CN116173952B - 一种喹啉及其衍生物选择性加氢催化剂、制备方法及应用 - Google Patents

一种喹啉及其衍生物选择性加氢催化剂、制备方法及应用 Download PDF

Info

Publication number
CN116173952B
CN116173952B CN202310155554.8A CN202310155554A CN116173952B CN 116173952 B CN116173952 B CN 116173952B CN 202310155554 A CN202310155554 A CN 202310155554A CN 116173952 B CN116173952 B CN 116173952B
Authority
CN
China
Prior art keywords
quinoline
catalyst
sio
selective hydrogenation
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310155554.8A
Other languages
English (en)
Other versions
CN116173952A (zh
Inventor
孙志超
马晓迪
王安杰
刘颖雅
王瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202310155554.8A priority Critical patent/CN116173952B/zh
Publication of CN116173952A publication Critical patent/CN116173952A/zh
Application granted granted Critical
Publication of CN116173952B publication Critical patent/CN116173952B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/04Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
    • C07D215/06Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/18Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/24Oxygen atoms attached in position 8
    • C07D215/26Alcohols; Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/02Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种喹啉及其衍生物选择性加氢催化剂、制备方法及应用。本发明催化剂比表面积大,铜纳米颗粒粒径小,活性组分分散度高,硅酸盐的形成更是增强了金属活性组分与载体间的相互作用,由于催化剂中的Cu+和Cu0的协同作用有效提高了喹啉选择性加氢活性,铜催化剂用于C=N键的氢化反应,其极化性好,选择性高。1,2,3,4‑四氢喹啉是重要的化工原料,本发明的催化剂用于喹啉选择性加氢制备1,2,3,4‑四氢喹啉时,在3MPa H2,100℃,反应2h后,喹啉转化率和py‑THQ选择性分别达到100%和99.9%。

Description

一种喹啉及其衍生物选择性加氢催化剂、制备方法及应用
技术领域
本发明涉及一种喹啉及其衍生物选择性加氢催化剂、制备方法及应用,属于催化剂技术和工业催化领域。
背景技术
Py-THQ作为染料和药物的中间体,广泛应用于医药、生物碱、农用化学品和其他精细化学品。Py-THQ的合成方法有很多种,如催化环化、beckmann重排、喹啉直接加氢等。从简单和高效的角度来说,最直接的方法是利用喹啉进行区域选择性加氢合成py-THQ。而喹啉加氢产物一般含有三种:py-THQ、5,6,7,8-四氢喹啉(bz-THQ)和十氢喹啉(DHQ)。由于喹啉加氢需要苛刻的反应条件,以及喹啉的加氢产物的强吸附作用可能会导致催化剂中毒,因此温和条件下喹啉选择性加氢极为重要。
近年来,许多以传统贵金属为基础的均相和非均相体系被开发用于选择性加氢。目前的催化剂大多以贵金属为主,高昂的成本以及有限的资源限制了其进一步的应用。显然,非贵金属催化剂具有明显的成本优势,但铁、钴、镍等非贵金属催化剂在喹啉加氢中有副产物生成,分离困难。因此,开发更具成本效益和高选择性的金属催化剂对喹啉加氢以及其他应用具有重要意义。
基于铜金属的喹啉选择性加氢催化剂报道较少。层状硅酸盐衍生催化剂因其独特的层状结构、大的比表面积以及金属颗粒的高度分散性,近年来备受关注。以层状硅酸铜为原料的Cu/SiO2催化剂已被应用于醋酸甲酯加氢制备乙醇(Catalysis Letters,2021,151:3089-3102),其中通过La助剂的引入来调控Cu+/(Cu++Cu0)的比例,催化剂的高活性归因于表面Cu0和Cu+的协同作用。
但目前该新型催化剂尚未应用于喹啉加氢反应,本发明研究了二氧化硅负载铜催化剂的制备方法对喹啉加氢反应性能的影响。研制了具有良好催化活性的层硅酸铜催化剂用于催化喹啉加氢反应,并具有较高的py-THQ选择性。还原温度影响Cu+/(Cu++Cu0)的比例,通过优化温度适当调整Cu+/(Cu++Cu0)的比例,可获得较好的催化活性。优化后的催化剂具有较高的铜分散度和合适的Cu+/(Cu++Cu0)比,具有较好的催化性能。
发明内容
针对现有铜基选择性催化加氢催化剂存在的活性组分分散度差、与载体间相互作用弱等问题,反应条件苛刻,以及选择性加氢活性差等。本发明提供一种喹啉选择性加氢催化剂,并提供了一种该催化剂的制备方法;以及用于喹啉选择性加氢制备py-THQ。
本发明的技术方案:
一种喹啉及其衍生物选择性加氢催化剂,为Cu/SiO2负载型催化剂,铜均匀附着在气相SiO2载体表面,其中,Cu的质量分数为20wt%,Cu+/(Cu++Cu0)的比例为60%-65%。
该催化剂中以气相SiO2为载体、可提供高的比表面积,活性组分为Cu+和Cu0,利用活性组分与载体间的相互作用提高Cu的分散度,同时,Cu+和Cu0之间的协同作用能够提高催化剂的加氢活性;另外,硅酸盐增强了活性组分与载体间的相互作用。
一种喹啉及其衍生物选择性加氢催化剂的制备方法,先在气相SiO2表面生长层状硅酸铜,然后焙烧、还原,即得喹啉选择性加氢催化剂Cu/SiO2
具体步骤如下:
S1、配置浓度为0.005-0.05mol/L的铜盐水溶液;取4/5铜盐水溶液,加入SiO2载体,不断搅拌下加热,形成悬浊液A;将尿素和硝酸加入到剩余1/5铜盐水溶液中,形成混合溶液B,混合液中尿素的浓度范围1-3mol/L,硝酸的浓度范围为0.05-0.2mol/L;将混合溶液B逐滴滴加到上述悬浊液A中后,缓慢升温至90-95℃,反应2-8h;反应结束,抽滤,并用去离子水洗涤至滤液呈中性;抽滤得到的固体于烘箱中干燥,制得层状硅酸铜前体;
S2、层状硅酸铜前体在空气气氛中焙烧,在氢气的氛围中还原后,在0.5% O2/Ar2气氛中钝化得到喹啉选择性加氢催化剂Cu/SiO2
步骤S1中加热搅拌的条件为:在油浴锅中转速为10-50rpm。
步骤S1干燥的条件为在80-120℃下真空干燥8-14h。
步骤S2焙烧的条件为:焙烧温度300-500℃,焙烧时间2-6h。
步骤S2还原的条件为:还原温度300-400℃,还原时间2-6h。
一种喹啉及其衍生物选择性加氢催化剂用于喹啉加氢制备py-THQ,制备方法具体如下:装填所述0.05-0.5g催化剂,1-10mmol喹啉,10-20mL乙醇(质量比为催化剂:喹啉:乙醇=1:7:150),在90-110℃、压力为1-3MPa下反应1-3h。
所述反应釜的反应器内衬为100mL,温度上限为350℃,压力上限为10MPa。
本发明的有益效果:
(1)本发明的Cu/SiO2负载型催化剂以气相SiO2为载体,比表面积大,活性组分分散度高,同时硅酸盐的形成更是增强了金属活性组分与载体间的相互作用。
(2)特别地,本发明的催化剂中Cu+和Cu0相互协同作用,喹啉及其衍生物的转化率和py-THQ及其衍生物的选择性显著提高,在3MPa H2,100ωC,反应2h后,喹啉转化率和py-THQ选择性分别达到100%和99.9%。
(3)本发明的制备方法工艺简单,原料廉价易得,反应条件温和,有利于大规模生产,本工作为过渡金属催化剂的制备及其应用提供了有效途径。
附图说明
图1是实施例2中Cu/SiO2-300催化剂的TEM图谱。
图2是实施例3中Cu/SiO2-350催化剂的TEM图谱。
图3是实施例4中Cu/SiO2-400催化剂的TEM图谱。
图4是实施例5中Cu/SiO2-450催化剂的TEM图谱。
图5是实施例2-5中Cu/SiO2-x催化剂的LMM图谱。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例1
采用沉积沉淀法制备催化剂前体,包括如下步骤:
(1)称取铜盐溶于去离子水中,形成铜盐水溶液,铜盐水溶液的浓度范围为0.005-0.05mol/L;
(2)取4/5所述铜盐水溶液,加入SiO2载体,不断搅拌下加热,形成悬浊液A;
(3)将尿素和硝酸加入到剩余1/5铜盐水溶液中,形成混合溶液B,混合液中尿素的浓度范围1-3mol/L,硝酸的浓度范围为0.05-0.2mol/L
(4)将混合溶液B逐滴滴加到上述悬浊液A中;
(5)将步骤(4)的溶液缓慢升温至90-95℃,反应2-8h;
(6)将步骤(5)反应结束的液体抽滤,并用去离子水洗涤至滤液呈中性;
(7)将步骤(6)中抽滤得到的固体于烘箱中干燥,制得层状硅酸铜前体;
具体步骤如下:
将2.42g Cu(NO3)2·3H2O溶于去离子水中,制备Cu(NO3)2溶液,向4/5该溶液中加入3.2g SiO2载体,不断搅拌下加热至70℃,形成悬浊液;称取7.56g尿素加入到剩余Cu(NO3)2溶液中,再加入0.56g硝酸,形成混合溶液,在70℃下将其逐滴加入到上述悬浊液中,滴完升温至90℃,反应4h。反应完毕,抽滤,洗涤至滤液呈中性,干燥12h,400℃焙烧4h制得前体化合物。
实施例2
将上述实施例1的Cu/SiO2催化剂前体在不同还原温度下还原制备催化剂Cu/SiO2-x。前体在氢气的氛围中300℃还原2h后,在0.5% O2/Ar2气氛中钝化得到Cu/SiO2-300催化剂,Cu的负载量为20wt%。
实施例3
将上述实施例1的Cu/SiO2催化剂前体在不同还原温度下还原制备催化剂Cu/SiO2-x。前体在氢气的氛围中350℃还原2h后,在0.5%O2/Ar2气氛中钝化得到Cu/SiO2-350催化剂,Cu的负载量为20wt%。
实施例4
将上述实施例1的Cu/SiO2催化剂前体在不同还原温度下还原制备催化剂Cu/SiO2-x。前体在氢气的氛围中400℃还原2h后,在0.5%O2/Ar2气氛中钝化得到Cu/SiO2-400催化剂,Cu的负载量为20wt%。
实施例5
将上述实施例1的Cu/SiO2催化剂前体在不同还原温度下还原制备催化剂Cu/SiO2-x。前体在氢气的氛围中450℃还原2h后,在0.5%O2/Ar2气氛中钝化得到Cu/SiO2-450催化剂,Cu的负载量为20wt%。
对前体进行不同还原温度处理得到的催化剂分别为Cu/SiO2-300,Cu/SiO2-350,Cu/SiO2-400和Cu/SiO2-450,TEM谱图见图1-4,铜颗粒均匀的分布在载体表面,其中Cu/SiO2-350的铜颗粒更加高度分散在载体上。LMM谱图见图5,Cu+/(Cu++Cu0)的比例随着还原温度先升高再降低,Cu/SiO2-350催化剂的Cu+/(Cu++Cu0)的比例最大为61.2%。
实施例6
将上述实施例2-5的Cu/SiO2-x催化剂催化喹啉加氢制备1,2,3,4-四氢喹啉。
反应步骤:将负载型Cu/SiO2-x催化剂、喹啉、乙醇加入到100mL的高温高压不锈钢间歇反应釜反应釜,密封反应釜之后置换釜内空气3-5次,充入氢气并密封,开始反应,反应结束后快速冷却反应釜,将釜中残余的氢气小心排出,取出反应液,离心处理后的反应液在Aglient 6890N型气相色谱中分析,色谱柱为市售HP-Innowax毛细管柱,氢火焰检测器。
反应条件:0.1g负载型Cu/SiO2-x催化剂,5mmol喹啉,15mL乙醇,3MPaH2,100℃反应2h。反应结果见表1。
表1Cu/SiO2-x催化剂选择性加氢制备1,2,3,4-四氢喹啉实验结果。
催化剂 Cu+/(Cu++Cu0) 昨啉转化率(%) 循环6次转化率(%) py-THQ选择性(%)
Cu/SiO2-300 59.1 94.3 70.3 >99.9
Cu/SiO2-350 61.2 100 92.2 >99.9
Cu/SiO2-400 50.3 92.3 62.8 >99.9
Cu/SiO2-450 32.3 90.6 51.3 >99.9
通过表1可以看出还原温度对喹啉加氢制py-THQ的性能影响显著。前体的还原温度影响Cu+/(Cu++Cu0)比例,进一步影响催化剂选择性加氢性能。在所研究的条件下,对py-THQ的选择性大于99.9%。随着还原温度从300℃提高到350℃,Cu+/(Cu++Cu0)的比例从59.1%提高到61.2%。当还原温度继续升高,Cu+/(Cu++Cu0)的比例逐渐降低。还原温度为350℃,Cu+/(Cu++Cu0)的比例最大为61.2%,Cu/SiO2-350催化剂选择性加氢性能最好,转化率达到100%,选择性大于99.9%。Cu+和Cu0分别由层状硅酸铜和氧化铜还原得到,还原温度为350℃时,层状硅酸铜部分还原为Cu+,随着还原温度升高,Cu+进一步还原Cu0。对不同还原温度下的催化剂进行稳定性测试,循环6次后,Cu/SiO2-300,Cu/SiO2-350,Cu/SiO2-400,和Cu/Si02-450催化喹啉选择性加氢活性分别为70.3%,92.2%,62.8%,和51.3%,Cu/SiO2-350催化剂具有很好的稳定性,并且Cu/SiO2-x催化剂具有很高选择性,循环后选择性仍大于99.9%。所以Cu/SiO2-350有适宜的Cu+/(Cu++Cu0)比,该催化剂有较好的加氢性能和稳定性。
实施例7
将上述实施例3的Cu/SiO2-350催化剂在不同反应温度的实验结果。
反应条件:0.1g负载型Cu/SiO2-350催化剂,5mmol喹啉,15mL乙醇,3MPaH2反应2h。反应结果见表2
表2Cu/SiO2-350催化剂在不同反应温度的实验结果。
反应温度(℃) 昨啉转化率(%) py-THQ选择性(%)
80 63.2 >99.9
90 87.6 >99.9
100 100 >99.9
110 100 >99.9
通过表2可以看出反应温度对喹啉加氢制py-THQ的性能影响显著。在所研究的条件下,对py-THQ的选择性约为99.9%。随着反应温度从80℃提高到90℃,转化率从63.2%急剧提高到87.6%。当反应温度继续升高至100℃时,喹啉转化率达到100%。
实施例8
将上述实施例3的Cu/SiO2-350催化剂在不同反应压力的实验结果。
反应条件:0.1g负载型Cu/SiO2-350催化剂,5mmol喹啉,15mL乙醇,100℃反应2h。反应结果见表3
表3Cu/SiO2-350催化剂在不同反应压力的实验结果。
反应压力(MPa) 喹啉转化率(%) py-THQ选择性(%)
1 86.2 >99.9
2 99.4 >99.9
3 100 >99.9
通过表3可以看出在100℃的反应温度下,以不同的压力(1、2、3MPa)向反应器中充入H2。py-THQ的选择性大于99.9%与H2压力无关。随着H2压力由1MPa增加到2MPa,喹啉转化率由86.2%增加到99.4%。当氢气压力提高到3MPa时,喹啉的转化率提高到100%。
实施例9
将上述实施例3的Cu/SiO2-350催化剂在不同反应时间的实验结果。
反应条件:0.1g负载型Cu/SiO2-350催化剂,5mmol喹啉,15mL乙醇,3MPaH2,100℃。反应结果见表4
表4Cu/SiO2-350催化剂在不同反应时间的实验结果。
反应时间(h) 昨啉转化率(%) py-THQ选择性(%)
1 91.5 >99.9
2 100 >99.9
3 100 >99.9
通过表4可以看出在反应温度为100℃,氢气压力为3MPa的条件下,研究了反应时间对Cu/SiO2催化剂作用下喹啉加氢反应的影响。当反应时间为1h时,喹啉的转化率仅为91.5%,py-THQ选择性仍为99.9%。当反应时间延长至2h以上时,喹啉的转化率迅速提高至100%,产物选择性不变。
实施例10
将上述实施例3的Cu/SiO2-350催化剂催化喹啉衍生物的实验结果。
反应条件:0.1g负载型Cu/SiO2-350催化剂,5mmol喹啉,15mL乙醇,3MPa H2,100℃反应2h。反应结果见表5。
表5Cu/SiO2-350催化剂催化喹啉衍生物的实验结果。
原料 喹啉衍生物转化率(%) 四氢昨啉衍生物选择性(%)
3-甲基喹啉 100 98.0
5-氨基喹啉 98.6 97.5
2-氯喹啉 98.2 96.8
8-羟基喹啉 94.4 97.4
异喹啉 92.4 99.6
通过表5可以看出利用优化后的条件,在乙醇中对一系列喹啉衍生物进行拓展反应,确定了催化剂体系的底物范围。加氢性能测试结果如表所示,喹啉类衍生物对相应的py-THQ具有优异的选择性。
对比实施例
通过沉积沉淀法制备得到的Ni/SiO2-x、Fe/SiO2-x和Co/SiO2-x催化剂,催化喹啉选择性加氢制备py-THQ。
将2.91g Ni(NO3)2·6H2O溶于去离子水中,制成Ni(NO3)2溶液,向4/5该溶液中加入3.2g SiO2载体,不断搅拌下加热至70℃,形成悬浊液;称取7.56g尿素加入到剩余Ni(NO3)2溶液中,再加入0.56g浓硝酸,形成混合溶液,在70℃下将其逐滴加入到上述悬浊液中,滴完升温至90℃,反应4h。反应完毕,抽滤,洗涤至滤液呈中性,干燥12h,400℃焙烧4h制得前体化合物,前体在氢气的氛围中500℃还原2h后,在0.5%O2/Ar2气氛中钝化得到Ni/SiO2-500催化剂。相同方法可制备得到Fe/SiO2-700催化剂和Co/SiO2-700催化剂。
反应条件:0.1g负载型催化剂,5mmol喹啉,15mL乙醇,3MPaH2,100℃反应2h。反应结果见表7。
表7Ni/SiO2-500催化剂、Fe/SiO2-700催化剂、Co/SiO2-700催化剂与实施例6Cu/SiO2-350的反应结果比较。
催化剂 喹啉转化率(%) py-THQ选择性(%) bz-THQ选择性(%) other
Ni/SiO2-500 99.5 98.0 1.8 0.2
Fe/SiO2-700 22.4 95.3 4.3 0.4
Co/SiO2-400 32.3 96.5 3.0 0.5
Cu/SiO2-350 100 >99.9 - <0.1
通过表7可以看出相对于镍、铁、钴基催化剂,铜基催化剂催化喹啉选择性加氢具有高选择性,并且没有副产物bz-THQ生成。针对于副产物难于分离的问题,铜基催化剂应用于氮杂环加氢具有重要意义。通过改变催化剂还原温度调控Cu+/(Cu++Cu0)的比例,Cu/SiO2-350催化剂具有高活性。
本发明需要指出的是该催化剂的设计和合成策略在其他氮杂环加氢反应中也具有潜在的应用价值。该催化剂在温和条件下催化氮杂环选择性加氢,具有高活性和高选择性。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (5)

1.一种喹啉及其衍生物选择性加氢催化剂在喹啉加氢制备py-THQ中的应用,其特征在于,装填喹啉及其衍生物选择性加氢催化剂、喹啉和乙醇,三者的质量比为1:7:150,在90-110℃、压力为1-3 MPa下反应1-3 h;
该喹啉及其衍生物选择性加氢催化剂为Cu/SiO2负载型催化剂,铜均匀附着在气相SiO2载体表面,其中,Cu的质量分数为20wt%,Cu+/(Cu+ + Cu0)的比例为60%-65%;
该喹啉及其衍生物选择性加氢催化剂的制备方法,具体步骤如下:
S1、配置浓度为0.005-0.05 mol/L的铜盐水溶液;取4/5体积的铜盐水溶液,加入SiO2载体,不断搅拌下加热,形成悬浊液A;将尿素和硝酸加入到剩余1/5体积铜盐水溶液中,形成混合溶液B,混合溶液B中尿素的浓度范围1-3mol/L,硝酸的浓度范围为0.05-0.2mol/L;将混合溶液B逐滴滴加到上述悬浊液A中后,缓慢升温至90-95 ℃,反应2-8 h;反应结束,抽滤,并用去离子水洗涤至滤液呈中性;抽滤得到的固体于烘箱中干燥,制得层状硅酸铜前体;
S2、层状硅酸铜前体在空气气氛中焙烧,在氢气氛围中还原后,在0.5% O2/Ar2气氛中钝化得到喹啉选择性加氢催化剂Cu/SiO2
2.根据权利要求1所述的应用,其特征在于,步骤S2还原的条件为:还原温度300-400℃,还原时间2-6h。
3.根据权利要求1所述的应用,其特征在于,步骤S1中搅拌下加热的条件为:在油浴锅中转速为10-50 rpm。
4.根据权利要求2所述的应用,其特征在于,步骤S1干燥的条件为在80-120 ℃下真空干燥8-14 h。
5.根据权利要求2所述的应用,其特征在于,步骤S2焙烧的条件为:焙烧温度300-500℃,焙烧时间2-6h。
CN202310155554.8A 2023-02-23 2023-02-23 一种喹啉及其衍生物选择性加氢催化剂、制备方法及应用 Active CN116173952B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310155554.8A CN116173952B (zh) 2023-02-23 2023-02-23 一种喹啉及其衍生物选择性加氢催化剂、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310155554.8A CN116173952B (zh) 2023-02-23 2023-02-23 一种喹啉及其衍生物选择性加氢催化剂、制备方法及应用

Publications (2)

Publication Number Publication Date
CN116173952A CN116173952A (zh) 2023-05-30
CN116173952B true CN116173952B (zh) 2024-05-24

Family

ID=86434195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310155554.8A Active CN116173952B (zh) 2023-02-23 2023-02-23 一种喹啉及其衍生物选择性加氢催化剂、制备方法及应用

Country Status (1)

Country Link
CN (1) CN116173952B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278113A (ja) * 1994-04-11 1995-10-24 Nippon Steel Chem Co Ltd 3−メチルイソキノリンの製造方法
CN105032420A (zh) * 2015-07-14 2015-11-11 浙江工业大学 一种Cu/SiO2催化剂及其用于合成四氢呋喃的方法
CN108654617A (zh) * 2017-03-28 2018-10-16 中国科学院大连化学物理研究所 草酸酯加氢制乙二醇催化剂载体改性方法及催化剂与应用
CN108822029A (zh) * 2018-05-08 2018-11-16 北京化工大学 一种高效制备四氢喹啉化合物的方法及酸碱性载体负载Ni金属催化剂
CN110465297A (zh) * 2019-08-27 2019-11-19 江西理工大学 一种喹啉加氢的多元金属纳米催化剂的制备方法
CN114849720A (zh) * 2022-06-07 2022-08-05 华东理工大学 二氧化硅负载镍基三金属催化剂及其制备方法以及在苯乙炔选择性加氢中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278113A (ja) * 1994-04-11 1995-10-24 Nippon Steel Chem Co Ltd 3−メチルイソキノリンの製造方法
CN105032420A (zh) * 2015-07-14 2015-11-11 浙江工业大学 一种Cu/SiO2催化剂及其用于合成四氢呋喃的方法
CN108654617A (zh) * 2017-03-28 2018-10-16 中国科学院大连化学物理研究所 草酸酯加氢制乙二醇催化剂载体改性方法及催化剂与应用
CN108822029A (zh) * 2018-05-08 2018-11-16 北京化工大学 一种高效制备四氢喹啉化合物的方法及酸碱性载体负载Ni金属催化剂
CN110465297A (zh) * 2019-08-27 2019-11-19 江西理工大学 一种喹啉加氢的多元金属纳米催化剂的制备方法
CN114849720A (zh) * 2022-06-07 2022-08-05 华东理工大学 二氧化硅负载镍基三金属催化剂及其制备方法以及在苯乙炔选择性加氢中的应用

Also Published As

Publication number Publication date
CN116173952A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
CN111774050B (zh) 催化草酸二甲酯加氢的负载型催化剂制备方法及其应用
CN101138730A (zh) 草酸酯加氢合成乙醇酸酯的催化剂及其制备方法
CN111574483A (zh) 一种2,5-呋喃二甲醇的制备方法
CN114367302A (zh) 一种甲醇氨氧化制氢氰酸催化剂的制备方法及用途
CN103418409A (zh) 一种选择加氢1,4-丁炔二醇的金属硅化物催化剂及应用
CN106513028A (zh) 一种催化剂及其制备方法和在还原硝基类化合物中的应用
CN114522738B (zh) 一种由3-乙酰氧基丙醛一步加氢制备1,3-丙二醇的方法
CN112337497A (zh) 一种贵金属负载g-C3N4光催化剂的制备方法
CN116173952B (zh) 一种喹啉及其衍生物选择性加氢催化剂、制备方法及应用
CN105457631A (zh) 一种用于草酸酯气相加氢制备乙醇酸酯的催化剂和制备方法
CN114054034B (zh) 多元铜基非贵金属加氢催化剂及其制备方法与应用
CN111229247B (zh) 一种用于草酸酯加氢制乙醇的催化剂及其制备方法和应用
CN115814794B (zh) 铜/氧化硅催化剂及其制备方法和应用
CN106423174A (zh) 用于直接催化合成气制乙醇的催化剂及其制备方法
CN102001931B (zh) 一种制备己二酸的方法
CN114011457B (zh) 一种对乙氧基苯酚的制备方法
CN109482184A (zh) 一种草酸二甲酯加氢合成乙二醇催化剂制备方法
CN112452325B (zh) 一种3-羟基丁醛加氢制备1,3-丁二醇的催化剂及其制备方法、应用
CN109796305B (zh) 一种采用复合型催化剂制备环己醇的方法
CN107185571B (zh) 钴催化剂及其制备方法和在催化合成2,3,5-三甲基苯醌中的应用
CN112023963A (zh) 一种1 ,4-丁炔二醇合成催化剂及应用
CN115709065B (zh) 一种草酸二甲酯加氢制备乙二醇的催化剂及其制备方法与应用
CN113289662B (zh) 一种苯胺加氢制备环己胺催化剂、制备方法及应用
CN101209967A (zh) 由脱氢芳樟醇制备乙酸芳樟酯的方法
CN107824191A (zh) 一种基于三元铜基微球的氧化锆载体催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant