CN116393131A - 一种mil-88衍生磁性碳纳米材料及其制备方法和应用 - Google Patents

一种mil-88衍生磁性碳纳米材料及其制备方法和应用 Download PDF

Info

Publication number
CN116393131A
CN116393131A CN202310157454.9A CN202310157454A CN116393131A CN 116393131 A CN116393131 A CN 116393131A CN 202310157454 A CN202310157454 A CN 202310157454A CN 116393131 A CN116393131 A CN 116393131A
Authority
CN
China
Prior art keywords
preparation
carbon nanomaterial
mil
magnetic carbon
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310157454.9A
Other languages
English (en)
Inventor
徐炎华
陈培
李溪
于鹏
刘志英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202310157454.9A priority Critical patent/CN116393131A/zh
Publication of CN116393131A publication Critical patent/CN116393131A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种MIL‑88衍生磁性碳纳米材料及其制备方法和应用,所述制备方法通过水热‑碳化为基本工艺,以六水合硝酸钴为Co2+来源,以六水合氯化铁为Fe3+为MIL‑88金属配体,以富马酸为有机配体,原位水热合成Co@MIL‑88的基础上通过一次碳化合成MIL‑88衍生磁性碳纳米材料。本发明所述的制备方法具有工艺简单、可操作性强、制备周期短、收率高且易于实现工业化生产的特点。

Description

一种MIL-88衍生磁性碳纳米材料及其制备方法和应用
技术领域
本发明涉及一种MIL-88衍生磁性碳纳米材料及其制备方法和应用,属于MOF衍生材料制备的技术领域。
技术背景
药品和个人护理产品(PPCPs),包括抗炎化合物、抗生素和激素,通过工厂、医院和城市污水处理厂的污水逐渐扩散到水环境中。氧氟沙星(OFX)作为一种广谱氟喹诺酮类抗生素,临床上常用来治疗细菌感染,但OFX的过度使用和滥用导致其被排放到自然水体中,影响非目标微生物的生长从而导致微生态系统失衡。对于抗生素废水治理,传统的吸附法、生物法并无法实现高效的去除。想比之下,高级氧化技术(AOPs)表现出高效的处理效果,过氧化氢(H2O2)、过氧单硫酸盐(PMS)、和过氧二硫酸盐(PDS)等氧化剂活化过程中产生的羟基自由基(HO·,Eo=1.9-2.7V)、硫酸根自由基(SO4 ·-,Eo=2.6-3.1V)、超氧自由基(·O2-,Eo=0.33V)和单线态氧(1O2,Eo=2.2V)能够有效降解污染物。
然而,虽然非均相催化反应能够最大程度地降低均相反应过程中金属离子对自然环境造成的二次污染,但粉末非均相催化剂的回收难问题却抑制了非均相催化反应在实际生产中的进一步应用。针对该问题,赋予催化剂磁性提高其回收利用效率是解决粉末催化剂回收难问题的关键。
MOFs是金属有机骨架化合物(英文名称Metal organic Frameworks)的简称。是由无机金属中心(金属离子或金属簇)与桥连的有机配体通过自组装相互连接,形成的一类具有周期性网络结构的晶态多孔材料。MOFs是一种有机-无机杂化材料,也称配位聚合物(coordination polymer),它既不同于无机多孔材料,也不同于一般的有机配合物。兼有无机材料的刚性和有机材料的柔性特征,具有良好的化学稳定性和热稳定性。此外,材料比表面积大且孔道结构稳定,故而在气体存运、载药、催化、物质分离等方面具有良好的应用前景。MIL-88作为一种典型的Fe基MOF材料,虽然由于MIL-88自身的电子传递性能焦瑞,但在已经实现Fe活性位点均匀分布的前提下却能够作为前驱体和支撑CoFe2O4的形成,赋予催化剂磁性和催化性能。
发明内容
针对上述问题,本发明的目的在于提供一种MIL-88衍生磁性碳纳米材料及及其制备方法和应用。
一方面,本发明提供了一种MIL-88衍生磁性碳纳米材料,所述的材料组成结构通式为CoFexOy@C-Z,所述的x为Fe3+和Co2+的摩尔比,y为O和Co2+的摩尔比,Z为制备碳化温度。
另一方面,本发明提供了一种MIL-88衍生磁性碳纳米材料及其制备方法,基于水热-碳化法,以六水合硝酸钴为Co2+来源,以六水合氯化铁为Fe3+为MIL-88金属配体,以富马酸为有机配体,原位水热合成Co@MIL-88的基础上通过一次碳化合成MIL-88衍生磁性碳纳米材料。通过调整加入的Co2+的量制备钙钛矿型(CoFeO3)和尖晶石型(CoFe2O4)铁酸钴碳纳米材料。
本发明的目的可通过以下技术方案实现:
1)取一定量去离子水与烧杯中,加热后依次加入六水合硝酸钴,六水合氯化铁和富马酸,超声并搅拌一段时间后将混合液转移到水热反应釜中,60-80℃反应8-24h后,得到棕红色沉淀。取出用无水乙醇和去离子水多次离心洗涤后60℃真空干燥12-24h后得到前驱体。
2)将前驱体充分研磨后置于管式炉中,300-700℃N2氛围下煅烧120-360min后得到MIL-88衍生磁性碳纳米材料。
作为本发明的一种优选,步骤1)中去离子水的温度为50~70℃。
作为本发明的一种优选,步骤1)中的六水合氯化铁的用量为50~250mM,六水合硝酸钴的用量为50~500mM,六水合氯化铁和富马酸的摩尔比为1:0.5~1:2。
作为本发明的一种优选,步骤1)中的超声时间为10~20min,搅拌时间为60~180min。
作为本发明的一种优选,步骤1)中的混合液占水热反应釜内胆总容量的50%~75%(V/V)。
作为本发明的一种优选,步骤1)中的离心洗涤的无水乙醇和去离子水的温度为50~70℃。
作为本发明的一种优选,步骤1)中的水热反应时间为12~24h,真空干燥时间为8-12h。
作为本发明的一种优选,步骤2)中管式炉的升温温度为1~10℃/min。
作为本发明的一种优选,步骤2)中N2纯度为99.999%(V/V)
作为本发明的一种优选,步骤2)中的煅烧时间为120-360min。
按照本发明上述限定方法制备得到的一种MIL-88衍生磁性碳纳米材料协同氧化剂过一硫酸钾(PMS)和双氧水(H2O2)应用于水体中抗生素的降解。
所述的水体中的抗生素为氧氟沙星。
所述的水体中的抗生素浓度为5~20mg/L。
与现有技术相比,本发明的有益效果如下:
本发明的一种MIL-88衍生磁性碳纳米材料,所述制备方法通过水热-碳化为基本工艺,以MIL-88为前驱体通过一次碳化合成MIL-88衍生磁性碳纳米材料。本发明所述的制备方法具有工艺简单、可操作性强、制备周期短、收率高且易于实现工业化生产的特点。同时,本发明利用MIL-88上已预先均匀分布的Fe位点作为Fe3+实现了活性位点的高度分散,同时在前驱体碳化后形成的碳层为材料提供了有效支撑避免了活性组分的流失,并赋予了材料磁性使得材料能够快速从水体中分离回收催化剂。
附图说明:
图1:CoFe2O4@C-500的TEM图。
制备过程中合成的CoFe2O4呈现均匀分布并在CoFe2O4的外层能够观察到明显的碳层。
图2:CoFe2O4@C-500的HR-TEM图。
从图中能够明显的观察到归属于CoFe2O4的晶格条纹,表明材料的合成成功。
图3:CoFe2O4@C-500的TEM-mapping图。
具体实施方式
结合具体实施例对本发明作进一步说明,但本发明的保护范围并不限于此。
实施例1
取100mL去离子水并加热至60℃,依次加入5mmol的六水合氯化铁,5mmol的六水合硝酸钴和5mmol的富马酸,超声10min并机械搅拌120min后移入150mL水热反应釜,60℃反应12h后收集底部沉淀,用50℃无水乙醇离心洗涤3次后60℃真空干燥8h后得到前驱体。
将前躯体充分研磨后置于管式炉中,以1℃/min的升温速率升温至300℃碳化120min后得到CoFeO3@C-300磁性碳纳米材料。
将上述制备得到的CoFeO3@C-300磁性碳纳米材料用于活化PMS降解氧氟沙星(OFX),PMS浓度为2mM,OFX浓度为10mg/L,温度为20℃,pH为7,催化剂投加量为0.2g/L。反应40min后OFX的降解效率达到85.3%。
实施例2
取100mL去离子水并加热至60℃,依次加入,10mmol的六水合氯化铁,5mmol的六水合硝酸钴和5mmol的富马酸,超声15min并机械搅拌150min后移入200mL水热反应釜,60℃反应16h后收集底部沉淀,用60℃无水乙醇离心洗涤4次后70℃真空干燥10h后得到前驱体。
将前躯体充分研磨后置于管式炉中,以2℃/min的升温速率升温至500℃碳化160min后得到CoFe2O4@C-500磁性碳纳米材料,TEM图见图1,HR-TEM图见图2,TEM-mapping图见图3。
将上述制备得到的CoFe2O4@C-500磁性碳纳米材料用于活化PMS降解OFX,PMS浓度为2mM,OFX浓度为20mg/L,温度为30℃,pH为7,催化剂投加量为0.3g/L。反应40min后OFX的降解效率达到91.2%。
实施例3
取150mL去离子水并加热至70℃,依次加入15mmol的六水合氯化铁,10mmol的六水合硝酸铁和15mmol的富马酸,超声20min并机械搅拌180min后移入200mL水热反应釜,70℃反应24h后收集底部沉淀,用60℃无水乙醇离心洗涤5次后60℃真空干燥10h后得到前驱体。
将前躯体充分研磨后置于管式炉中,以5℃/min的升温速率升温至600℃碳化180min后得到CoFeO3@C-600磁性碳纳米材料。
将上述制备得到的CoFeO3@C-600磁性碳纳米材料用于活化H2O2降解OFX,H2O2浓度为5mM,OFX浓度为5mg/L,温度为25℃,pH为7,催化剂投加量为0.3g/L。反应60min后OFX的降解效率达到87.2%。

Claims (10)

1.一种MIL-88衍生磁性碳纳米材料的制备方法,其特征在于包括你如下步骤:
1)向去离子水中依次加入六水合硝酸钴,六水合氯化铁和富马酸,超声并搅拌一段时间后将混合液转移到水热反应釜中,60-80℃反应8-24h后,得到棕红色沉淀,取出用无水乙醇和去离子水多次离心洗涤后60℃真空干燥8-12h后得到前驱体;
2)将前驱体充分研磨后置于管式炉中,300-700℃N2氛围下煅烧120-360min后得到MIL-88衍生磁性碳纳米材料。
2.根据权利要求1所述的制备方法,其特征在于步骤1)中去离子水的温度为50~75℃,优选60~70℃。
3.根据权利要求1所述的制备方法,其特征在于步骤1)中去离子水中六水合氯化铁的终浓度为为50~250mmol,六水合硝酸钴的用量为50~500mmol六水合氯化铁和富马酸的摩尔比为1:0.5~1:2。
4.根据权利要求1所述的制备方法,其特征在于步骤1)中的超声时间为10~20min,搅拌时间为60~180min。
5.根据权利要求1所述的制备方法,其特征在于步骤1)中的混合液占水热反应釜内胆总容量的50%~75%(V/V)。
6.根据权利要求1所述的制备方法,其特征在于步骤1)中的离心洗涤的无水乙醇和去离子水的温度为50~70℃。
7.根据权利要求1所述的制备方法,其特征在于步骤1)中的水热反应时间为12~24h,真空干燥时间为8-12h。
8.根据权利要求1所述的制备方法,其特征在于步骤2)中管式炉的升温温度为1~10℃/min。
9.按照权利要求1~8中任一项所述的制备方法制备的MIL-88衍生磁性碳纳米材料。
10.权利要求9所述的MIL-88衍生磁性碳纳米材料在协同氧化剂降解水体中抗生素中的应用;所述的氧化剂选自。
CN202310157454.9A 2023-02-23 2023-02-23 一种mil-88衍生磁性碳纳米材料及其制备方法和应用 Pending CN116393131A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310157454.9A CN116393131A (zh) 2023-02-23 2023-02-23 一种mil-88衍生磁性碳纳米材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310157454.9A CN116393131A (zh) 2023-02-23 2023-02-23 一种mil-88衍生磁性碳纳米材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116393131A true CN116393131A (zh) 2023-07-07

Family

ID=87009276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310157454.9A Pending CN116393131A (zh) 2023-02-23 2023-02-23 一种mil-88衍生磁性碳纳米材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116393131A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109354137A (zh) * 2018-11-27 2019-02-19 浙江工业大学 碳纳米管/mof衍生多孔碳复合电极材料的制备及应用
CN113667993A (zh) * 2021-07-06 2021-11-19 浙江工业大学 一种富含氧空位的一氧化钴/铁酸钴纳米片阵列结构催化剂及其制备与应用
WO2021258233A1 (zh) * 2020-06-22 2021-12-30 苏州楚捷新材料科技有限公司 高可见光响应的MOFs光催化材料的制备方法
CN114669329A (zh) * 2022-03-10 2022-06-28 南京工业大学 一种过渡金属掺杂mil-88气凝胶材料及其制备方法和应用
CN115121226A (zh) * 2022-07-11 2022-09-30 徐州医科大学 一种磁性碳基FeCo双金属有机框架复合材料的制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109354137A (zh) * 2018-11-27 2019-02-19 浙江工业大学 碳纳米管/mof衍生多孔碳复合电极材料的制备及应用
WO2021258233A1 (zh) * 2020-06-22 2021-12-30 苏州楚捷新材料科技有限公司 高可见光响应的MOFs光催化材料的制备方法
CN113667993A (zh) * 2021-07-06 2021-11-19 浙江工业大学 一种富含氧空位的一氧化钴/铁酸钴纳米片阵列结构催化剂及其制备与应用
CN114669329A (zh) * 2022-03-10 2022-06-28 南京工业大学 一种过渡金属掺杂mil-88气凝胶材料及其制备方法和应用
CN115121226A (zh) * 2022-07-11 2022-09-30 徐州医科大学 一种磁性碳基FeCo双金属有机框架复合材料的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUN-YI ANDREW LIN ET AL.: "Magnetic Iron/Carbon Nanorod Derived from Metal Organic Framework as an Efficient Heterogeneous Catalyst for Chemical Oxidation Process in Water", 《RSC ADVANCES》, vol. 5, no. 63, 4 June 2015 (2015-06-04), pages 50790 - 50800 *
TONG HU ET AL.: "Fe/Co bimetallic nanoparticles embedded in MOF-derived nitrogen-doped porous carbon rods as efficient heterogeneous electro-Fenton catalysts for degradation of organic pollutants", 《APPLIED MATERIALS TODAY》, vol. 24, 25 August 2021 (2021-08-25), pages 1 - 13 *

Similar Documents

Publication Publication Date Title
Sun et al. Fe-doped g-C3N4 derived from biowaste material with Fe-N bonds for enhanced synergistic effect between photocatalysis and Fenton degradation activity in a broad pH range
Zheng et al. Enhanced photo-Fenton degradation of tetracycline using TiO2-coated α-Fe2O3 core–shell heterojunction
JP6843414B1 (ja) 黒鉛化基窒素錯体化のFe(III)−Fe▲0▼触媒の調製方法
Zhang et al. Superoxide radical mediated persulfate activation by nitrogen doped bimetallic MOF (FeCo/N-MOF) for efficient tetracycline degradation
Zeng et al. Visible-light-driven sonophotocatalysis and peroxymonosulfate activation over 3D urchin-like MoS2/C nanoparticles for accelerating levofloxacin elimination: Optimization and kinetic study
Zhang et al. High-density dispersion of CuNx sites for H2O2 activation toward enhanced Photo-Fenton performance in antibiotic contaminant degradation
CN114534759A (zh) 单原子钴负载管状氮化碳催化剂及其制备方法和应用
CN113522317B (zh) 由MOFs衍生的钴基双金属硫/碳催化剂的制备方法和应用
CN113244962B (zh) 一种产生单线态氧的锆卟啉基mof-石墨烯复合光催化剂的制备方法及应用
Jabbar et al. Preparation of magnetic Fe3O4/g-C3N4 nanosheets immobilized with hierarchal Bi2WO6 for boosted photocatalytic reaction towards antibiotics in aqueous solution: S-type charge migration route
CN115090289B (zh) 一种新型钙钛矿原位生长FeCo-MOFs衍生纳米碳微波催化剂及其制备方法和应用
CN113952955A (zh) 一种水铁矿衍生的CoO/CoFe2O4异质结过二硫酸盐催化剂及其制备方法与应用
Qiao et al. Enhanced photocatalytic degradation performance of new and stable 2D/3D Ln-MOFs for tetracycline under visible light
CN113351218B (zh) 一种Cu2O/BiFeO3复合材料及其制备方法和应用
CN113731416A (zh) 一种局域酸位点改性的单原子催化剂、制备方法及其应用
Ma et al. Research Progress in Photocatalysis of Rare Earth Metal-Organic Frameworks: from environmental restoration, resource utilization to photodynamic therapy
CN110624574B (zh) 一种双Bi4O5I2光催化材料的制备方法及其降解MC-LR的应用
CN116393131A (zh) 一种mil-88衍生磁性碳纳米材料及其制备方法和应用
CN114177911B (zh) 碳载多金属氧化物催化剂及其制备方法和应用
CN111036223A (zh) 一种Bi2O3/BiFeO3纳米纤维复合光催化剂及其制备方法
CN115888823A (zh) 一种用于原位合成过氧化氢的可见光光催化剂及其制备方法与应用
CN114345347A (zh) 一种铁酸钴助催化剂及其制备方法和应用
CN113522338A (zh) 硼氧共掺杂氮化碳非金属臭氧催化剂及其制备方法与应用
CN117324015B (zh) 一种FeOxSey纳米墙催化材料制备及其在光芬顿降解氟喹诺酮类抗生素中的应用
Li et al. UiO-66 (Zr)-based functional materials for water purification: An updated review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination