CN116247169B - 一种含Se掺杂的CoS2为负极的钠离子电池制备方法 - Google Patents

一种含Se掺杂的CoS2为负极的钠离子电池制备方法 Download PDF

Info

Publication number
CN116247169B
CN116247169B CN202310338987.7A CN202310338987A CN116247169B CN 116247169 B CN116247169 B CN 116247169B CN 202310338987 A CN202310338987 A CN 202310338987A CN 116247169 B CN116247169 B CN 116247169B
Authority
CN
China
Prior art keywords
sodium
ion battery
sodium ion
preparation
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310338987.7A
Other languages
English (en)
Other versions
CN116247169A (zh
Inventor
赵丹阳
李天琳
隋艳伟
李泳志
尹青
肖彬
杜炳辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202310338987.7A priority Critical patent/CN116247169B/zh
Publication of CN116247169A publication Critical patent/CN116247169A/zh
Application granted granted Critical
Publication of CN116247169B publication Critical patent/CN116247169B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种含Se掺杂的CoS2为负极的钠离子电池制备方法,S1:将氧化石墨烯悬浊液加入四水合乙酸钴和十二烷基硫酸钠,加入硫代乙酰胺,超声后加入亚硒酸钠再超声;S2:将溶液转移至四氟乙烯反应釜中反应;S3:洗涤三次后冷冻干燥,得到CoSeS2/C;S4:与聚偏氟乙烯和乙炔黑混合研磨,然后加入1‑甲基‑2吡咯烷酮搅拌成浆料状,涂在铜箔上制成电极片,真空烘干;S5:将钠离子电池负极、钠片、玻璃纤维膜与高氯酸钠、碳酸二甲酯、碳酸乙烯酯、碳酸甲乙酯和氟代碳酸乙烯酯的混合液组装。本发明制备复合材料CoSeS2/C,结构稳定、形貌均匀,具有良好的循环倍率性能,工艺流程短,便于操作。

Description

一种含Se掺杂的CoS2为负极的钠离子电池制备方法
技术领域
本发明涉及一种电池负极材料的制备方法,具体为一种含Se掺杂的CoS2为负极的钠离子电池制备方法,属于电池材料制备领域。
背景技术
近年来,锂离子电池由于高能量密度和长循环寿命等优点,已成为了众多能量存储设备的重要电源。然而,锂元素的资源稀少、价格昂贵和安全性差等问题制约着锂离子电池的大规模应用。与锂元素相比,钠元素的储量丰富,价格低廉,而且和锂元素处于同一主族,具有非常相似的储能机理,在大规模储能中极具应用前景。过渡金属硫化物(TMDs)由于大的理论容量和低廉的成本,是极具应用潜力的钠离子电池负极材料之一。另外,与过渡金属氧化物相比,过渡金属硫化物中存在的M-S键具有更低的键能和反应势垒,有利于转化反应,从而提高钠离子的扩散动力学。
二硫化钴(CoS2)作为一种与黄铁矿同晶结构的过渡金属硫化物,因其高的理论容量(870mAh g-1)和丰富的储量,非常适合作为下一代高能量的钠离子电池负极材料。但是与其他硫化物一样,二硫化钴在钠离子的嵌入/脱出过程中伴随着大的体积膨胀,致使电极材料在充放电过程中损耗过快,造成循环寿命的严重退化和电极动力学缓慢;同时,本征二硫化钴的电导率过低,严重影响电极的循环和倍率性能,且硫化物的表面原子惰性,会导致其电化学活性的降低。
近年来,有研究通过制备同晶黄铁矿/碳基质复合材料提高了钠离子电池的存储性能,其中碳基体可以用来提供快速的电子传递,同时作为缓冲层来适应同晶黄铁矿材料CoS2的体积变化。石墨烯等碳质材料具有较大的比表面积和良好的导电性,常被用于构建碳基体,负载活性纳米颗粒作为电极材料。另外,过渡金属硫化物与石墨烯耦合时可以产生较大的界面面积,这极大地缩短了离子扩散路径,在界面创建高效可达的通道,促进Na+扩散动力学。然而,通常CoS2的合成和石墨烯纳米片的合成是分开的,这导致了合成过程的复杂化。除此之外,引入石墨烯对于缓解体积膨胀和电导率的提高有显著作用,但是对于电极材料电化学活性的提高有限。因此,需要一种更加有效的方法制备出晶黄铁矿/碳基质复合材料,来开发更高性能的钠离子电池阳极。
发明内容
针对上述现有技术存在的问题,本发明的目的是提供一种含Se掺杂的CoS2为负极的钠离子电池制备方法,以解决现有同晶黄铁矿/碳基质复合材料合成过程复杂化和电化学活性较低的问题。
为实现上述目的,本发明采用的技术方案是:
一种含Se掺杂的CoS2为负极的钠离子电池制备方法,包括以下步骤:
S1:将氧化石墨烯悬浊液超声至完全均匀后,加入四水合乙酸钴和十二烷基硫酸钠,超声15min;加入硫代乙酰胺,超声15min;之后加入亚硒酸钠,超声15min;
S2:将得到的超声均匀的溶液转移至四氟乙烯反应釜中,在180℃下反应12h,随炉冷却;
S3:用无水乙醇和去离子水交替抽滤洗涤三次后冷冻干燥48小时,得到三维石墨烯负载Se掺杂CoS2颗粒的复合材料,即CoSeS2/C;
S4:将制得的CoSeS2/C与聚偏氟乙烯和乙炔黑混合研磨,然后加入1-甲基-2吡咯烷酮搅拌成浆料状,均匀的涂在铜箔上制成电极片,60-70℃真空烘干,得到钠离子电池负极;
S5:在无水无氧的手套箱中,将制备得到的钠离子电池负极、钠片、玻璃纤维膜与高氯酸钠、碳酸二甲酯、碳酸乙烯酯、碳酸甲乙酯和氟代碳酸乙烯酯的混合液组装,得到钠电池。
更进一步的,步骤S1中四水合乙酸钴、十二烷基硫酸钠、硫代乙酰胺和亚硒酸钠的质量比为5:1:6:2.8。
更进一步的,步骤S1中氧化石墨烯悬浊液的浓度为1mg/ml,且氧化石墨烯悬浊液的体积与十二烷基硫酸钠的质量之比为2000ml:1g。
更进一步的,步骤S4中CoSeS2/C与聚偏氟乙烯和乙炔黑的质量比为8:1:1。
更进一步的,步骤S4中1-甲基-2吡咯烷酮与十二烷基硫酸钠的质量比为1.2:1。
本发明制备方法的有益效果为:
(1)本发明通过一步水热方法制备在三维石墨烯上原位负载CoSeS2颗粒的复合材料CoSeS2/C,该材料的结构稳定、形貌均匀,性能更加稳定;
(2)本发明利用Se原子调控缺陷浓度,增加活性位点,改善Co S2电化学活性;构筑三维石墨烯有助于提高电导率,同时实现空间限域,设计的CoSeS2/C电极材料应用于钠离子电池阳极,具有良好的循环倍率性能;
(3)本发明所述制备工艺流程短,实验方法简单便于操作,易于控制且重复性好,适用性强,为同晶黄铁矿材料应用于钠离子电池负极提供了新的思路。
附图说明
图1为CoSeS2/C材料的X射线衍射图;
图2为CoSeS2/C材料的扫描电镜图;
图3为CoSeS2/C电极在0.1Ag-1电流密度下的循环性能图;
图4为CoSeS2/C电极在不同电流密度下的倍率性能图。
具体实施方式
下面结合附图对本发明作进一步详细说明。
一种含Se掺杂的CoS2为负极的钠离子电池制备方法,包括以下步骤:
S1:将25ml氧化石墨烯悬浊液超声至完全均匀后,加入0.0625g四水合乙酸钴和0.0125g十二烷基硫酸钠,超声15min;加入0.075g硫代乙酰胺,超声15min;之后加入0.035g亚硒酸钠,超声15min;
S2:将得到的超声均匀的溶液转移至50ml四氟乙烯反应釜中,在180℃下反应12h,随炉冷却;
S3:用无水乙醇和去离子水交替抽滤洗涤三次后冷冻干燥48小时,得到三维石墨烯负载Se掺杂CoS2颗粒的复合材料,即CoSeS2/C;
S4:将制得的CoSeS2/C与聚偏氟乙烯和乙炔黑按质量比8:1:1混合研磨,然后加入0.015g 1-甲基-2吡咯烷酮搅拌成浆料状,均匀的涂在铜箔上制成电极片,60-70℃真空烘干,得到钠离子电池负极;
S5:在无水无氧的手套箱中,将制备得到的钠离子电池负极、钠片、玻璃纤维膜与高氯酸钠、碳酸二甲酯、碳酸乙烯酯、碳酸甲乙酯和氟代碳酸乙烯酯的混合液组装,得到钠电池。
对制备得到的CoSeS2/C材料做X射线衍射图和扫描电镜图,如图1、2所示,CoSeS2材料颗粒的粒径为40-60nm,且形貌均匀,这样制备的材料结构稳定、可靠。图3为CoSeS2/C电极在0.1Ag-1电流密度下的循环性能图,如图3所示,在0-3V电压范围内,0.1Ag-1电流密度下,经过100圈循环后,放电比容量可达350mAh g-1。如图4所示,该电极在5Ag-1的电流密度下有285.5mAh g-1的可逆容量。

Claims (5)

1.一种含Se掺杂的CoS2为负极的钠离子电池制备方法,其特征在于,包括以下步骤:
S1:将氧化石墨烯悬浊液超声至完全均匀后,加入四水合乙酸钴和十二烷基硫酸钠,超声15min;加入硫代乙酰胺,超声15min;之后加入亚硒酸钠,超声15min;
S2:将得到的超声均匀的溶液转移至四氟乙烯反应釜中,在180℃下反应12h,随炉冷却;
S3:用无水乙醇和去离子水交替抽滤洗涤三次后冷冻干燥48小时,得到三维石墨烯负载Se掺杂CoS2颗粒的复合材料,即CoSeS2/C;
S4:将制得的CoSeS2/C与聚偏氟乙烯和乙炔黑混合研磨,然后加入1-甲基-2吡咯烷酮搅拌成浆料状,均匀的涂在铜箔上制成电极片,60-70℃真空烘干,得到钠离子电池负极;
S5:在无水无氧的手套箱中,将制备得到的钠离子电池负极、钠片、玻璃纤维膜与高氯酸钠、碳酸二甲酯、碳酸乙烯酯、碳酸甲乙酯和氟代碳酸乙烯酯的混合液组装,得到钠电池。
2.根据权利要求1所述的一种含Se掺杂的CoS2为负极的钠离子电池制备方法,其特征在于,步骤S1中四水合乙酸钴、十二烷基硫酸钠、硫代乙酰胺和亚硒酸钠的质量比为5:1:6:2.8。
3.根据权利要求1所述的一种含Se掺杂的CoS2为负极的钠离子电池制备方法,其特征在于,步骤S1中氧化石墨烯悬浊液的浓度为1mg/ml,且氧化石墨烯悬浊液的体积与十二烷基硫酸钠的质量之比为2000ml:1g。
4.根据权利要求1或2所述的一种含Se掺杂的CoS2为负极的钠离子电池制备方法,其特征在于,步骤S4中CoSeS2/C与聚偏氟乙烯和乙炔黑的质量比为8:1:1。
5.根据权利要求1或2所述的一种含Se掺杂的CoS2为负极的钠离子电池制备方法,其特征在于,步骤S4中1-甲基-2吡咯烷酮与十二烷基硫酸钠的质量比为1.2:1。
CN202310338987.7A 2023-04-01 2023-04-01 一种含Se掺杂的CoS2为负极的钠离子电池制备方法 Active CN116247169B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310338987.7A CN116247169B (zh) 2023-04-01 2023-04-01 一种含Se掺杂的CoS2为负极的钠离子电池制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310338987.7A CN116247169B (zh) 2023-04-01 2023-04-01 一种含Se掺杂的CoS2为负极的钠离子电池制备方法

Publications (2)

Publication Number Publication Date
CN116247169A CN116247169A (zh) 2023-06-09
CN116247169B true CN116247169B (zh) 2024-01-19

Family

ID=86624377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310338987.7A Active CN116247169B (zh) 2023-04-01 2023-04-01 一种含Se掺杂的CoS2为负极的钠离子电池制备方法

Country Status (1)

Country Link
CN (1) CN116247169B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106622295A (zh) * 2016-12-26 2017-05-10 东华大学 一种二硫化钴/石墨烯‑石墨烯纳米带复合气凝胶及其制备方法和应用
CN111268671A (zh) * 2020-01-20 2020-06-12 广东工业大学 一种石墨烯负载锡掺杂的二硫化钴复合材料及其制备方法和应用
CN113937281A (zh) * 2021-09-24 2022-01-14 中国科学院深圳先进技术研究院 负极材料及其制备方法和钠离子电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106622295A (zh) * 2016-12-26 2017-05-10 东华大学 一种二硫化钴/石墨烯‑石墨烯纳米带复合气凝胶及其制备方法和应用
CN111268671A (zh) * 2020-01-20 2020-06-12 广东工业大学 一种石墨烯负载锡掺杂的二硫化钴复合材料及其制备方法和应用
CN113937281A (zh) * 2021-09-24 2022-01-14 中国科学院深圳先进技术研究院 负极材料及其制备方法和钠离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A "Superaerophobic" Se-Doped CoS2 Porous Nanowires Array for Cost-Saving Hydrogen Evolution;Yan Tan ect,;Catalysts;第11卷(第169期);第8页第1行至11页第2行 *

Also Published As

Publication number Publication date
CN116247169A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
CN108598390B (zh) 一种锂硫电池用正极材料的制备方法及锂硫电池
CN107425185B (zh) 一种碳纳米管负载的碳化钼材料的制备方法及其在锂硫电池正极材料中的应用
CN111354933B (zh) 一种应用于锂硫电池正极材料的氮化钨/氮掺杂石墨烯/氧化钨复合材料的制备方法
CN115072777B (zh) 通过钴掺杂和溶剂协同调控制备中空硫化铋的方法及由其制备的钾离子电池负极材料
CN114291796A (zh) 一种钾离子电池负极材料及其制备方法和应用
CN109494346B (zh) 一种碳量子点修饰锂硫电池正极材料的制备方法
CN108539158B (zh) 一种rGO/WS2复合材料的制备方法及其在锂硫电池正极材料中的应用
CN113161527A (zh) 一种MOFs衍生硫化钴颗粒复合碳材料的制备方法及其应用
CN113066988A (zh) 一种负极极片及其制备方法和用途
CN116247169B (zh) 一种含Se掺杂的CoS2为负极的钠离子电池制备方法
CN110783542A (zh) 一种纸巾衍生碳纤维负载MoS2微米花复合材料的制备方法及其在锂硫电池中的应用
CN114512665B (zh) 一种金属离子掺杂的钠离子电池负极片的制备方法
CN114843459A (zh) 一种五硫化二锑基材料及其制备方法和应用
CN115440507A (zh) 一种锡基氧化物/氮掺杂石墨烯复合材料及其制备方法和应用
CN114665068A (zh) 一种以锂铝合金为负极的全固态锂电池的制备方法
CN108975388A (zh) 一种一锅合成LiEuTiO4锂离子电池阳极材料的方法
CN113809419A (zh) 化成方法及化成后的锂离子电池
CN110098397B (zh) 一种高容量且稳定的少层硒化钼-胶原蛋白衍生碳复合物钾离子电池负极材料的合成和应用
CN113066979A (zh) S@VxSy复合正极材料及其制备方法和锂硫电池
CN114864903B (zh) 一种内嵌二维金属硒化物的石墨烯基硒正极材料及其制备方法、锂硒电池
CN117199360B (zh) 一种碳酸钠/碳复合正极补钠添加剂及其制备方法和在无负极钠金属电池中的应用
CN113140809B (zh) 一种基于二维材料MoS2下的高性能可充电溴离子电池及其制备方法
CN108963214A (zh) 一种锂离子电池负极材料的制备方法
CN114665088B (zh) 锌钴镍电池正极复合材料的制备方法
CN111900384B (zh) 一种锂硫电池正极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant