去除光催化剂。实验过程中,水循环温度应保持在20℃左右,以避免温度对实验的影响。最后,利用UV1800PC光谱仪对357nm处的最大吸光度进行记录,分析光催化剂的降解性能。
图1为不同磷化温度制得的NCP-t/CN复合光催化剂对TC降解效果图。从图中可以看到,当Ni-Co前驱体磷化温度为350℃时制备的NCP-350/CN对TC具有最佳的降解效果。因此,本发明选择的最佳磷化温度为350℃。
实施例2
先对Ni-Co前驱体磷化再与g-C3N4结合,得到的复合光催化剂记为x-NCP/CN,具体为:
(1)g-C3N4制备方法同实施例1。
(2)NiCoP的制备:称取0.29g Ni(NO3)2·6H2O、0.29g Co(NO3)2·6H2O、0.3g NH4F和0.6g尿素于30mL水中,搅拌0.5h形成均匀分散的溶液,再加入0.4g NaOH,将溶液在室温下继续搅拌10h。自然沉淀后,离心收集固体,洗涤至中性,60℃烘干得到Ni-Co前驱体。将100mg Ni-Co前驱体置于陶瓷坩埚的下游,上游放置1g NaH2PO2·H2O,坩埚在管式炉中以2℃/min的速率煅烧至350℃,在N2气氛中加热2h,自然冷却后得到黑色NiCoP。
(3)x-NCP/CN的制备:将0.1g步骤(1)中制备的g-C3N4和步骤(2)制备的NiCoP分别分散在25mL水和乙醇(1:4)溶液中并超声0.5h,其中NiCoP的质量分别为1mg、4mg、7mg、10mg。将NiCoP溶液滴入g-C3N4溶液中并超声1h。分散均匀的混合溶液在室温下搅拌24h,自然沉淀后倒出上清液并放入烘箱,60℃烘干,分别制得了NiCoP和g-C3N4质量比为1:100的1-NiCoP/g-C3N4复合光催化剂(1-NCP/CN),质量比为4:100的4-NiCoP/g-C3N4复合光催化剂(4-NCP/CN),质量比为7:100的7-NiCoP/g-C3N4复合光催化剂(7-NCP/CN),质量比为10:100的10-NiCoP/g-C3N4复合光催化剂(10-NCP/CN)。
实施例3
先将Ni-Co前驱体与g-C3N4混合均匀再对其磷化,得到的复合光催化剂记为NCP/CN-x。
(1)g-C3N4制备方法同实施例1。
(2)NCP/CN-x的制备:称取0.29gNi(NO3)2·6H2O、0.29g Co(NO3)2·6H2O、0.3gNH4F和0.6g尿素于30mL水中,搅拌0.5h形成均匀分散的溶液,再加入0.4g NaOH,将溶液在室温下继续搅拌10h。自然沉淀后,离心收集固体,洗涤至中性,60℃烘干得到Ni-Co前驱体。将100mg步骤(1)中制备的g-C3N4和Ni-Co前驱体研磨均匀置于陶瓷坩埚的下游,上游放置适量的NaH2PO2·H2O,坩埚在管式炉中以2℃/min的速率煅烧至350℃,在N2气氛中加热2h。为了与实施例2中复合光催化剂的质量比尽可能相近,此处考虑了Ni-Co前驱体磷化成NiCoP的质损,所加入的Ni-Co前驱体的质量分别为1.57mg,6.28mg,10.99mg,15.70mg。自然冷却后得到不同质量比的NiCoP/g-C3N4复合光催化剂(NCP/CN-x),分别标记为NCP/CN-1、NCP/CN-4、NCP/CN-7、NCP/CN-10。
图2为实施例2所制得的x-NCP/CN复合光催化剂的晶相结构由X-射线衍射仪分析得到的X射线衍射图谱。g-C3N4在13.1°和27.4°处的两个衍射峰分别对应(100)和(002)晶面,前者主要是由于缩聚的三嗪单元的有序排列引起,后者是由于芳香体系的层间堆积,表明g-C3N4具有类石墨的层状结构。NiCoP的XRD峰对应于标准卡(PDF#71-2336),41.00°、44.89°和47.60°的特征峰分别对应于NiCoP的(111)、(201)和(210)晶面,这说明NiCoP成功制备。值得注意的是,在不同比例的x-NCP/CN的X射线衍射图中,所有的衍射峰都对应于g-C3N4和NiCoP的特征峰,这说明x-NCP/CN复合光催化剂制备成功。
图3为实施例2所制得的NiCoP(a)、g-C3N4(b)和7-NCP/CN通过扫描电镜(SEM)观察到的形貌。如图3(a)所示,NiCoP呈现出颗粒状。如图3(b)所示,超分子自组装氮化碳呈现不规则孔状结构,具有丰富的孔隙。这是由于经过热聚合产生的小分子具有造孔功能。图3(c、d)NiCoP颗粒镶嵌于不规则孔状结构的g-C3N4上。
图4为实施例2所制得的NiCoP、g-C3N4和7-NCP/CN通过N2吸附-解吸等温线测定的样品比表面积和孔径分布。被测样品的比表面积如表1所示,比表面积关系按以下顺序排列:g-C3N4(46.4836m2/g)>7-NCP/CN(44.3655m2/g)>NiCoP(0.9903m2/g)。由表1可知,7-NCP/CN的比表面积和孔径与g-C3N4相比变化不大,这可以解释为NiCoP纳米颗粒嵌入不规则多孔g-C3N4中,保留了g-C3N4的原始孔隙,这与SEM得到的形貌相符。
表1制备样品的比表面积、孔径和孔体积结构
通过对四环素(TC)的降解试验,评价了制备样品的光催化降解性能。首先,称取0.03g NCP/CN-x光催化剂,并将其置于含有20mg/L新配置的TC溶液(pH=7)的比色管(50mL)中。搅拌均匀后,将比色管置于阴凉处30min进行暗反应,使其达到吸附-解吸平衡。接着,将这些比色管置于光催化装置中,用500W氙灯模拟可见光下进行降解实验。每隔30分钟取3mL溶液,用0.22μm针式过滤器过滤以去除光催化剂。实验过程中,水循环温度应保持在20℃左右,以避免温度对实验的影响。最后,利用UV1800PC光谱仪对357nm处的最大吸光度进行记录,分析光催化剂的降解性能。
图5为光催化剂对TC的讲解曲线和动力学分析图。图5(a)、(b)为实施例2先磷化制备的复合光催化剂对TC的降解曲线和动力学分析图;图5(c)、(d)为实施例3后磷化制备的复合光催化剂对TC的降解曲线和动力学分析图。从图5可见,对Ni-Co前驱体磷化再与g-C3N4结合得到的最佳比例复合光催化剂(7-NCP/CN)的降解活性为98.5%,而先将Ni-Co前驱体与g-C3N4混合均匀再对其磷化得到的最佳比复合光催化剂(NCP/CN-7)的降解率为73.1%。因此,本发明优选对Ni-Co前驱体磷化再与g-C3N4结合得到复合光催化剂(x-NCP/CN)。
由图5(a)可以看出,在光照120min内,纯样g-C3N4的TC降解率为39.4%,纯样NiCoP的TC降解率为30.3%,将g-C3N4与NiCoP复合后,1-NCP/CN的TC降解率为74.2%,4-NCP/CN的TC降解率为88.2%,7-NCP/CN的TC降解率为98.5%,10-NCP/CN的TC降解率为94.1%,可见对于纯样g-C3N4来说,NiCoP的加入可以明显提升光催化活性,其催化活性与NiCoP的加入量有关,其中7-NCP/CN降解四环素的效果最好,因此优选NiCoP的g-C3N4的质量比为7:100。
用最佳负载比的7-NCP/CN探究了不同pH、不同初始浓度下降解性能的变化,见图6。从图6(a、b)可以看出,总体而言,7-NCP/CN在中性条件下降解性能最佳。图6(c、d)中TC浓度分别为5mg/L,10mg/L,15mg/L,20mg/L,25mg/L,可以明显观察到随着四环素浓度梯度的增加,光催化剂的降解效果得到抑制。然而水体中的四环素浓度远低于这个浓度,所以7-NCP/CN复合材料可以满足实际应用。
图7为7-NCP/CN通过循环实验得到的试验循环图。进一步验证本发明所制备x-NCP/CN复合光催化材料的稳定性。5次循环后,降解率仍然保持在93%以上,表明所制备的7-NCP/CN复合材料具有良好的稳定性能。
本发明的实施例是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显而易见的。选择和描述实施例是为了更好说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。

Claims (8)

1.一种用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法,其特征在于,包括如下步骤:
(1)g-C3N4制备:称取三聚氰胺、三聚氰酸和2,4-二氨基-6-甲基-1,3,5-三嗪溶于水中,在室温下1000~1200r/min搅拌24~25h;自然沉淀,离心收集沉淀,60℃烘干得到g-C3N4前躯体;将研磨后的g-C3N4前驱体在氮气气氛下以2℃/min的升温速率至550℃煅烧4h,自然冷却至室温,得到g-C3N4;其中,三聚氰胺、三聚氰酸和2,4-二氨基-6-甲基-1,3,5-三嗪的摩尔比为1:2:1;
(2)NiCoP的制备:将Ni(NO3)2·6H2O、Co(NO3)2·6H2O、NH4F和尿素溶于水中,再加入NaOH,室温下搅拌至反应充分;自然沉淀,离心收集沉淀,洗涤至中性,干燥,得到Ni-Co前驱体;将Ni-Co前驱体置于陶瓷坩埚的下游,NaH2PO2·H2O置于陶瓷坩埚的上游,在管式炉中氮气气氛下250℃~450℃煅烧2h,自然冷却后得到NiCoP;
(3)NiCoP/g-C3N4的制备:将g-C3N4和NiCoP分别分散在乙醇溶液中,并超声使分散均匀,分别得到NiCoP溶液和g-C3N4溶液;将NiCoP溶液滴入g-C3N4溶液中并超声分散均匀,得混合溶液;将混合溶液在室温下搅拌至反应充分,自然沉淀、除去上清液后,干燥,即得NiCoP/g-C3N4复合光催化剂。
2.根据权利要求1所述的用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法,其特征在于,步骤(1)中三聚氰胺、三聚氰酸和2,4-二氨基-6-甲基-1,3,5-三嗪在水中的总质量浓度为12~13mg/ml。
3.根据权利要求1所述的用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法,其特征在于,步骤(2)中Ni(NO3)2·6H2O、Co(NO3)2·6H2O、NH4F、NaOH和尿素的摩尔比为1:1:8:10:10。
4.根据权利要求1所述的用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法,其特征在于,步骤(2)中Ni-Co前驱体和NaH2PO2·H2O的质量比为1:10。
5.根据权利要求1所述的用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法,其特征在于,步骤(2)中的煅烧温度为350℃~400℃。
6.根据权利要求1所述的用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法,其特征在于,步骤(3)中NiCoP与g-C3N4的质量比为1~10:100。
7.根据权利要求1所述的用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法,其特征在于,步骤(3)中乙醇溶液是将水与无水乙醇按体积比1:4混合制得。
8.权利要求1~7任一项所述方法制备的用于降解四环素的NiCoP/g-C3N4复合光催化剂的应用,其特征在于,所述用于降解四环素的NiCoP/g-C3N4复合光催化剂在可见光催化降解四环素中的应用。
CN202310352049.2A 2023-04-04 2023-04-04 一种用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法 Pending CN116459850A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310352049.2A CN116459850A (zh) 2023-04-04 2023-04-04 一种用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310352049.2A CN116459850A (zh) 2023-04-04 2023-04-04 一种用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN116459850A true CN116459850A (zh) 2023-07-21

Family

ID=87183594

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310352049.2A Pending CN116459850A (zh) 2023-04-04 2023-04-04 一种用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN116459850A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106076389A (zh) * 2016-06-15 2016-11-09 常州大学 钼酸铋/石墨相氮化碳复合催化剂的制备方法及应用
CN107617443A (zh) * 2017-10-30 2018-01-23 吉林大学 一种g‑C3N4表面原位生长的NiCoP纳米颗粒、制备方法及其应用
CN109107597A (zh) * 2018-08-31 2019-01-01 华南农业大学 一种过渡金属磷化物/g-C3N4复合材料及其制备方法与应用
CN109759099A (zh) * 2019-03-04 2019-05-17 河南城建学院 一种光催化剂及其制备方法、应用
CN113019454A (zh) * 2021-03-03 2021-06-25 兰州大学 一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106076389A (zh) * 2016-06-15 2016-11-09 常州大学 钼酸铋/石墨相氮化碳复合催化剂的制备方法及应用
CN107617443A (zh) * 2017-10-30 2018-01-23 吉林大学 一种g‑C3N4表面原位生长的NiCoP纳米颗粒、制备方法及其应用
CN109107597A (zh) * 2018-08-31 2019-01-01 华南农业大学 一种过渡金属磷化物/g-C3N4复合材料及其制备方法与应用
CN109759099A (zh) * 2019-03-04 2019-05-17 河南城建学院 一种光催化剂及其制备方法、应用
CN113019454A (zh) * 2021-03-03 2021-06-25 兰州大学 一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法及应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BO MA ET AL.: ""5 nm NiCoP nanoparticles coupled with g-C3N4 as high-performance photocatalyst for hydrogen evolution"", 《SCIENCE CHINA MATERIALS》, vol. 63, no. 2, pages 258 - 266 *
SHIPENG WAN ET AL.: ""Supramolecular Synthesis of Multifunctional Holey Carbon Nitride Nanosheet with High-Efficiency Photocatalytic Performance"", 《ADVANCED SCIENCE NEWS》, vol. 5 *
YALU WU ET AL.: ""Fabrication of NiCoP decorated TiO2 /polypyrrole nanocomposites for the effective photocatalytic degradation of tetracycline"", 《CHINESE CHEMICAL LETTERS》, vol. 33, pages 2741 - 2746 *
YI ZHAO ET AL.: ""Redox Dual-Cocatalyst-Modified CdS Double-Heterojunction Photocatalysts for Efficient Hydrogen Production"", 《ACS APPLIED MATERIALS & INTERFACES》, vol. 12 *
ZHENGYUN WANG ET AL.: ""Controlled Synthesis of NiCoP/g-C3N4 Heterostructured Hybrids for Enhanced Visible-Light-Driven Hydrogen Evolution"", 《CHEMISTRYSELECT》, vol. 6, pages 5967 - 5974 *
ZHIXIAO QIN ET AL.: ""A bifunctional NiCoP-based core/shell cocatalyst to promote separate photocatalytic hydrogen and oxygen generation over graphitic carbon nitride"", 《JOURNAL OF MATERIALS CHEMISTRY A》, vol. 5 *

Similar Documents

Publication Publication Date Title
US20220355284A1 (en) Perylene imide and composite photocatalytic material thereof, preparation method therefor and application thereof in removing organic pollutants from water
US20190330061A1 (en) Honeycomb-like homo-type heterojunction carbon nitride composite material and preparation method thereof, and application in catalytic treatment of waste gas
CN106492871A (zh) 磷杂化石墨相氮化碳纳米片负载钒酸铋复合光催化剂及其制备方法和应用
CN111453804B (zh) 一种铁掺杂类石墨相氮化碳/石墨烯多功能纳米复合材料的制备方法
CN108993550B (zh) 一种表面氧空位改性的溴氧铋光催化剂及其制备方法
CN111266126B (zh) 硫掺杂石墨相氮化碳纳米片负载石墨烯与四氧化三铁复合磁性光催化剂制备方法和应用
CN111036265A (zh) 一种复合纳米光催化剂CDs-N-BiOCl及其制备方法与应用
CN111151285B (zh) 一种氮掺杂多孔碳负载ZnS纳米复合材料及其制备方法和应用
CN108325555A (zh) 氮自掺杂石墨化氮化碳纳米片光催化剂及其制备方法和应用
CN111298842A (zh) 一种磁性金属有机骨架复合材料及其制备方法和应用
CN112774718A (zh) 一种氧化亚铜/管状类石墨相氮化碳复合催化剂及其制备方法和应用
CN110756223A (zh) 一种吸附催化复合材料及其在污染物处理中的应用
CN111744503A (zh) 一种Z型异质结MoS2/Bi2WO6复合光催化剂及其制备方法和应用
CN113893840B (zh) 一种复合光催化剂、制备方法及在染料废水中的应用
CN113578313B (zh) 一种锰掺杂软铋矿光催化剂及其制备方法和在同步降解六价铬和有机污染物中的应用
CN116459850A (zh) 一种用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法
CN114433073B (zh) 锰基催化剂及其制备方法和应用
CN114345391B (zh) 一种氮化碳/石墨烯/二氧化锰双功能催化剂及其制备方法和应用
CN113117720B (zh) 基于g-C3N4的TiO2晶粒堆积三维贯通孔复合结构及其制备方法
CN113877556B (zh) 羟基氧化铟/改性凹凸棒石光催化复合材料及其制备方法和应用
CN115090289A (zh) 一种新型钙钛矿原位生长FeCo-MOFs衍生纳米碳微波催化剂及其制备方法和应用
CN111617806B (zh) 柠檬酸钠为基质的g-C3N4/MOFs复合型光催化材料及其制备方法和应用
Plubphon et al. Direct microwave heating synthesis and characterization of highly efficient g-C3N4 photocatalyst
CN113244961A (zh) 双金属CoCu-MOF可见光催化剂及其制备方法和应用
CN114452986B (zh) 一种草状氮化碳/花状硫化镍复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination