CN116178012A - 一种高熵石榴石固态电解质陶瓷及其制备方法和应用 - Google Patents

一种高熵石榴石固态电解质陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN116178012A
CN116178012A CN202310191834.4A CN202310191834A CN116178012A CN 116178012 A CN116178012 A CN 116178012A CN 202310191834 A CN202310191834 A CN 202310191834A CN 116178012 A CN116178012 A CN 116178012A
Authority
CN
China
Prior art keywords
entropy
garnet
gutai
dan
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310191834.4A
Other languages
English (en)
Other versions
CN116178012B (zh
Inventor
王永祯
韩少雄
王勇
王晓敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202310191834.4A priority Critical patent/CN116178012B/zh
Publication of CN116178012A publication Critical patent/CN116178012A/zh
Application granted granted Critical
Publication of CN116178012B publication Critical patent/CN116178012B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Conductive Materials (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明提供了一种高熵石榴石固态电解质陶瓷及其制备方法和应用,涉及先进陶瓷和能源储能技术领域。本发明提供的高熵石榴石固态电解质陶瓷,化学式为Li6.2La3(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)2O12。本发明提供的高熵石榴石固态电解质陶瓷具有优异的空气稳定性,能够提高固态电池的循环稳定性和倍率性能。

Description

一种高熵石榴石固态电解质陶瓷及其制备方法和应用
技术领域
本发明涉及先进陶瓷和能源储能技术领域,具体涉及一种高熵石榴石固态电解质陶瓷及其制备方法和应用。
背景技术
锂离子电池因其高能量密度、高工作电压和长循环寿命,广泛应用于各种电子设备和移动通信领域。目前市场流通的锂电池通常使用液体电解质,液体电解液具有较高的锂离子电导率,但存在充电过充或短路、易泄漏、腐蚀、高温分解等安全问题,可能导致火灾或爆炸,使其具有安全隐患。近年来,随着电动汽车等领域的快速发展,对锂电池的续航和安全性能提出了更高的要求,固态电池有着高能量密度和高安全性能的特点成为了研究的热点。固态电池的性能依赖于固态电解质的发展,目前石榴石型固态电解质因其高的离子电导率、宽电化学窗口和与阳极良好的相容性被认为是最有潜力的固态电解质之一。但石榴石电解质最大的短板是空气稳定性差,容易和空气反应生成碳酸锂,增大阻抗。
发明内容
本发明的目的在于提供一种高熵石榴石固态电解质陶瓷及其制备方法和应用,本发明提供的高熵石榴石固态电解质陶瓷具有优异的空气稳定性,能够提高固态电池的循环稳定性和倍率性能。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种高熵石榴石固态电解质陶瓷,化学式为Li6.2La3(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)2O12
优选地,所述高熵石榴石固态电解质陶瓷的离子电导率为1×10-4~1.42×10-4S/cm。
优选地,所述高熵石榴石固态电解质陶瓷的相对密度为90~96%。
本发明提供了上述技术方案所述高熵石榴石固态电解质陶瓷的制备方法,包括以下步骤:
将锂源、镧源、锆源、铪源、钽源、钛源和铌源进行球磨,得到高熵石榴石前驱体粉末;
将所述高熵石榴石前驱体粉末进行煅烧,得到高熵石榴石电解质粉体;
将所述高熵石榴石电解质粉体和粘结剂混合,进行成型,得到高熵石榴石电解质素坯;
将所述高熵石榴石电解质素坯进行烧结,得到高熵石榴石固态电解质陶瓷。
优选地,所述球磨为湿磨。
优选地,所述煅烧的温度为750~900℃,保温时间为5~12h。
优选地,所述成型的压力为4~8MPa,所述成型的温度为室温,保温保压的时间为1~3min。
优选地,所述烧结的温度为1200~1250℃,保温时间为30min~5h。
优选地,由室温升温至所述烧结的温度的升温速率为2~10℃/min。
本发明提供了上述技术方案所述高熵石榴石固态电解质陶瓷或上述技术方案所述制备方法制备得到的高熵石榴石固态电解质陶瓷在固态电池中的应用。
本发明提供了一种高熵石榴石固态电解质陶瓷,化学式为Li6.2La3(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)2O12。本发明在Li7La3Zr2O12(LLZO)的Zr位点等摩尔比取代Zr原子制备高熵石榴石固态电解质陶瓷,通过在Zr位点掺杂等摩尔比的四价元素(钛和铪)和五价元素(钽和铌)制备高熵陶瓷,能够将锂空位引入到石榴石晶格中促进锂离子的迁移提高离子电导率;同时,能够提高石榴石固态电解质的致密度,增强抵抗空气侵蚀的能力。
实施例结果表明,本发明提供的高熵石榴石固态电解质陶瓷的相对密度为91%,远高于LLZO电解质陶瓷的相对密度(50%),离子电导率高达1.42×10-4S/cm。高熵石榴石固态电解质暴露在空气中30天在XRD图谱中未发现碳酸锂的生成,表现出良好的空气稳定性。高熵石榴石固态电池表现出优异的循环稳定性和倍率性能。
附图说明
图1为实施例1、实施例2和对比例1中石榴石固态电解质陶瓷的XRD图;
图2为实施例1、实施例2和对比例1中石榴石固态电解质陶瓷的SEM图;
图3为实施例1、实施例2和对比例1中石榴石固态电解质陶瓷初始的和30天后的XRD图;
图4为实施例1、实施例2和对比例1中石榴石固态电解质陶瓷初始的和30天后的EIS图;
图5为实施例1和对比例1中石榴石固态电解质陶瓷对称电池的恒电流充放电图;
图6为实施例1和对比例1中石榴石固态电解质陶瓷全电池的倍率性能图。
具体实施方式
本发明提供了一种高熵石榴石固态电解质陶瓷,化学式为Li6.2La3(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)2O12
在本发明中,所述高熵石榴石固态电解质陶瓷的离子电导率优选为1×10-4~1.42×10-4S/cm,更优选为1.38×10-4~1.42×10-4S/cm。
在本发明中,所述高熵石榴石固态电解质陶瓷的相对密度优选为90~96%,更优选为91%。在本发明中,所述相对密度是以物质的理论密度为参考进行测定的。
本发明提供了上述技术方案所述高熵石榴石固态电解质陶瓷的制备方法,包括以下步骤:
将锂源、镧源、锆源、铪源、钽源、钛源和铌源进行球磨,得到高熵石榴石前驱体粉末;
将所述高熵石榴石前驱体粉末进行煅烧,得到高熵石榴石电解质粉体;
将所述高熵石榴石电解质粉体和粘结剂混合,进行成型,得到高熵石榴石电解质素坯;
将所述高熵石榴石电解质素坯进行烧结,得到高熵石榴石固态电解质陶瓷。
本发明将锂源、镧源、锆源、铪源、钽源、钛源和铌源进行球磨,得到高熵石榴石前驱体粉末。在本发明中,所述锂源、镧源、锆源、铪源、钽源、钛源和铌源的纯度优选在99wt%以上。在本发明中,所述锂源优选为碳酸锂或氧化锂;所述镧源优选为氧化镧;所述锆源优选为氧化锆或硝酸氧锆;所述铪源优选为氧化铪;所述钽源优选为氧化钽;所述钛源优选为二氧化钛;所述铌源优选为氧化铌。
本发明优选按照Li6.2La3(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)2O12的化学计量比称取各原料,同时碳酸锂过量10wt%,以弥补高温下锂的挥发。在本发明的具体实施例中,所述碳酸锂、氧化镧、氧化锆、氧化铪、氧化钽、二氧化钛和氧化铌的质量比为2.276:3.912:0.396:0.672:0.708:0.256:0.424。
在本发明中,所述球磨优选为湿磨。在本发明中,所述湿磨采用的分散剂优选包括异丙醇或乙醇。在本发明中,所述球磨的转速优选为400~500r/min;所述球磨的时间优选为6~12h,更优选为12h。在本发明中,所述球磨采用的球磨介质优选为锆球。在本发明中,所述锂源、镧源、锆源、铪源、钽源、钛源和铌源的总质量与分散剂和球磨介质的质量比优选为1:1:6~10,更优选为1:1:8。
在本发明中,所述球磨优选在聚四氟乙烯球磨罐中进行。在本发明中,所述球磨的方式优选采用间歇式交替球磨,具体优选为:先正转球磨半小时,间歇5分钟,然后再反转球磨半小时。
本发明优选在所述球磨后,将所得浆料进行干燥,得到高熵石榴石前驱体粉末。在本发明中,所述干燥的温度优选为80℃;所述干燥的时间优选为6h。
得到高熵石榴石前驱体粉末后,本发明将所述高熵石榴石前驱体粉末进行煅烧,得到高熵石榴石电解质粉体。在本发明中,所述煅烧的温度为750~900℃,保温时间为5~12h。在本发明中,由室温升温至所述煅烧的温度的升温速率优选为3~5℃/min,更优选为5℃/min。在本发明中,所述煅烧的气氛优选为空气气氛。
在本发明中,所述煅烧优选在马弗炉的氧化镁坩埚中进行。
本发明优选在所述煅烧后,冷却至室温,得到高熵石榴石电解质粉体。在本发明中,所述冷却的速率优选为1~3℃/min,更优选为2℃/min。
在本发明中,所述高熵石榴石电解质粉体的化学式为Li6.2La3(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)2O12。在本发明中,所述高熵石榴石电解质粉体的颜色为微黄色;所述高熵石榴石电解质粉体的颗粒直径优选为5~20μm。
得到高熵石榴石电解质粉体后,本发明将所述高熵石榴石电解质粉体和粘结剂混合,进行成型,得到高熵石榴石电解质素坯。在本发明中,所述粘结剂优选为聚乙烯醇缩丁醛酯(PVB)溶液。在本发明中,所述PVB溶液的浓度优选为30~50mg/mL,更优选为40mg/mL。在本发明中,所述PVB溶液的溶剂优选为乙醇。在本发明中,所述粘结剂的质量优选为高熵石榴石电解质粉体的1~3wt%,更优选为2wt%。在本发明中,所述高熵石榴石电解质粉体和粘结剂混合优选在研磨条件下进行。
在本发明中,所述成型优选为冷等静压成型;所述成型的压力优选为4~8MPa,更优选为6MPa;所述成型的温度优选为室温,具体优选为20~25℃;保温保压的时间优选为1~3min。在本发明中,所述成型优选在模具中进行;所述模具的内径优选为13mm。在本发明的具体实施例中,所述模具的内径根据纽扣电池壳的尺寸确定。
得到高熵石榴石电解质素坯后,本发明将所述高熵石榴石电解质素坯进行烧结,得到高熵石榴石固态电解质陶瓷。在本发明中,所述烧结的温度优选为1200~1250℃,更优选为1250℃;保温时间优选为30min~5h,更优选为2h。在本发明中,所述烧结的气氛优选为空气气氛。
在本发明中,由室温升温至所述烧结的温度的升温速率优选为2~10℃/min,更优选为3~5℃/min。
在本发明中,所述烧结优选在马弗炉的氧化镁坩埚中进行。本发明在所述烧结过程中优选在氧化镁坩埚底部铺一层高熵石榴石电解质粉体,同时在高熵石榴石电解质素坯的表面覆盖高熵石榴石电解质粉体,以防止粘连。本发明在所述烧结过程中,高熵石榴石电解质颗粒长大,陶瓷致密化。
本发明优选在所述烧结后,降温至室温,得到高熵石榴石固态电解质陶瓷。在本发明中,所述降温的速率优选为1~3℃/min,更优选为2℃/min。
在本发明中,所述高熵石榴石固态电解质陶瓷的颜色为浅黄色。
本发明提供了上述技术方案所述高熵石榴石固态电解质陶瓷或上述技术方案所述制备方法制备得到的高熵石榴石固态电解质陶瓷在固态电池中的应用,优选应用于锂离子固态电池。在本发明中,所述应用优选包括:以上述技术方案所述高熵石榴石固态电解质陶瓷为电解质,以锂片为阳极,以磷酸铁锂为阴极,在充满氩气的手套箱中组装成纽扣电池。在本发明中,所述高熵石榴石固态电解质陶瓷优选先进行预处理;所述预处理优选包括依次进行的砂纸打磨抛光、超声清洗和烘干。在本发明中,所述超声清洗优选在乙醇溶液中进行;所述乙醇溶液的质量浓度优选为99.7%。在本发明中,所述超声清洗的时间优选为3~5s。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)称取2.276g碳酸锂、3.912g氧化镧、0.396g氧化锆、0.256g二氧化钛、0.672g氧化铪、0.708g氧化钽和0.424g氧化铌,将上述原料倒入聚四氟乙烯球磨罐中;按照原料、异丙醇和球磨介质锆球的质量比为1:1:8,再加入68g锆球和10mL的异丙醇;在行星球磨机上球磨,转速为400r/min,时间为12h;将球磨好的浆料放入80℃烘箱中,干燥6h,得到高熵石榴石前驱体粉末;
(2)将所述高熵石榴石前驱体粉末放入氧化镁坩埚中,在马弗炉中以5℃/min的升温速率升温至900℃,煅烧12h,以2℃/min的速率降温至室温,得到高熵石榴石电解质粉体;
(3)称取800mg所述高熵石榴石电解质粉体倒入玛瑙研钵中,再加入16mg的粘结剂PVB溶液(溶剂为乙醇,浓度为40mg/mL),研磨均匀,将混合后的粉体倒入内径18mm的模具中,在25℃、6MPa的压力下保持3min,得到高熵石榴石电解质素坯;
(4)在氧化镁坩埚底部铺一层高熵石榴石电解质粉体,将所述高熵石榴石电解质素坯放入氧化镁坩埚中,用高熵石榴石电解质粉体覆盖素坯,在马弗炉中以5℃/min的升温速率升温至1250℃,烧结2h,以2℃/min的速率降温至室温,得到高熵石榴石固态电解质陶瓷。本实施例制备的高熵石榴石固态电解质陶瓷的离子电导率为1.42×10-4S/cm。
按照上述方案制备2个高熵石榴石固态电解质陶瓷,暴露在空气中30天(相对湿度40%,温度为室温),利用XRD测试高熵石榴石固态电解质陶瓷表面的形貌变化,电化学工作站测试高熵石榴石固态电解质陶瓷的阻抗变化。
将本实施例制备的高熵石榴石固态电解质陶瓷用砂纸打磨抛光,放入乙醇溶液中超声3~5s清洗表面,然后烘干;锂片为阳极,磷酸铁锂为阴极,在充满氩气的手套箱中组装成纽扣电池,采用蓝电测试系统测试全电池的倍率性能和对称电池的循环性能。
实施例2
(1)称取2.276g碳酸锂、3.912g氧化镧、0.396g氧化锆、0.256g二氧化钛、0.672g氧化铪、0.708g氧化钽和0.424g氧化铌,将上述原料倒入聚四氟乙烯球磨罐中;按照原料、异丙醇和球磨介质锆球的质量比为1:1:8,再加入68g锆球和10mL的异丙醇;在行星球磨机上球磨,转速为500r/min,时间为12h;将球磨好的浆料放入80℃烘箱中,干燥6h,得到高熵石榴石前驱体粉末;
(2)将所述高熵石榴石前驱体粉末放入氧化镁坩埚中,在马弗炉中以5℃/min的升温速率升温至900℃,煅烧5h,以2℃/min的速率降温至室温,得到高熵石榴石电解质粉体;
(3)称取800mg所述高熵石榴石电解质粉体倒入玛瑙研钵中,再加入16mg的粘结剂PVB溶液(溶剂为乙醇,浓度为40mg/mL),研磨均匀,将混合后的粉体倒入内径18mm的模具中,在20℃、6MPa的压力下保持3min,得到高熵石榴石电解质素坯;
(4)将所述高熵石榴石电解质素坯放入氧化镁坩埚中,用电解质粉体覆盖素坯,在马弗炉中以5℃/min的升温速率升温至1200℃,烧结5h,以2℃/min的速率降温至室温,得到高熵石榴石固态电解质陶瓷。本实施例制备的高熵石榴石固态电解质陶瓷的离子电导率为1.38×10-4S/cm。
按照上述方案制备2个高熵石榴石固态电解质陶瓷,暴露在空气中30天(相对湿度40%,温度为室温),利用XRD测试高熵石榴石固态电解质陶瓷表面的形貌变化,电化学工作站测试高熵石榴石固态电解质陶瓷的阻抗变化。
将本实施例制备的高熵石榴石固态电解质陶瓷用砂纸打磨抛光,放入乙醇溶液中超声3~5s清洗表面,然后烘干;锂片为阳极,磷酸铁锂为阴极,在充满氩气的手套箱中组装成纽扣电池,采用蓝电测试系统测试全电池的倍率性能和对称电池的循环性能。
对比例1
制备Li7La3Zr2O12(LLZO)固态电解质:
(1)称取2.276g碳酸锂、3.912g氧化镧和1.972g氧化锆,将上述原料倒入聚四氟乙烯球磨罐中;按照原料、异丙醇和球磨介质锆球的质量比为1:1:8,再加入68g锆球和10mL的异丙醇;在行星球磨机上球磨,转速为400r/min,时间为12h;将球磨好的浆料放入80℃烘箱中,干燥6h,得到LLZO电解质前驱体粉末;
(2)将所述LLZO电解质前驱体粉末放入氧化镁坩埚中,在马弗炉中以5℃/min的升温速率升温至900℃,煅烧12h,以2℃/min的速率降温至室温,得到LLZO电解质粉体;
(3)称取800mg所述LLZO电解质粉体倒入玛瑙研钵中,再加入16mg的粘结剂PVB溶液(溶剂为乙醇,浓度为40mg/mL),研磨均匀,将混合后的粉体倒入内径18mm的模具中,在6MPa的压力下保持3min,得到LLZO电解质素坯;
(4)将所述LLZO电解质素坯放入氧化镁坩埚中,用电解质粉体覆盖素坯,在马弗炉中以5℃/min的升温速率升温至1200℃,烧结2h,以2℃/min的速率降温至室温,得到LLZO电解质陶瓷。
按照上述方案制备2个LLZO电解质陶瓷,暴露在空气中30天(相对湿度40%,温度为室温),利用XRD测试LLZO电解质陶瓷表面的形貌变化,电化学工作站测试LLZO电解质陶瓷的阻抗变化。
将本对比例制备的LLZO电解质陶瓷用砂纸打磨抛光,放入乙醇溶液中超声3~5s清洗表面,然后烘干;锂片为阳极,磷酸铁锂为阴极,在充满氩气的手套箱中组装成纽扣电池,采用蓝电测试系统测试全电池的倍率性能和对称电池的循环性能。
测试结果
图1为实施例1、实施例2和对比例1中石榴石固态电解质陶瓷的XRD图。由图1可以看出,实施例1和实施例2都可以生成纯相的石榴石相。
图2为实施例1、实施例2和对比例1中石榴石固态电解质陶瓷的SEM图。由图2可以看出,实施例1和实施例2的致密度更高,晶粒结合更紧密。
图3为实施例1、实施例2和对比例1中石榴石固态电解质陶瓷初始的和30天后的XRD图。由图3可以看出,实施例1和实施例2在30天后没有出现碳酸锂峰,说明空气稳定性更好。
图4为实施例1、实施例2和对比例1中石榴石固态电解质陶瓷初始的和30天后的EIS图。由图4可以看出,实施例1和实施例2在30天内的阻抗变化很小,说明空气稳定性强。
图5为实施例1和对比例1中石榴石固态电解质陶瓷对称电池的恒电流充放电图。由图5可以看出,实施例1的电化学稳定性更好。
图6为实施例1和对比例1中石榴石固态电解质陶瓷全电池的倍率性能图。由图6可以看出,实施例1的倍率性能更好,在0.5C下放电容量可以达到117mAhg-1
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种高熵石榴石固态电解质陶瓷,化学式为Li6.2La3(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)2O12
2.根据权利要求1所述的高熵石榴石固态电解质陶瓷,其特征在于,所述高熵石榴石固态电解质陶瓷的离子电导率为1×10-4~1.42×10-4S/cm。
3.根据权利要求1所述的高熵石榴石固态电解质陶瓷,其特征在于,所述高熵石榴石固态电解质陶瓷的相对密度为90~96%。
4.权利要求1~3任一项所述高熵石榴石固态电解质陶瓷的制备方法,包括以下步骤:
将锂源、镧源、锆源、铪源、钽源、钛源和铌源进行球磨,得到高熵石榴石前驱体粉末;
将所述高熵石榴石前驱体粉末进行煅烧,得到高熵石榴石电解质粉体;
将所述高熵石榴石电解质粉体和粘结剂混合,进行成型,得到高熵石榴石电解质素坯;
将所述高熵石榴石电解质素坯进行烧结,得到高熵石榴石固态电解质陶瓷。
5.根据权利要求4所述的制备方法,其特征在于,所述球磨为湿磨。
6.根据权利要求4所述的制备方法,其特征在于,所述煅烧的温度为750~900℃,保温时间为5~12h。
7.根据权利要求4所述的制备方法,其特征在于,所述成型的压力为4~8MPa,所述成型的温度为室温,保温保压的时间为1~3min。
8.根据权利要求4所述的制备方法,其特征在于,所述烧结的温度为1200~1250℃,保温时间为30min~5h。
9.根据权利要求8所述的制备方法,其特征在于,由室温升温至所述烧结的温度的升温速率为2~10℃/min。
10.权利要求1~3任一项所述高熵石榴石固态电解质陶瓷或权利要求4~9任一项所述制备方法制备得到的高熵石榴石固态电解质陶瓷在固态电池中的应用。
CN202310191834.4A 2023-03-02 2023-03-02 一种高熵石榴石固态电解质陶瓷及其制备方法和应用 Active CN116178012B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310191834.4A CN116178012B (zh) 2023-03-02 2023-03-02 一种高熵石榴石固态电解质陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310191834.4A CN116178012B (zh) 2023-03-02 2023-03-02 一种高熵石榴石固态电解质陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116178012A true CN116178012A (zh) 2023-05-30
CN116178012B CN116178012B (zh) 2024-01-23

Family

ID=86446079

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310191834.4A Active CN116178012B (zh) 2023-03-02 2023-03-02 一种高熵石榴石固态电解质陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116178012B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2822522C1 (ru) * 2023-12-13 2024-07-08 Федеральное государственное бюджетное учреждение науки Институт геологии и геохимии им. академика А.Н. Заварицкого Уральского отделения Российской академии наук Способ получения высокоэнтропийного железоредкоземельного граната состава (Ln10,2Ln20,2Ln30,2Ln40,2Ln50,2)3Fe5O12 с эквимолярным соотношением редкоземельных компонентов

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272344A (ja) * 2009-05-21 2010-12-02 Toyota Central R&D Labs Inc 全固体型リチウムイオン二次電池
US20110053002A1 (en) * 2009-09-03 2011-03-03 Ngk Insulators, Ltd. Ceramic material and preparation method therefor
CN102308425A (zh) * 2009-02-04 2012-01-04 株式会社丰田中央研究所 石榴石型锂离子传导性氧化物和含有所述氧化物的全固态锂离子二次电池
CN114094178A (zh) * 2021-11-17 2022-02-25 珠海恩捷新材料科技有限公司 固态电解质复合膜及其制备方法
CN115312838A (zh) * 2021-05-07 2022-11-08 北京航空航天大学 高熵金属硫磷化物电解质材料及其制备方法
CN115332619A (zh) * 2022-08-19 2022-11-11 同济大学 一种用于固态电池的高熵氧化物固态电解质材料及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308425A (zh) * 2009-02-04 2012-01-04 株式会社丰田中央研究所 石榴石型锂离子传导性氧化物和含有所述氧化物的全固态锂离子二次电池
JP2010272344A (ja) * 2009-05-21 2010-12-02 Toyota Central R&D Labs Inc 全固体型リチウムイオン二次電池
US20110053002A1 (en) * 2009-09-03 2011-03-03 Ngk Insulators, Ltd. Ceramic material and preparation method therefor
CN115312838A (zh) * 2021-05-07 2022-11-08 北京航空航天大学 高熵金属硫磷化物电解质材料及其制备方法
CN114094178A (zh) * 2021-11-17 2022-02-25 珠海恩捷新材料科技有限公司 固态电解质复合膜及其制备方法
CN115332619A (zh) * 2022-08-19 2022-11-11 同济大学 一种用于固态电池的高熵氧化物固态电解质材料及其制备方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2822522C1 (ru) * 2023-12-13 2024-07-08 Федеральное государственное бюджетное учреждение науки Институт геологии и геохимии им. академика А.Н. Заварицкого Уральского отделения Российской академии наук Способ получения высокоэнтропийного железоредкоземельного граната состава (Ln10,2Ln20,2Ln30,2Ln40,2Ln50,2)3Fe5O12 с эквимолярным соотношением редкоземельных компонентов

Also Published As

Publication number Publication date
CN116178012B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
KR101539123B1 (ko) 석류석 구조를 갖는 이온 전도체
KR102164521B1 (ko) 실온 고체 상태 나트륨 이온 전지용 고전도율 나시콘 전해질
TWI436949B (zh) 化性穩定之固態鋰離子導體
CN106848392A (zh) 抑制全固态电池中锂枝晶生长的固态电解质及其制备方法
CN108793987B (zh) 一种锂离子传导氧化物固体电解质及其制备方法
Li et al. Rational design of strontium antimony co-doped Li7La3Zr2O12 electrolyte membrane for solid-state lithium batteries
CN112174664A (zh) 一种新型高储能、高效率的铌酸钠基陶瓷材料及其制备方法
JP5311913B2 (ja) 高イオン導電性固体電解質材料の製造方法
KR101762275B1 (ko) 저온소결공정에 의한 고체전해질의 제조방법 및 그를 포함하는 전고체 리튬이차전지의 제조방법
CN105244536A (zh) 一种钽掺杂立方石榴石结构Li7La3Zr2-xTaxO12材料及其制备方法
CN103496740A (zh) 一种固体电解质材料的电场活化烧结方法
CN110620259A (zh) 一种锂电池高晶界电导钙钛矿固态电解质及制备方法
CN101800305A (zh) 一种在锂离子电池钛酸锂负极表面沉积硅薄膜的方法
CN112573574A (zh) 一种通过调控锂空位含量制备石榴石型固态电解质的方法
CN112531204A (zh) 一种塑晶-陶瓷复合固体电解质及其低温热压制备方法
CN111129580B (zh) 一种硫银锗矿掺杂钙钛矿型固体电解质及其制备方法
CN110128140A (zh) 一种镱铝共掺杂石榴石型Li7La3Zr2O12锂离子导体材料及其制备方法
CN115275329A (zh) 一种石榴石型固态电解质的制备方法及应用
CN116178012B (zh) 一种高熵石榴石固态电解质陶瓷及其制备方法和应用
TWI806196B (zh) 固態電解質薄膜、其製造方法以及包括固態電解質薄膜的電池
CN109133921B (zh) 一种钙钛矿型固态钠离子电解质材料及其制备方法
CN114497714B (zh) 一种高离子电导率石榴石型固体电解质的制备方法
CN114361578B (zh) 一种改性nasicon型氧化物陶瓷电解质及其制备方法和应用
CN114243097B (zh) 一种nasicon型钠离子陶瓷电解质及其制备方法
CN113346127B (zh) Nasicon型锂离子固态电解质、制备方法及电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant