CN116173954A - 一种金属铁改性污泥炭及其制备方法和应用 - Google Patents

一种金属铁改性污泥炭及其制备方法和应用 Download PDF

Info

Publication number
CN116173954A
CN116173954A CN202211343720.9A CN202211343720A CN116173954A CN 116173954 A CN116173954 A CN 116173954A CN 202211343720 A CN202211343720 A CN 202211343720A CN 116173954 A CN116173954 A CN 116173954A
Authority
CN
China
Prior art keywords
sludge
peat
metal iron
sulfamethoxazole
biochar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211343720.9A
Other languages
English (en)
Inventor
杨列
孔德锦
何浏洋
张祖麟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202211343720.9A priority Critical patent/CN116173954A/zh
Publication of CN116173954A publication Critical patent/CN116173954A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • B01J35/61
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Abstract

本发明涉及一种金属铁改性污泥炭及其制备方法和应用,包括如下步骤:S1、将烘干的污泥进行一次热解,过筛后得到污泥生物炭;S2、将所述污泥生物炭加入FeCl3水溶液中,进行水热反应,得到金属铁改性污泥炭。本发明通过金属铁修饰污泥生物炭,显著提高了生物炭的催化活性,从而提升了生物炭催化过氧乙酸降解水体中有机污染物的能力,此外,在使用过程中铁相较于其他过渡金属,经济性良好、使用后低浸出、低毒性的特点使得铁负载改性污泥炭在处理水体中的磺胺甲噁唑具有不可替代的优良特性,特别针对特定的污染物质磺胺甲噁唑具有优异的降解效果。

Description

一种金属铁改性污泥炭及其制备方法和应用
技术领域
本发明涉及环境工程水处理技术领域,特别是一种金属铁改性污泥炭及其制备方法和应用。
背景技术
抗生素主要用于治疗细菌感染,已经成为人类和动物健康的福音。但通过人类废弃物和动物粪便进入环境的消耗性抗生素主要以未改变的活性形式存在,这可能对生态系统和人类构成威胁。磺胺类药物(SAs)作为一类典型的抗生素,已被广泛用于人类和牲畜,它们从医院和牲畜养殖场释放出来,使得这些化合物经常在沉积物、水域和土壤中被检出。此外,它们的抗菌性使它们难以被污水处理厂的生物方法去除,导致SAs在水生系统中的累积。
其中,磺胺甲噁唑是使用较广泛的磺胺类药物之一,化学名称为4-氨基-N-(5-甲基-3-异恶唑基)苯磺酰胺,是一种有机化合物,其作为抗菌剂,抗菌谱广,抗菌作用强。磺胺甲噁唑属全身应用的中效磺胺类药,是一种广谱抑菌剂。其抗菌作用机制是因其在结构上类似(PABA),可与PABA竞争性作用于细菌体内的二氢叶酸合成酶,阻止细菌二氢叶酸的合成,从而抑制细菌的生长繁殖。但是其持久性对人类健康和生态环境构成潜在威胁,引起了研究者的广泛关注,研究其高效去除对维持生态安全和保护人体健康具有重要的意义。目前,水体中磺胺甲噁唑的去除主要有吸附技术、膜分离技术和生物处理技术等,并取得一定的成效,然而以上方法都存在不足之处,或去除效果不佳、或操作不便,或对磺胺甲噁唑适应性不强等。因此寻找一种高效的去除此类污染物的方法是必要的。
生物炭具有多孔结构和大比表面积为其高效的吸附性能奠定了基础,生物炭的芳香碳结构和其表面基团使其对不同极性的有机污染物具有广谱的吸附能力。生物炭吸附法虽能将水体中污染物吸附在生物炭载体上,但从根本上没有改变污染物的毒性,一旦对这些吸附生物炭处置不当,容易造成环境的二次污染,因此,亟需研发一种吸附去除同时能够催化降解有机污染物的吸附材料。
发明内容
本发明的目的在于,提供一种金属铁改性污泥炭及其制备方法和应用,用于解决现有技术水体中磺胺甲噁唑的催化降解效果不理想的问题。
为解决上述技术问题,本发明提供一种金属铁改性污泥炭的制备方法的技术方案:
包括如下步骤:
S1、将烘干的污泥进行一次热解,过筛后得到污泥生物炭;
S2、将污泥生物炭加入FeCl3水溶液中,进行水热反应,得到金属铁改性污泥炭。
进一步地,步骤S1中,烘干的污泥是将污泥先清洗若干次,再烘干至恒重。
进一步地,步骤S1中,一次热解是将烘干的污泥置于通入氮气的管式炉中热解2~3h,热解温度为400~500℃。
更进一步地,氮气流速为0.4~0.6L/min,升温速率为5~15℃/min。
进一步地,步骤S1中,过筛是过100目筛网。
进一步地,步骤S2中,FeCl3水溶液是FeCl3·6H2O溶于水得到的;FeCl3·6H2O和污泥生物炭的质量比为1:1。
进一步地,步骤S2中,水热反应的温度为210~230℃,时间为10~14h。
进一步地,步骤S2中,水热反应的产物在60~80℃干燥24~48h,获得金属铁改性污泥炭。
本发明提供一种如上制备方法制得的金属铁改性污泥炭。
本发明提供一种上述金属铁改性污泥炭在催化降解磺胺甲噁唑中的应用。具体地,该金属铁改性污泥炭在催化过氧乙酸降解磺胺甲噁唑中的应用。
进一步地,该应用是将金属铁改性污泥炭与过氧乙酸混合后加入到磺胺甲噁唑废水中进行降解处理。
进一步地,金属铁改性污泥炭投加量在0.1~1.2g/L;降解处理时溶液的pH值为3~3.5;降解时间为10~30min。
与现有技术相比,本发明的有益效果是:
本发明通过金属铁修饰污泥生物炭,显著提高了生物炭的催化活性,从而提升了生物炭催化过氧乙酸降解水体中有机污染物的能力,此外,在使用过程中铁相较于其他过渡金属,经济性良好、使用后低浸出、低毒性的特点使得铁负载改性污泥炭在处理水体中的磺胺甲噁唑具有不可替代的优良特性,特别针对特定的污染物质磺胺甲噁唑具有优异的降解效果。
附图说明
图1是本发明应用例1中磺胺甲噁唑的降解率图线图;
图2是本发明应用例1和对比例1中磺胺甲噁唑的降解率图线对比图;
图3是本发明对比例2和对比例3中磺胺甲噁唑的降解率图线对比图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。
本发明金属铁改性污泥炭的制备方法,包括如下步骤:
(1)将烘干的污泥进行一次热解,过筛后得到污泥生物炭;优选的,一次热解的具体步骤包括:将烘干的污泥置于通入氮气的管式炉中热解2~3h,热解温度为400~500℃,氮气流速为0.4~0.6L/min,升温速率为5~15℃/min。优选的,一次热解所得产物磨碎过100目筛网,密封避光储存干燥器中备用。
(2)按1:1的质量比称取FeCl3·6H2O和污泥生物炭,将FeCl3·6H2O溶于去离子水中,得到FeCl3·6H2O溶液;
(3)将污泥生物炭加入FeCl3·6H2O溶液中,放入水热反应器,将水热反应器放入烘箱,在烘箱中放置进行水热反应,反应完成后取出,经反复清洗并烘干,过筛后得到金属铁改性污泥炭。
优选的,水热反应的步骤包括:将污泥炭加入FeCl3·6H2O溶液中,放入水热反应器,将水热反应器在210~230℃的烘箱中放置10~14h后取出;
优选的,水热反应后清洗烘干的步骤包括:用去离子水洗涤直至达到中性的酸碱度,然后在60~80℃烘箱中干燥24~48h,获得金属铁改性污泥炭。
本发明金属铁改性污泥炭的应用,金属铁改性污泥炭与过氧乙酸混合后用于降解磺胺甲噁唑,金属铁改性污泥炭投加量在0.1~1.2g/L之间,磺胺甲噁唑:过氧乙酸之间的摩尔比为1:(10~120);改性污泥炭与过氧乙酸混合后降解磺胺甲噁唑时,控制pH值为3~3.5,降解时间为10~30min,降解方式包括静置、搅拌、震荡中的任意一种。
本发明的改性方法主要是水热法,不同于传统的其它方法如共沉淀法,不需高温烧结即可直接得到结晶粉末,避免了可能形成微粒硬团聚,也省去了研磨及由此带来的杂质。水热法是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热、加压,创造一个相对高温、高压的反应环境,使其重结晶进行无机合成的一种有效方法。当采用金属盐溶液为前驱物,随着水热反应温度和体系压力的增大,溶质(金属阳离子的水合物)通过水解和缩聚反应,生成相应的配位聚集体。
本发明采用的过氧乙酸是一种有机化合物,也是一种绿色生态杀菌剂,在环境中没有任何残留。其杀菌能力强,是一种非常有推广前途的杀菌剂,性能优于戊二醛和异噻唑啉酮;同时,过氧乙酸还是一种强氧化剂,具有很强的氧化性,遇有机物放出新生态氧而起氧化作用,与次氯酸钠、漂白粉等作为医疗或生活消毒药物使用,为高效、速效、低毒、广谱杀菌剂,对细菌繁殖体、芽孢、病毒、霉菌均有杀灭作用。
本发明应用中,采用过氧乙酸作为氧化剂,用于降解水体中有机污染物,通过乙酰(过)氧自由基等有机自由基的作用,高效稳定、操作简便,能够与金属铁改性污泥炭起到协同增效的作用。
下面通过具体的实施例对本发明做进一步详细说明。
下列具体实施例中的污泥均取自武汉市汤逊湖污水处理厂,含水率约为80%;取得的污泥用超纯水于超声清洗机中清洗3次,去除杂质后于105℃鼓风干燥箱中烘干至恒重。
实施例1
本实施例中,制备步骤如下:
1)烘干的污泥置于通入氮气管式炉中热解2h,热解温度为500℃,氮气流速为0.5L/min,升温速率为10℃/min;将经过一次热解后的产物磨碎后过100目筛网,得到污泥生物炭(记为SBC),密封避光储存干燥器中备用。
2)称量6gFeCl3·6H2O,并将其溶解在60ml的去离子水中,得到FeCl3·6H2O溶液;完全溶解后加入6g备用的污泥生物炭;随后,将混合液放入水热反应器中,在220℃条件下,在烘箱中放置12h后取出;用去离子水洗涤多次以达到中性的酸碱度,然后在70℃烘箱中干燥36h以获得金属铁改性污泥炭,所得金属铁改性污泥炭的平均粒径为0.15mm。
应用例1
采用实施例1中所制备的金属铁改性污泥炭进行催化过氧乙酸降解磺胺甲噁唑的应用及效果测试,过程如下:
将金属铁改性污泥炭与过氧乙酸混合后加入到含有2.5mg/L磺胺甲噁唑的溶液中,溶液中金属铁改性污泥炭浓度为0.6g/L,磺胺甲噁唑与过氧乙酸之间的摩尔比为1:60,调节pH值为3.5,总溶液体积为100ml,以500rpm转速在25℃恒温水浴搅拌锅搅拌处理30min,然后用HPLC测定体系中磺胺甲噁唑的浓度,从而计算得到磺胺甲噁唑降解率,结果表明磺胺甲噁唑降解率为92%,具体随时间变化的降解曲线如图1所示。
应用例2
采用实施例1中所制备的金属铁改性污泥炭进行催化过氧乙酸降解磺胺甲噁唑的应用及效果测试,过程如下:
将金属铁改性污泥炭与过氧乙酸混合后加入到含有2.5mg/L磺胺甲噁唑的溶液中,溶液中金属铁改性污泥炭浓度为0.3g/L,磺胺甲噁唑与过氧乙酸之间的摩尔比为1:60,调节pH值为3.5,总溶液体积为100ml,以500rpm转速在25℃恒温水浴搅拌锅搅拌处理30min,然后用HPLC测定体系中磺胺甲噁唑的浓度,从而计算得到磺胺甲噁唑降解率,结果表明磺胺甲噁唑降解率为68%。
应用例3
采用实施例1中所制备的金属铁改性污泥炭进行催化过氧乙酸降解磺胺甲噁唑的应用及效果测试,过程如下:
将金属铁改性污泥炭与过氧乙酸混合后加入到含有2.5mg/L磺胺甲噁唑的溶液中,溶液中金属铁改性污泥炭浓度为0.6g/L,磺胺甲噁唑与过氧乙酸之间的摩尔比为1:30,调节pH值为3.5,总溶液体积为100ml,以500rpm转速在25℃恒温水浴搅拌锅搅拌处理30min,然后用HPLC测定体系中磺胺甲噁唑的浓度,从而计算得到磺胺甲噁唑降解率,结果表明磺胺甲噁唑降解率为80%。
对比例1
本对比例基于实施例1的制备步骤,区别在于本对比例中所制备的污泥生物炭未进行金属铁修饰(记为SBC),与过氧乙酸(记为PAA)构成降解体系,采用应用例1相同的步骤进行降解应用及效果测试,具体为:
将SBC与过氧乙酸混合后加入到含有2.5mg/L磺胺甲噁唑的溶液中,溶液中SBC浓度为0.6g/L,磺胺甲噁唑与过氧乙酸之间的摩尔比为1:60,调节pH值为3.5,总溶液体积为100ml,以500rpm转速在25℃恒温水浴搅拌锅搅拌处理30min,然后用HPLC测定体系中磺胺甲噁唑的浓度,从而计算得到磺胺甲噁唑降解率,结果表明磺胺甲噁唑降解率为65%。
对比例2
本对比例中仅采用过氧乙酸(记为PAA)作为降解体系,其它步骤及参数与应用例1相同,进行降解应用及效果测试,具体为:
将过氧乙酸加入到含有2.5mg/L磺胺甲噁唑的溶液中,磺胺甲噁唑与过氧乙酸之间的摩尔比为1:60,调节pH值为3.5,总溶液体积为100ml,以500rpm转速在25℃恒温水浴搅拌锅搅拌处理30min,然后用HPLC测定体系中磺胺甲噁唑的浓度,从而计算得到磺胺甲噁唑降解率,结果表明磺胺甲噁唑降解率为2%。
对比例3
本对比例基于实施例1的制备步骤,区别在于本对比例中仅采用金属铁改性污泥炭(记为Fe-SBC)作为降解体系,而不配合过氧乙酸进行降解,其它步骤及参数与应用例1相同,进行降解应用及效果测试,具体为:
在含2.5mg/L磺胺甲噁唑的废水(配置磺胺甲噁唑标准溶液,模拟磺胺甲噁唑废水)中只加入Fe-SBC,不加入过氧乙酸,溶液中Fe-SBC浓度为0.6g/L,调节pH值为3.5,总溶液体积为100ml,以500rpm转速在25℃恒温水浴搅拌锅搅拌处理30min,然后用HPLC测定体系中磺胺甲噁唑的浓度,从而计算得到磺胺甲噁唑降解率,结果表明磺胺甲噁唑降解率为39%。
将对比例1~3的降解率曲线进行统计,得到图2和图3,对比分析实施例1~3和对比例1~3中对废水中磺胺甲噁唑的降解率,可以看出实施例1~3中磺胺甲噁唑的降解率均可以达到65%以上,而对比例1~3中磺胺甲噁唑的降解率均低于65%,即证明本发明方法采用铁金属修饰污泥生物炭与过氧乙酸作为降解体系配合使用时,对废水中磺胺甲噁唑的降解效果最佳。该方法基于生物炭创造的特定复合材料,有利于扩大生物炭的应用范围,推进具有功能化的生物炭复合材料工业化进程。
实施例2(考察热解温度的影响)
热解温度的增加有助于其孔隙结构的发育和微孔的形成。随着热解温度的升高污泥炭的结构更加规则,孔结构更加丰富,比表面积增大,zeta电位升高,吸附能力增强。较高的热解温度也有利于得到碳含量高且性质稳定的污泥炭。热解温度低时材料表面孔隙较少,覆盖在材料表面的颗粒粒径较大,热解温度高有利于孔径的生长,从而增加比表面积和孔容,材料颗粒粒径越来越小。所以,为了使污泥炭具有一定的吸附能力,结构稳定,比表面积较大等优点,应选用较高热解温度的污泥炭。同时,考虑到体系中要以氧化反应为主,充分发挥氧化剂(过氧乙酸)的作用,体现该体系的优势,所以污泥炭在具备上述优点的同时,自身的吸附污染物能力不宜过大。而且,较高热解温度消耗更多热能,出于环境保护考虑,热解温度不宜过高。
因此本发明热解温度优选为400~600℃。此温度范围内,污泥炭既可以发挥其作用,达到效果,而且相比于更高热解温度的污泥炭更加环保节能。
实施例3(考察改性原料比例的影响)
将FeCl3·6H2O和污泥生物炭的质量比分别替换成1:3、1:2、2:1以及3:1,其它条件与实施例1相同,得到金属铁改性污泥炭样品。如果FeCl3·6H2O和污泥生物炭的质量比较大,所需的FeCl3·6H2O更多,再经过该体系的处理会有更多的铁浸出,在降解污染物的同时增加其他污染;由于污泥炭经过FeCl3·6H2O改性后对污染物的降解有较大提升,所以FeCl3·6H2O的含量较少时达不到较好的处理效果。因此,为了能满足有效降解污染物的同时铁的浸出最少,本发明选取较为适中的质量比1:1为最佳。
实施例4(考察污染物浓度的影响)
将磺胺甲噁唑的浓度替换成1mg/L,其他条件与实施例1相同。实验发现,在污染浓度较低的情况下,其降解率为98%。
对比例5(考察改性原料种类的影响)
将FeCl3·6H2O替换成Fe2O3和Fe3O4,其它条件与实施例1相同,得到金属铁改性污泥炭样品。
将所得金属铁改性污泥炭样品采用应用例1相同的步骤和条件,进行降解应用及效果测试,结果如下表1所示。
表1不同改性原料制得的金属铁改性污泥炭降解效果
改性原料 磺胺甲噁唑降解率/%
Fe2O3 55
Fe3O4 64
本发明提供一种金属铁改性污泥炭及其制备方法和应用,该制备方法步骤包括将烘干的污泥进行一次热解,过筛后得到污泥生物炭;按1:1的质量比称取FeCl3·6H2O和污泥生物炭,将FeCl3·6H2O溶于去离子水中,得到FeCl3·6H2O溶液;将污泥生物炭加入FeCl3·6H2O溶液中,放入水热反应器,在烘箱中放置后取出,经反复清洗并烘干,过筛后得到金属铁改性污泥炭。本发明采用的污泥来源广,成本低,是对废弃物的一种再利用,有效降低了污泥对环境造成的堆积压力和处理成本;本发明通过金属铁修饰污泥生物炭,显著提高了生物炭的催化活性,从而提升了生物炭催化过氧乙酸降解水体中有机污染物的能力,在较高污染物浓度的体系中,所需氧化剂含量低,特别针对特定的污染物质磺胺甲噁唑具有优异的降解效果。
需要说明的是,以上各实施例均属于同一发明构思,各实施例的描述各有侧重,在个别实施例中描述未详尽之处,可参考其他实施例中的描述。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种金属铁改性污泥炭的制备方法,其特征在于,包括如下步骤:
S1、将烘干的污泥进行一次热解,过筛后得到污泥生物炭;
S2、将所述污泥生物炭加入FeCl3水溶液中,进行水热反应,得到金属铁改性污泥炭。
2.根据权利要求1所述的金属铁改性污泥炭的制备方法,其特征在于,步骤S1中,烘干的污泥是将污泥先清洗若干次,再烘干至恒重。
3.根据权利要求1所述的金属铁改性污泥炭的制备方法,其特征在于,步骤S1中,所述一次热解是将烘干的污泥置于通入氮气的管式炉中热解2~3h,热解温度为400~500℃。
4.根据权利要求3所述的金属铁改性污泥炭的制备方法,其特征在于,氮气流速为0.4~0.6L/min,升温速率为5~15℃/min。
5.根据权利要求1所述的金属铁改性污泥炭的制备方法,其特征在于,步骤S1中,过筛是过100目筛网。
6.根据权利要求1所述的金属铁改性污泥炭的制备方法,其特征在于,步骤S2中,FeCl3水溶液是FeCl3·6H2O溶于水得到的;FeCl3·6H2O和污泥生物炭的质量比为1:1。
7.根据权利要求1所述的金属铁改性污泥炭的制备方法,其特征在于,步骤S2中,所述水热反应的温度为210~230℃,时间为10~14h。
8.根据权利要求1所述的金属铁改性污泥炭的制备方法,其特征在于,步骤S2中,水热反应的产物在60~80℃干燥24~48h,获得金属铁改性污泥炭。
9.如权利要求1-8任一项所述制备方法制得的金属铁改性污泥炭。
10.如权利要求9所述金属铁改性污泥炭在催化降解磺胺甲噁唑中的应用。
CN202211343720.9A 2022-10-31 2022-10-31 一种金属铁改性污泥炭及其制备方法和应用 Pending CN116173954A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211343720.9A CN116173954A (zh) 2022-10-31 2022-10-31 一种金属铁改性污泥炭及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211343720.9A CN116173954A (zh) 2022-10-31 2022-10-31 一种金属铁改性污泥炭及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116173954A true CN116173954A (zh) 2023-05-30

Family

ID=86439053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211343720.9A Pending CN116173954A (zh) 2022-10-31 2022-10-31 一种金属铁改性污泥炭及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116173954A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261504A (zh) * 2014-09-16 2015-01-07 同济大学 一种利用改性竹炭去除水体中磺胺甲恶唑的方法
CN110683873A (zh) * 2019-10-22 2020-01-14 上海原本生物科技有限公司 一种污泥炭高效降解猪粪中抗生素的方法
CN111268880A (zh) * 2020-02-26 2020-06-12 徐州工程学院 一种金属离子改性污泥基生物炭的制备方法及其应用
CN112169755A (zh) * 2020-09-24 2021-01-05 武汉理工大学 一种应用于水中四环素去除的水热合成的氯化锌活化的磁性污泥生物炭的制备方法
CN112410047A (zh) * 2020-10-27 2021-02-26 山东省科学院新材料研究所 一种载铁污泥生物炭及其制备方法和应用
CN113941343A (zh) * 2021-11-08 2022-01-18 武汉纺织大学 一种污泥基复合催化剂及其制备方法和应用
CN114939394A (zh) * 2022-03-29 2022-08-26 南京师范大学 一种铁改性水热炭的制备方法及其在降解ddt中的应用
CN114984956A (zh) * 2022-04-18 2022-09-02 武汉理工大学 一种应用于活化过一硫酸盐高效降解水中磺胺甲恶唑的磁性污泥生物炭的制备方法
CN115055164A (zh) * 2022-07-15 2022-09-16 辽宁大学 一种掺杂金属锆的磁性稻壳生物质炭吸附剂及其制备方法和应用
CN115231684A (zh) * 2022-07-19 2022-10-25 东华大学 污泥水热生物炭活化过硫酸盐用于染料废水处理的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261504A (zh) * 2014-09-16 2015-01-07 同济大学 一种利用改性竹炭去除水体中磺胺甲恶唑的方法
CN110683873A (zh) * 2019-10-22 2020-01-14 上海原本生物科技有限公司 一种污泥炭高效降解猪粪中抗生素的方法
CN111268880A (zh) * 2020-02-26 2020-06-12 徐州工程学院 一种金属离子改性污泥基生物炭的制备方法及其应用
CN112169755A (zh) * 2020-09-24 2021-01-05 武汉理工大学 一种应用于水中四环素去除的水热合成的氯化锌活化的磁性污泥生物炭的制备方法
CN112410047A (zh) * 2020-10-27 2021-02-26 山东省科学院新材料研究所 一种载铁污泥生物炭及其制备方法和应用
CN113941343A (zh) * 2021-11-08 2022-01-18 武汉纺织大学 一种污泥基复合催化剂及其制备方法和应用
CN114939394A (zh) * 2022-03-29 2022-08-26 南京师范大学 一种铁改性水热炭的制备方法及其在降解ddt中的应用
CN114984956A (zh) * 2022-04-18 2022-09-02 武汉理工大学 一种应用于活化过一硫酸盐高效降解水中磺胺甲恶唑的磁性污泥生物炭的制备方法
CN115055164A (zh) * 2022-07-15 2022-09-16 辽宁大学 一种掺杂金属锆的磁性稻壳生物质炭吸附剂及其制备方法和应用
CN115231684A (zh) * 2022-07-19 2022-10-25 东华大学 污泥水热生物炭活化过硫酸盐用于染料废水处理的方法

Similar Documents

Publication Publication Date Title
CN110801811B (zh) Mg/Fe氧化物修饰的生物炭纳米复合材料及其制备方法
Luo et al. Resource utilization of piggery sludge to prepare recyclable magnetic biochar for highly efficient degradation of tetracycline through peroxymonosulfate activation
Li et al. Facile fabrication of ZnO decorated ZnFe-layered double hydroxides@ biochar nanocomposites for synergistic photodegradation of tetracycline under visible light
CN110813237B (zh) Mg/Fe氧化物修饰的生物炭纳米复合材料在去除抗生素中的应用
CN108126657B (zh) 磁性猪粪生物炭及其制备方法
CN110226604B (zh) 一种磁性生物质炭-季鏻盐杀菌材料、制备及使用方法
Al-Jubouri et al. Antibiotics adsorption from contaminated water by composites of ZSM-5 zeolite nanocrystals coated carbon
Zheng et al. Nano-TiO2 membrane adsorption reactor (MAR) for virus removal in drinking water
CN112194236A (zh) 一种利用生物炭-氧化铜复合材料活化过一硫酸盐处理含盐难降解废水的方法
CN110143661B (zh) 一种用生物炭去除富钙高砷地下水中砷的方法
CN109179554A (zh) 利用二氧化锰负载生物炭材料去除水体中强力霉素的方法
CN112058233A (zh) 一种氢氧化镧修饰的磁性多孔生物炭的制备方法及应用
Majumder et al. Engineered biochar for the effective sorption and remediation of emerging pollutants in the environment
CN100534573C (zh) 一种过滤介质及制备方法、使用该过滤介质的滤芯、净水装置和饮水机
CN110075802B (zh) 一种铁氧化物负载的活性炭及其合成方法与应用
Gao et al. Activation of peroxymonosulfate by La2CuO4 perovskite for synergistic removal of Microcystis aeruginosa and microcystin-LR in harmful algal bloom impacted water
CN108927172B (zh) 一种负载金纳米粒子的磁性生物质碳材料的制备及其应用
Shao et al. Two-step pyrolytic preparation of biochar for the adsorption study of tetracycline in water
CN110559990A (zh) 一种低纳米零价铁和纳米银负载量净水炭复合材料的制备方法
Wang et al. A biochar-based catalyst prepared by potassium ferrate oxidation coupled high-temperature pyrolysis and its application for the activation of peroxymonosulfate towards the degradation of norfloxacin: Performance and mechanism insight
CN110510844A (zh) 一种淤泥改性生态化填料及其制备方法和应用
CN116173954A (zh) 一种金属铁改性污泥炭及其制备方法和应用
Özarabacı et al. Photocatalytic oxidation of oxytetracycline hydrochloride by using natural marine material supported perovskite composites
KR20210119755A (ko) 바이오매스 기반 펜톤산화용 자성유기촉매의 제조방법 및 그 방법에 의해 제조된 자성유기 촉매 및 그 용도
CN117619365A (zh) 一种载铁生物炭及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination