CN116377404A - 一种在包壳表面基于高熵合金阻扩散性能复合涂层及其制备方法 - Google Patents

一种在包壳表面基于高熵合金阻扩散性能复合涂层及其制备方法 Download PDF

Info

Publication number
CN116377404A
CN116377404A CN202211557548.7A CN202211557548A CN116377404A CN 116377404 A CN116377404 A CN 116377404A CN 202211557548 A CN202211557548 A CN 202211557548A CN 116377404 A CN116377404 A CN 116377404A
Authority
CN
China
Prior art keywords
coating
sputtering
entropy alloy
alloy
craltiwv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211557548.7A
Other languages
English (en)
Other versions
CN116377404B (zh
Inventor
吴晓宏
李杨
卢松涛
姚忠平
秦伟
洪杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Chongqing Research Institute of Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Chongqing Research Institute of Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology, Chongqing Research Institute of Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202211557548.7A priority Critical patent/CN116377404B/zh
Publication of CN116377404A publication Critical patent/CN116377404A/zh
Application granted granted Critical
Publication of CN116377404B publication Critical patent/CN116377404B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本发明公开了一种在包壳表面基于高熵合金阻扩散性能复合涂层及其制备方法,属于特种功能涂层领域。本发明现LOCA条件下,核燃料包壳与保护涂层之间由于高温而产生的扩散现象,最终消耗涂层使涂层对基体的保护效果急剧下降的问题。本发明在燃料包壳基体与铬涂层之间沉积的一层致密的高熵合金CrAlTiWV,通过磁控溅射制成。本发明引入扩散阻挡层之后对包壳材料的高温氧化提供了另一层保障。

Description

一种在包壳表面基于高熵合金阻扩散性能复合涂层及其制备 方法
技术领域
本发明属于特种功能涂层领域,具体地说,涉及一种在包壳表面基于高熵合金阻扩散性能复合涂层及其制备方法。
背景技术
核能是替代化石燃料的最有效的能源,核能发电提供了可靠和经济的电力供应,碳排放非常低,废弃物数量相对较少,可以安全地存储和最终处理。近些年核能发展迅速,发达国家电力供应的很大一部分靠核能发电供应。但是在高温、高压、化学侵蚀性冷却剂和强辐射的综合作用,核反应堆堆芯内的材料暴露在极其恶劣的环境中。包壳是保持燃料完整性和核电站安全最重要的部件之一。在正常运行条件下核燃料包壳材料具有一定抗高温腐蚀,抗辐照腐蚀,可以有效的保护核燃料不被释放在环境中。但在冷却剂缺失事故(LOCA,Loss of Coolant Accidents)后,由于核裂变产生的高能量以热能的形式向外辐射,环境温度会迅速升高至近1200℃,在如此高的温度下,燃料包壳会被严重破坏。其中包括,锆合金包壳会与水蒸气发生反应,该反应是一个放热反应会进一步升高环境温度;在升高温度的同时,锆合金与水蒸气的反应会生成大量的氢气,使氢气浓度迅速升高,很容易发生爆炸,造成严重的核泄漏等事故。因此,核安全是该领域最迫切解决的问题之一。目前最成功的解决方案是在包壳材料表面涂覆一层抗高温氧化涂层,包括金属Cr、合金FeCrAl、陶瓷SiC、MAX相等,在高温下这些涂层表面会形成一层致密的保护膜,一般是氧化膜,这些氧化膜会阻止氧化物质向包壳内部的进一步渗入,从而起到保护包壳的作用。由于不同元素之间存在浓度的差异和扩散势垒,在高温下势垒被活化,涂层与包壳会发生双向扩散反应生成金属间化合物,这些反应既消耗了涂层元素使涂层厚度变薄影响涂层的保护效果,又生成了对包壳基体不利的金属间化合物。因此,需要对高温条件下膜/基之间的扩散进行抑制,提高涂层对基体的防护效果。
通过在涂层与基体中间引入扩散阻挡层提高涂层与基体原子之间的扩散势垒是解决此类问题最优方法之一。选择的阻挡层需要有较高的扩散势垒和在锆包壳中较低的原子饱和度,即使在高温下也不容易产生原子的快速迁移。目前使用最多的材料有难熔金属,陶瓷,但由于难熔金属价格昂贵,制备成本较高,而陶瓷与金属基体性能差异较大,造成结合力较差,易产生涂层的脱落。
发明内容
熵合金自2004年被提出以后受到合金研究者的广泛关注,除具有优异的抗氧化及力学性能外,高熵合金还具有四大效应(1)高熵效应;(2)晶格畸变效应;(3)缓慢扩散效应;(4)“鸡尾酒”效应;其中由于其晶格畸变大,造成了缓慢扩散效应,可以结合该特点将高熵合金作为扩散阻挡层引入包壳与防护涂层中间。此外,高熵合金具有优异的物理化学,抗氧化以及核辐照性能,在使用过程中与基体具有较好的结合力,是核反应堆潜在应用材料。
本发明为了解决现LOCA条件下,核燃料包壳与保护涂层之间由于高温而产生的扩散现象,最终消耗涂层使涂层对基体的保护效果急剧下降的问题;同时,涂层元素会在基体内部产生第二相并使基体脆化使基体性能严重下降。此外,引入扩散阻挡层之后对包壳材料的高温氧化提供了另一层保障。
为了解决上述技术问题,本发明采取了以下的技术方案:
本发明提供了一种高温条件下膜/基扩散阻挡层复合涂层,该涂层包括外层的高温防护涂层和中间的扩散阻挡层两部分,所述的扩散阻挡层是在燃料包壳基体与铬涂层之间沉积的一层致密的高熵合金CrAlTiWV,该涂层是使用磁控溅射技术通过调节气压,功率,偏压等参数而制得。
本发明的目的在于提供一种在包壳表面基于高熵合金阻扩散性能复合涂层的制备方法;具体是按下述步骤进行的:
步骤一、对锆合金基体进行前处理;
步骤二、然后磁控溅射CrAlTiWV涂层;
步骤三、然后磁控溅射铬涂层;即完成。
进一步地限定,步骤一所述前处理是先400#SiC砂纸打磨至表面出现金属光泽,再依次用800#,1200#和2000#的SiC砂纸打磨至表面无明显划痕;再依次用去离子水,无水乙醇,丙酮超声清洗,在空气中自然干燥。
进一步地限定,前处理过程中,去离子水中超声清洗60min,无水乙醇中超声清洗30min,丙酮中超声清洗30min。
进一步地限定,步骤二的参数,真空度为0.5±0.1Pa,靶材材料为高熵合金CrAlTiWV,氩气流流量为19.5sccm~20.5sccm,溅射功率为195~205W,溅射偏压为-55V~-45V,溅射时间至少2h。
进一步地限定,高熵合金靶CrAlTiWV材制备是通过熔炼法制备CrAlV合金,随后将块体研磨制备CrAlV合金粉末,向粉末中加入Ti粉以及W粉,然后将混合粉末烧结,制备CrAlTiWV高熵合金。
进一步地限定,高熵合金靶CrAlTiWV材制备过程中,在1400℃下烧结至少12。
进一步地限定,步骤三的参数:真空度为1.0±0.1Pa,靶材材料为铬,氩气流流量为19.5sccm~20.5sccm,溅射功率为165W~175W,溅射偏压为-55V~-45V,溅射时间为至少2h。
一种上述方法在锆合金基体制得复合涂层。
与现有技术相比,本发明具有以下有益效果:
本发明的涂层不与Zr-4基体不发生严重的扩散或反应,可有效阻挡外部Cr涂层的向内扩散。
本发明涂层具有比较好的稳定性。
本发明涂层具体中子吸收截面如下:Cr(3.1)、Al(0.23)、Ti(6.1)、W(5.06)、V(18.4),具有比价好的抗氧化性能。
本发明通过磁控溅射技术,在锆合金基片上制备一层高熵合金CrAlTiWV扩散阻挡层,通过调节制备参数可以得到表面致密,厚度均匀的CrAlTiWV涂层,具有阻止涂层原子向基体扩散的能力,使其使用在锆包壳防护涂层中具有一定的扩散阻挡效果。
本发明通过制备金属铬涂层的工艺参数,调整了溅射气压,溅射功率,溅射偏压以及溅射时基底温度,减少了在制备过程中的残余应力,并且提高了基体与涂层,涂层与涂层之间的结合力。
本发明的涂层通过高温氧化测试,明确了金属铬涂层的高温防护效果和高熵合金CrAlTiWV涂层的扩散阻挡效果。解决了在高温下金属铬涂层向基体扩散而消耗表面涂层造成的防护效果急剧下降的危害。
本发明的涂层通过高温测试,解决了在高温后涂层向基体扩散而造成的基体析出第二相和产生脆性的金属间化合物的危害,进一步提升了涂层对基体的防护效果。
为了能够更进一步了解本发明的特征及技术内容,请参阅以下有关本发明详细说明与附图,然而所附的附图仅提供参考和说明之用,并非用来对本发明加以限制。
附图说明
图1是实施例1制备的复合涂层氧化前后对比照片,左图氧化前,右图是氧化后;
图2是实施例1制备的复合涂层的XRD;
图3是实施例1制备的复合涂层氧化后的XRD;
图4是不同样品1200℃下氧化1h涂层截面元素分布(a)Cr涂层包覆Zr-4样品;(b)CrAlTiVW/Cr涂层包覆Zr-4样品。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1:本实施例中一种在包壳表面基于高熵合金阻扩散性能复合涂层的制备方法,该方法包括以下步骤:
步骤一、对锆合金基体进行前处理:
使用目数为400#的SiC砂纸进行打磨至表面出现金属光泽,依次使用800#,1200#,2000#的SiC砂纸继续打磨至表面无明显划痕;将打磨好的基片放入去离子水中进行超声60min,超声结束取出,放入乙醇中继续超声30min,最后用丙酮超声30min,并在空气中放置干燥。
步骤二、制备金属CrAlTiWV扩散阻挡层
步骤1、将锆合金基片放至在磁控溅射载物台,将靶材换为高熵合金CrAlTiWV,关闭腔体,开启机械泵抽真空至5.0±0.5Pa,打开分子泵,当显示器出现示数后,关闭机械泵抽气口,打开分子泵抽气口,开始抽真空至(5±0.5)×10-4Pa,完成抽真空操作;
步骤2、抽真空结束后,打开氩气瓶和气体流量显示仪,设定气体流量为20sccm,打开腔体进气阀门,通过调节分子泵抽气阀门来调节腔体中的气压,最后调节至0.5±0.1Pa;
步骤3、打开高熵合金对应直流电源,调节电流与电压,通过欧姆定律计算溅射功率为200W,打开偏压开关,溅射偏压为-50V,开始计时,计时时间为120min;
步骤4、溅射完毕后,依次关闭直流电源,偏压,氩气流,完成制备CrAlTiWV涂层操作。
步骤三、然后磁控溅射铬涂层:
切换Cr靶材对应直流电源:使用金属铬作为溅射靶材,在沉积之前需要溅射电源进行切换。
制备金属铬防护涂层:切换完电源后,调整内部真空度为1.0±0.1Pa。打开直流电源,调节电流与电压,通过欧姆定律计算溅射功率为170W,打开偏压开关,溅射偏压为-50V,开始计时,计时时间为120min。溅射完毕后,依次关闭直流电源,偏压,氩气流,分子泵,机械泵,打开腔体,取出样品,关闭腔体,完成制备铬涂层操作;即在包壳表面基于高熵合金阻扩散性能复合涂层。
本实施例中高熵合金靶材CrAlTiWV的制备是通过熔炼法制备CrAlV合金,随后将块体研磨制备CrAlV合金粉末,向粉末中加入Ti粉以及W粉,然后将混合粉末在1400℃下烧结12h,制备CrAlTiWV高熵合金靶材。
上述CrAlV合金通过现有方法制备即可,比如熔炼法。
对实施例1获得的涂层进行性能测试,测试项目及测试结果如下:
Figure BDA0003983890650000051
对实施例1中的涂层样品放置1200℃中进行1h氧化实验,结果如图所示:
由图4可知,在1200℃氧化后1h后,已经引入阻扩散层的元素未发现Cr的大量向内扩散以及Zr大量的向外扩散,而未引入阻扩散层的样品发生了严重的扩散现象。

Claims (8)

1.一种在包壳表面基于高熵合金阻扩散性能复合涂层的制备方法,其特征在于,所述制备方法是通过下述步骤完成的:
步骤一、对锆合金基体进行前处理;
步骤二、然后磁控溅射CrAlTiWV涂层;
步骤三、然后磁控溅射铬涂层;即完成。
2.根据权利要求1所述的制备方法,其特征在于,步骤一所述前处理是先400#SiC砂纸打磨至表面出现金属光泽,再依次用800#,1200#和2000#的SiC砂纸打磨至表面无明显划痕;再依次用去离子水,无水乙醇,丙酮超声清洗,在空气中自然干燥。
3.根据权利要求2所述的制备方法,其特征在于,去离子水中超声清洗60min,无水乙醇中超声清洗30min,丙酮中超声清洗30min。
4.根据权利要求1所述的制备方法,其特征在于,步骤二的参数,真空度为0.4Pa~0.5Pa,靶材材料为高熵合金CrAlTiWV,氩气流流量为19.5sccm~20.5sccm,溅射功率为195~205W,溅射偏压为-55V~-45V,溅射时间至少2h。
5.根据权利要求3所述的制备方法,其特征在于,高熵合金靶CrAlTiWV材制备是通过熔炼法制备CrAlV合金,随后将块体研磨制备CrAlV合金粉末,向粉末中加入Ti粉以及W粉,然后将混合粉末烧结,制备CrAlTiWV高熵合金。
6.根据权利要求5所述的制备方法,其特征在于,在1400℃下烧结至少12h。
7.根据权利要求1所述的制备方法,其特征在于,步骤三的参数:真空度为1.0±0.1Pa,靶材材料为铬,氩气流流量为19.5sccm~20.5sccm,溅射功率为165W~175W,溅射偏压为-55V~-45V,溅射时间为至少2h。
8.一种权利要求1-7任意一项所述方法在锆合金基体制得复合涂层。
CN202211557548.7A 2022-12-06 2022-12-06 一种在包壳表面基于高熵合金阻扩散性能复合涂层及其制备方法 Active CN116377404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211557548.7A CN116377404B (zh) 2022-12-06 2022-12-06 一种在包壳表面基于高熵合金阻扩散性能复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211557548.7A CN116377404B (zh) 2022-12-06 2022-12-06 一种在包壳表面基于高熵合金阻扩散性能复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN116377404A true CN116377404A (zh) 2023-07-04
CN116377404B CN116377404B (zh) 2023-09-22

Family

ID=86973684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211557548.7A Active CN116377404B (zh) 2022-12-06 2022-12-06 一种在包壳表面基于高熵合金阻扩散性能复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN116377404B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170124441A (ko) * 2016-05-02 2017-11-10 한국과학기술원 고강도 초내열 고엔트로피 합금기지 복합소재 및 이의 제조방법
CN108914039A (zh) * 2018-07-23 2018-11-30 陕西华秦科技实业有限公司 核用锆合金防护涂层材料及其制备方法
CN110055496A (zh) * 2019-04-04 2019-07-26 中国核动力研究设计院 一种在核用锆合金基底表面制备Cr涂层的制备工艺
CN111172503A (zh) * 2019-12-26 2020-05-19 西安交通大学 一种锆合金包壳表面多层复合涂层及其制备方法
CN111826648A (zh) * 2020-07-16 2020-10-27 西安交通大学 一种事故容错核燃料包壳双层涂层结构及其制备方法
CN112893852A (zh) * 2021-01-19 2021-06-04 中国矿业大学 一种难熔高熵合金粉末制备方法
CN113088884A (zh) * 2021-03-09 2021-07-09 哈尔滨工业大学 一种在锆包壳上制备具有高温抗氧化性能的铬涂层的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170124441A (ko) * 2016-05-02 2017-11-10 한국과학기술원 고강도 초내열 고엔트로피 합금기지 복합소재 및 이의 제조방법
CN108914039A (zh) * 2018-07-23 2018-11-30 陕西华秦科技实业有限公司 核用锆合金防护涂层材料及其制备方法
CN110055496A (zh) * 2019-04-04 2019-07-26 中国核动力研究设计院 一种在核用锆合金基底表面制备Cr涂层的制备工艺
CN111172503A (zh) * 2019-12-26 2020-05-19 西安交通大学 一种锆合金包壳表面多层复合涂层及其制备方法
CN111826648A (zh) * 2020-07-16 2020-10-27 西安交通大学 一种事故容错核燃料包壳双层涂层结构及其制备方法
CN112893852A (zh) * 2021-01-19 2021-06-04 中国矿业大学 一种难熔高熵合金粉末制备方法
CN113088884A (zh) * 2021-03-09 2021-07-09 哈尔滨工业大学 一种在锆包壳上制备具有高温抗氧化性能的铬涂层的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐剑茂等主编: "《中国战略性新兴产业 前沿新材料概论》", 中国铁道出版社, pages: 58 *

Also Published As

Publication number Publication date
CN116377404B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
CN108914039B (zh) 核用锆合金防护涂层材料及其制备方法
CN107513694B (zh) 一种用于锆合金表面抗高温氧化ZrCrFe/AlCrFeTiZr复合梯度合金涂层制备工艺
CN109207953B (zh) 抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺
CN109852943B (zh) 核用锆合金表面CrN涂层的制备方法及产品
CN109355611A (zh) 一种用于锆合金包壳的复合陶瓷涂层制备方法
CN102787300A (zh) 一种超临界水冷堆燃料包壳表面的Cr/CrAlN梯度涂层工艺
CN103924203B (zh) 一种基体表面的耐辐照防护涂层及其制备方法
CN113293354B (zh) 用于包壳基体抗高温氧化涂层以及制备工艺
CN109943811B (zh) 一种用于锆合金包壳上涂层的制备方法
CN111020500A (zh) 一种耐高温液态铅或铅铋腐蚀的FeCrAlY涂层及其制备方法
CN113088884A (zh) 一种在锆包壳上制备具有高温抗氧化性能的铬涂层的方法
He et al. Microstructure, mechanical properties and high temperature corrosion of [AlTiCrNiTa/(AlTiCrNiTa) N] 20 high entropy alloy multilayer coatings for nuclear fuel cladding
CN110499494A (zh) 一种以Zr为基底的Cr/Al单层膜及其制备方法
CN116377404B (zh) 一种在包壳表面基于高熵合金阻扩散性能复合涂层及其制备方法
CN115341186A (zh) 一种耐高温辐照氧化钇掺杂TaTiNbZr多主元合金涂层制备工艺
CN114231906A (zh) 一种船用燃气轮机高压涡轮叶片的热障涂层及其制备方法
Zhong et al. Preparation and characterization of large grain UO2 for accident tolerant fuel
CN104441821A (zh) 一种高温合金复合纳米晶涂层及其制备方法
CN115305443A (zh) 一种锆基非晶多组元氧化物涂层的制备方法及应用
CN112921299B (zh) 一种锆包壳表面复合膜层的制备方法
CN112853287B (zh) 一种具有长时间耐高温水蒸汽氧化的防护涂层及其制备方法
CN102776546B (zh) 一种抗高温氧化NiAl-Y2O3涂层及其制备和应用
Zhou et al. Effect of multi-arc current on the microstructure and properties of TiAlSiN coating on zircaloy-4 alloy
Meng et al. Oxidation behavior of CrAl-Mo coated Zircaloy-4 in DB and BDB scenarios
CN115305444B (zh) 锆合金基耐高温水腐蚀的AlCrNbTiZr高熵合金涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant