CN116099555A - 一种ZnO基三元Z型结构光催化剂的制备方法及用途 - Google Patents

一种ZnO基三元Z型结构光催化剂的制备方法及用途 Download PDF

Info

Publication number
CN116099555A
CN116099555A CN202211437072.3A CN202211437072A CN116099555A CN 116099555 A CN116099555 A CN 116099555A CN 202211437072 A CN202211437072 A CN 202211437072A CN 116099555 A CN116099555 A CN 116099555A
Authority
CN
China
Prior art keywords
zno
shaped structure
cdte
structure photocatalyst
conductive glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211437072.3A
Other languages
English (en)
Inventor
王明亮
孙建丽
徐春祥
石增良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202211437072.3A priority Critical patent/CN116099555A/zh
Publication of CN116099555A publication Critical patent/CN116099555A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种ZnO基三元Z型结构光催化剂的制备方法,包括,种子层制备‑生长ZnO纳米棒阵列‑磁控溅射Bi纳米粒子‑ZnO/Bi/CdTe双壳层复合物的构建‑有机污染物的光催化降解。本发明方法结合了Bi纳米粒子的可见光及近红外光高响应的优势,有效扩展了ZnO/CdTe的光响应范围。该方法选用透光率高、导电性好的氧化铟锡导电玻璃作为基底,所制备的复合材料具有比单纯的ZnO、ZnO/CdTe更高的光降解性能,在太阳光下对对硝基苯酚的降解效率高达89.65%。

Description

一种ZnO基三元Z型结构光催化剂的制备方法及用途
技术领域
本发明涉及光催化剂的合成方法,特别涉及一种ZnO基三元Z型结构光催化剂的制备方法及用途。
背景技术
对硝基苯酚作为燃料、医药、农药等精细化工产品生产的重要中间体,是工业和农业生产废水中常见的一种有机污染物,具有高毒性和难降解的特性。因此,迫切需要开发一种有效的方法来消除废水中的对硝基苯酚。光催化技术借助纳米材料在光照下表面能受激活化的特性,利用光能有效地氧化分解有机物污染物,使其完全矿化为水和无机离子,且光催化剂本身无毒无害,无二次污染,是一种具有广阔应用前景的绿色环境治理技术。
近年来,光敏纳米材料因其良好的吸光性和优越的导电性能收到研究者的广泛关注。ZnO作为一种n型半导体材料,室温下其禁带宽度为3.20eV,具有毒性低、价格便宜、容易获得等优点,被极大地应用于光催化领域。但是,未经修饰的ZnO仅局限于紫外区域的激发,这阻碍了从光到电的有效转换,光催化反应量子效率比较低。为了扩大ZnO对可见光的吸收范围,CdTe作为一种直接跃迁型能带结构且有很高的光吸收系数的纳米材料,可有效吸收波长小于850nm的入射太阳光,与ZnO复合能够有效提高光电转换效率和信号的输出。然而ZnO/CdTe仅对可见光区域具有很小的吸收,因此其应用仍然受到限制。
发明内容
发明目的:本发明提供一种ZnO基三元Z型结构光催化剂的制备方法。
本发明另一目的是提供所述ZnO基三元Z型结构光催化剂的用途。
本发明方法引入具有独特的贵金属(Ag和Au)性质的Bi纳米粒子,将其包覆于纳米阵列的中间作为载流子传输介质,将光源吸收扩展到近红外区,极大促进电子-空穴对的分离效率,进而得到更高的光催化活性。
技术方案:本发明所述ZnO基三元Z型结构光催化剂的制备方法,包括如下步骤:
(1)氧化铟锡导电玻璃基底的清洗及ZnO种子层的制备;
(2)水热法合成ZnO纳米棒阵列;
(3)磁控溅射法依次包覆Bi纳米粒子和CdTe纳米壳层,构建ZnO/Bi/CdTe三元体系复合材料。
进一步地,步骤(1)的制备方法为:将氧化铟锡导电玻璃裁剪,依次放入丙酮、无水乙醇、超纯水超声处理,干燥后放置于含有ZnO靶材的磁控溅射系统中生长种子层。
进一步地,溅射时间为10~30min,氧气和氩气的流量分别是5~15sccm和50~100sccm,工作气压为2~5Pa。
进一步地,步骤(2)合成方法为:取二水醋酸锌和六次甲基四胺溶于超纯水中,充分溶解,得到ZnO前驱体溶液,然后将溅射有ZnO种子层的氧化铟锡浸泡在该溶液中,反应后,清洗样品,干燥。
进一步地,步骤(3)将步骤(2)中制备好的ZnO基导电玻璃置于氩气流量50~100sccm,工作气压2~5Pa的条件下先后磁控溅射Bi和CdTe纳米粒子壳层。
进一步地,所述溅射功率分别为10~30W和40~80W,溅射时间分别为2~8min和2~10min,成功构建Z型结构光催化剂。
ZnO基三元Z型结构光催化剂在光降解硝基苯酚中的用途。
进一步地,光降解硝基苯酚的方法是将制备好的ZnO/Bi/CdTe导电玻璃插入对硝基苯酚溶液中,施加电压,对硝基苯酚进行降解。
有益效果:本发明与现有技术相比,具有如下优势:
(1)本发明在传统的ZnO纳米棒阵列表面包覆了CdTe纳米壳层,有效的扩大了对光的吸收和基底材料的导电性;
(2)同时引入Bi纳米粒子作为载流子传输中间介质,将对光的吸收有效扩展到近红外区域,利用其类贵金属特性极大地降低了电子-空穴的复合速率,提高了光催化反应量子效率;
(3)利用电化学工作站施加一定电压进一步提高了复合材料的光电转化效率,促进了对有机污染物的光催化降解。
附图说明
图1为本发明制备的ZnO/Bi/CdTe纳米棒核壳阵列扫描电子显微镜图;
图2为本发明制备的光催化剂的紫外-可见光吸收谱图;
图3为本发明制备的ZnO基三元Z型结构光催化剂对有机污染物对硝基苯酚的光降解性能。
具体实施方式
本实施例1的光催化降解对硝基苯酚的ZnO基三元Z型结构光催化剂的制备及应用,包括如下步骤:
(1)氧化铟锡导电玻璃基底的清洗及ZnO种子层的制备:将氧化铟锡导电玻璃裁剪成1cm×2cm尺寸,依次放入丙酮、无水乙醇、超纯水超声处理10min,在40℃烘箱干燥30min后放置于含有ZnO靶材的磁控溅射系统中生长种子层,溅射时间为20min,氧气和氩气的流量分别是5sccm和55sccm,工作气压为2Pa。
(2)水热法合成ZnO纳米棒阵列:首先称取0.7902g二水醋酸锌和0.5047g六次甲基四胺溶于90mL超纯水中,搅拌20min使其充分溶解,得到ZnO前驱体溶液,然后将溅射有ZnO种子层的氧化铟锡浸泡在此溶液中,90℃反应6h,取出样品,超纯水冲洗干净后放入烘箱干燥。
(3)磁控溅射法依次包覆Bi纳米粒子和CdTe纳米壳层,构建ZnO/Bi/CdTe三元体系复合材料:将制备好的ZnO基导电玻璃置于氩气流量55sccm,工作气压2Pa的条件下先后磁控溅射Bi和CdTe纳米粒子壳层,溅射功率分别为20W和60W,溅射时间分别为4min和5min,成功构建Z型结构光催化剂。如图1所示,外层Bi和CdTe纳米粒子均匀的包覆在ZnO纳米棒的表面,形成复合纳米阵列结构。后续对此复合基底进行光吸收的表征,如图2所示,纯ZnO的光吸收范围在紫外区,在Bi和CdTe纳米粒子包覆以后其吸收范围扩展至可见区以及近红外区。
(4)将构建的Z型结构光催化剂与三电极电化学工作站连接,实现有机污染物对硝基苯酚的光降解:将制备好的ZnO/Bi/CdTe导电玻璃插入浓度为1.0mmol/L的对硝基苯酚溶液中,通过电化学工作站施加一定电压提高复合材料的光电转换效率,最终实现对硝基苯酚的有效降解。
(5)结果观察:通过紫外-可见吸收光谱观测对硝基苯酚在318nm处的光强度随光催化时间的变化,如图3所示,随着降解时间的增加,其吸收光谱强度逐渐降低,结果为光降解效率高达89.65%。
本实施例2的光催化降解对硝基苯酚的ZnO基三元Z型结构光催化剂的制备及应用,包括如下步骤:
(1)氧化铟锡导电玻璃基底的清洗及ZnO种子层的制备:将氧化铟锡导电玻璃裁剪成1cm×2cm尺寸,依次放入丙酮、无水乙醇、超纯水超声处理10min,在40℃烘箱干燥30min后放置于含有ZnO靶材的磁控溅射系统中生长种子层,溅射时间为10min,氧气和氩气的流量分别是15sccm和100sccm,工作气压为5Pa。
(2)水热法合成ZnO纳米棒阵列:首先称取0.7902g二水醋酸锌和0.5047g六次甲基四胺溶于90mL超纯水中,搅拌20min使其充分溶解,得到ZnO前驱体溶液,然后将溅射有ZnO种子层的氧化铟锡浸泡在此溶液中,90℃反应6h,取出样品,超纯水冲洗干净后放入烘箱干燥。
(3)磁控溅射法依次包覆Bi纳米粒子和CdTe纳米壳层,构建ZnO/Bi/CdTe三元体系复合材料:将制备好的ZnO基导电玻璃置于氩气流量100sccm,工作气压5Pa的条件下先后磁控溅射Bi和CdTe纳米粒子壳层,溅射功率分别为10W和40W,溅射时间分别为8min和10min,成功构建Z型结构光催化剂,。
(4)将构建的Z型结构光催化剂与三电极电化学工作站连接,实现有机污染物对硝基苯酚的光降解:将制备好的ZnO/Bi/CdTe导电玻璃插入浓度为1.0mmol/L的对硝基苯酚溶液中,通过电化学工作站施加一定电压提高复合材料的光电转换效率,最终实现对硝基苯酚的有效降解,光降解效率高达87.32%。
本实施例3的光催化降解对硝基苯酚的ZnO基三元Z型结构光催化剂的制备及应用,包括如下步骤:
(1)氧化铟锡导电玻璃基底的清洗及ZnO种子层的制备:将氧化铟锡导电玻璃裁剪成1cm×2cm尺寸,依次放入丙酮、无水乙醇、超纯水超声处理10min,在40℃烘箱干燥30min后放置于含有ZnO靶材的磁控溅射系统中生长种子层,溅射时间为30min,氧气和氩气的流量分别是15sccm和100sccm,工作气压为5Pa。
(2)水热法合成ZnO纳米棒阵列:首先称取0.7902g二水醋酸锌和0.5047g六次甲基四胺溶于90mL超纯水中,搅拌20min使其充分溶解,得到ZnO前驱体溶液,然后将溅射有ZnO种子层的氧化铟锡浸泡在此溶液中,90℃反应6h,取出样品,超纯水冲洗干净后放入烘箱干燥。
(3)磁控溅射法依次包覆Bi纳米粒子和CdTe纳米壳层,构建ZnO/Bi/CdTe三元体系复合材料:将制备好的ZnO基导电玻璃置于氩气流量100sccm,工作气压5Pa的条件下先后磁控溅射Bi和CdTe纳米粒子壳层,溅射功率分别为30W和80W,溅射时间分别为2min和2min,成功构建Z型结构光催化剂。
(4)将构建的Z型结构光催化剂与三电极电化学工作站连接,实现有机污染物对硝基苯酚的光降解:将制备好的ZnO/Bi/CdTe导电玻璃插入浓度为1.0mmol/L的对硝基苯酚溶液中,通过电化学工作站施加一定电压提高复合材料的光电转换效率,最终实现对硝基苯酚的有效降解,光降解效率高达86.84%。

Claims (8)

1.一种ZnO基三元Z型结构光催化剂的制备方法,其特征在于,包括以下步骤:
(1)氧化铟锡导电玻璃基底的清洗及ZnO种子层的制备;
(2)水热法合成ZnO纳米棒阵列;
(3)依次包覆Bi纳米粒子和CdTe纳米壳层,构建ZnO/Bi/CdTe三元体系复合材料,获得所述的Z型结构光催化剂。
2.根据权利要求1所述的ZnO基三元Z型结构光催化剂的制备方法,其特征在于:步骤(1)的制备方法为:将氧化铟锡导电玻璃裁剪,依次放入丙酮、无水乙醇、超纯水超声处理,干燥后放置于含有ZnO靶材的磁控溅射系统中生长种子层。
3.根据权利要求2所述的ZnO基三元Z型结构光催化剂的制备方法,其特征在于:溅射时间为10~30min,氧气和氩气的流量分别是5~15sccm和50~100sccm,工作气压为2~5Pa。
4.根据权利要求1所述的ZnO基三元Z型结构光催化剂的制备方法,其特征在于:步骤(2)合成方法为:取二水醋酸锌和六次甲基四胺溶于超纯水中,充分溶解,得到ZnO前驱体溶液,然后将溅射有ZnO种子层的氧化铟锡浸泡在该溶液中,反应后,清洗样品,干燥。
5.根据权利要求1所述的ZnO基三元Z型结构光催化剂的制备方法,其特征在于:步骤(3)将步骤(2)中制备好的ZnO基导电玻璃置于氩气流量50~100sccm,工作气压2~5Pa的条件下先后磁控溅射Bi和CdTe纳米粒子壳层。
6.根据权利要求5所述的ZnO基三元Z型结构光催化剂的制备方法,其特征在于:所述溅射功率分别为10~30W和40~80W,溅射时间分别为2~8min和2~10min,成功构建Z型结构光催化剂。
7.权利要求1-6任一项制备得到的ZnO基三元Z型结构光催化剂在光降解硝基苯酚中的用途。
8.根据权利要求7所述的用途,其特征在于:光降解硝基苯酚的方法是将制备好的ZnO/Bi/CdTe导电玻璃插入对硝基苯酚溶液中,施加电压,对硝基苯酚进行降解。
CN202211437072.3A 2022-11-16 2022-11-16 一种ZnO基三元Z型结构光催化剂的制备方法及用途 Pending CN116099555A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211437072.3A CN116099555A (zh) 2022-11-16 2022-11-16 一种ZnO基三元Z型结构光催化剂的制备方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211437072.3A CN116099555A (zh) 2022-11-16 2022-11-16 一种ZnO基三元Z型结构光催化剂的制备方法及用途

Publications (1)

Publication Number Publication Date
CN116099555A true CN116099555A (zh) 2023-05-12

Family

ID=86255051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211437072.3A Pending CN116099555A (zh) 2022-11-16 2022-11-16 一种ZnO基三元Z型结构光催化剂的制备方法及用途

Country Status (1)

Country Link
CN (1) CN116099555A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100026324A (ko) * 2008-08-29 2010-03-10 고려대학교 산학협력단 도파기용 나노로드
CN102412318A (zh) * 2011-12-15 2012-04-11 湖北大学 一种ZnO/CdTe/CdS纳米电缆阵列电极及其制备方法
CN102437206A (zh) * 2011-12-15 2012-05-02 湖北大学 一种ZnO/CdSe/CdTe纳米棒阵列光电极及其制备方法
US20150266013A1 (en) * 2014-03-24 2015-09-24 Hong Kong Polytechnic University Photocatalyst
CN105498802A (zh) * 2015-12-04 2016-04-20 福州大学 一种氧化锌-金-硫化镉三元复合型光催化剂
CN109289875A (zh) * 2018-09-11 2019-02-01 东南大学 高效产氢的ZnO核壳纳米棒阵列光催化剂、制备方法及应用
CN114015990A (zh) * 2021-10-13 2022-02-08 东南大学 一种氧化镍-金-氧化锌同轴纳米阵列的制备方法及应用
CN114509163A (zh) * 2022-01-06 2022-05-17 哈尔滨工业大学 一种基于大面积氧化铋或硫化铋纳米管阵列结构的光电探测器及其制备方法
CN114975179A (zh) * 2022-05-23 2022-08-30 清华大学 基于半导体微纳米阵列结构的辐射热流调控器件及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100026324A (ko) * 2008-08-29 2010-03-10 고려대학교 산학협력단 도파기용 나노로드
CN102412318A (zh) * 2011-12-15 2012-04-11 湖北大学 一种ZnO/CdTe/CdS纳米电缆阵列电极及其制备方法
CN102437206A (zh) * 2011-12-15 2012-05-02 湖北大学 一种ZnO/CdSe/CdTe纳米棒阵列光电极及其制备方法
US20150266013A1 (en) * 2014-03-24 2015-09-24 Hong Kong Polytechnic University Photocatalyst
CN105498802A (zh) * 2015-12-04 2016-04-20 福州大学 一种氧化锌-金-硫化镉三元复合型光催化剂
CN109289875A (zh) * 2018-09-11 2019-02-01 东南大学 高效产氢的ZnO核壳纳米棒阵列光催化剂、制备方法及应用
CN114015990A (zh) * 2021-10-13 2022-02-08 东南大学 一种氧化镍-金-氧化锌同轴纳米阵列的制备方法及应用
CN114509163A (zh) * 2022-01-06 2022-05-17 哈尔滨工业大学 一种基于大面积氧化铋或硫化铋纳米管阵列结构的光电探测器及其制备方法
CN114975179A (zh) * 2022-05-23 2022-08-30 清华大学 基于半导体微纳米阵列结构的辐射热流调控器件及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DANQING LIU ET AL.: "CdTe Quantum Dots Encapsulated ZnO Nanorods for Highly Efficient Photoelectrochemical Degradation of Phenols", 《J. PHYS. CHEM. C》, vol. 117, no. 50, 5 December 2013 (2013-12-05), pages 26530 *
JIANLI SUN ET AL.: "Plasmon enhanced broadband photoelectrochemical response of ZnO/CdTe/Bi nanoarrays for quantitative analysis of nasopharyngeal carcinoma in a recyclable microfluidic biosensing chip", 《BIOSENSORS AND BIOELECTRONICS》, vol. 214, 24 June 2022 (2022-06-24), pages 2, XP087126368, DOI: 10.1016/j.bios.2022.114491 *
唐兰勤 等: "氧化锌基光催化剂的研究进展", 《化工新型材料》, vol. 40, no. 11, 15 November 2012 (2012-11-15), pages 7 - 8 *

Similar Documents

Publication Publication Date Title
Rahman et al. Chalcogenides as photocatalysts
CN111437867B (zh) 一种含钨氧化物的复合光催化剂及其制备方法和应用
CN113000056A (zh) 一种基于MXene掺杂的复合材料及其制备方法
CN110102322B (zh) 花状的Ag@AgBr/ZnO光催化材料的制备方法
CN110801837B (zh) 银/氧化锌/碳中空复合光催化剂及其制备方法和应用
CN109364951B (zh) 一种可见光催化复合材料及其制备方法与应用
CN107376946A (zh) 一种降解VOCs氧化三维催化网格的制备方法
CN109216552B (zh) 一种Bi2O2S包覆的纳米棒阵列的制备方法与在太阳能电池的应用
CN108273539B (zh) 一种Ta3N5纳米粒子杂化TiO2空心球复合光催化剂及其制备方法和应用
CN111604068B (zh) 一种Ag-AgBr/TiO2纳米棒复合阵列薄膜的制备方法
CN116099555A (zh) 一种ZnO基三元Z型结构光催化剂的制备方法及用途
CN109046306B (zh) 一种可见光响应的复合光催化膜的制备方法
CN112844384A (zh) 一种基于二氧化钛/铜复合薄膜的光催化器件及其制备方法和应用
CN110064437B (zh) 一种表面规则负载Ag/BiOBr纳米片纤维素基织物及其制备和应用
CN111437857B (zh) 一种基于氮化钛和氧化钛的光催化薄膜及其制备方法
CN111229217B (zh) 复合p-n型异质结光催化剂的制备方法及VOCs光催化降解方法
CN103981535A (zh) 光解水制氢的催化电极及其制备方法
CN115845888A (zh) PbBiO2Br/Ti3C2复合催化剂的制备方法及其在光催化降解甲基橙中的应用
CN111346627B (zh) 一种多重结TiO2纳米异质结构光催化剂及其制备方法
CN111185148B (zh) Ce-Zn改性TiO2纳米管阵列复合催化材料的制备方法及其应用
CN110013824B (zh) 地膜状二维纳米薄层钛酸钠覆盖氧化银/氧化钛异质结光催化膜层材料及其制备方法
CN113941341A (zh) 一种用于光催化降解染料的二硫化锡复合物
CN111330610A (zh) 一种银纳米花/Ti3C2Tx复合材料的制备方法及其应用
CN108654673B (zh) 一种新型光催化材料及其制备方法和应用
CN109433231B (zh) 具有光催化性能的纳米片核壳复合材料、其制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination