CN112844384A - 一种基于二氧化钛/铜复合薄膜的光催化器件及其制备方法和应用 - Google Patents

一种基于二氧化钛/铜复合薄膜的光催化器件及其制备方法和应用 Download PDF

Info

Publication number
CN112844384A
CN112844384A CN202011559963.7A CN202011559963A CN112844384A CN 112844384 A CN112844384 A CN 112844384A CN 202011559963 A CN202011559963 A CN 202011559963A CN 112844384 A CN112844384 A CN 112844384A
Authority
CN
China
Prior art keywords
tio
glass substrate
quartz glass
film
composite film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011559963.7A
Other languages
English (en)
Other versions
CN112844384B (zh
Inventor
李烨
刘儒平
孙志成
曹梅娟
辛智青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Graphic Communication
Original Assignee
Beijing Institute of Graphic Communication
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Graphic Communication filed Critical Beijing Institute of Graphic Communication
Priority to CN202011559963.7A priority Critical patent/CN112844384B/zh
Publication of CN112844384A publication Critical patent/CN112844384A/zh
Application granted granted Critical
Publication of CN112844384B publication Critical patent/CN112844384B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种基于二氧化钛/铜复合薄膜的光催化器件及其制备方法和应用,属于光催化器件技术领域。本发明提供了一种基于二氧化钛/铜复合薄膜的光催化器件,包括石英玻璃基底、TiO2微腔多孔层和TiO2/Cu复合薄膜,其中,所述TiO2微腔多孔层设置于所述石英玻璃基底的表面,所述TiO2微腔多孔层由TiO2微腔阵列形成,单个TiO2微腔为顶部和底部开口的球腔,且TiO2微腔顶部的开口尺寸大于底部的开口尺寸;所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面均设置有TiO2/Cu复合薄膜。本发明提供的光催化器件比表面积大,光催化效率高,且使用后整个光催化器件便于分离回收。

Description

一种基于二氧化钛/铜复合薄膜的光催化器件及其制备方法 和应用
技术领域
本发明涉及光催化器件技术领域,尤其涉及一种基于二氧化钛/铜复合薄膜的光催化器件及其制备方法和应用。
背景技术
目前,水环境污染问题是人类面临的重大威胁,水环境中有机污染物处理已经成为全球关注的重大问题。1976年,John.H.Carey利用TiO2作为催化剂,在光照条件下降解联苯和多氯联苯。TiO2光催化降解有机污染物的原理是当光照射TiO2的时候,TiO2的价带电子会跃迁到导带,同时产生空穴。这时TiO2表面的溶解氧会与电子结合成超氧负离子,氢氧根离子与空穴结合后与水会氧化生成氢氧自由基。而超氧负离子和氢氧自由基都具有很强的氧化性,会将绝大多数的有机污染物氧化生成无污染的CO2和H2O。研究表明,TiO2具有无毒、化学性质稳定、催化活性好、氧化能力强以及使用时条件温和等优点,在水处理等方面受到了极大的重视并得到了快速发展。
但目前仍然存在很多技术难题,如:1)TiO2禁带宽度较大,锐钛矿型TiO2禁带宽度为3.2ev,TiO2只有受到紫外光照射时才能形成电子-空穴对,对太阳光的吸收仅限于波长小于387.5nm的紫外区,对太阳能利用率不足3%;2)光激发产生的电子-空穴对极不稳定,如果没有适当的俘获剂或表面晶格缺陷存在,光生电子与空穴极易复合并以热量的形式释放,大大降低了光催化效率;3)常用的粉末状TiO2分离回收困难,限制了其应用。
为克服上述缺陷,国内外科研工作者在TiO2中掺杂具有3d电子的过渡金属纳米粒子来改善其光催化性能,掺杂具有3d电子的过渡金属纳米粒子的TiO2不仅可产生掺杂能级和降低禁带宽度,还可以在晶格中引入缺陷位置或者改变晶格度,这样减少了电子-空穴的复合,提高了光催化效率。除了上述在材料制备上的改进,还可以通过结构上的改进来改善光催化器件性能,比如将TiO2制作成薄膜便于回收利用已成为目前研究的全新方向。研究表明,锐钛矿相TiO2薄膜与锐钛矿相TiO2粉体一样,可用于降解水中有机污染物,且TiO2薄膜的表面积越大越有助于有机污染物在其表面的吸附和光生载流子的生成,也有利于光的吸收,从而提高光催化能力。对于TiO2薄膜而言,减小晶粒有利于增大其表面积,但是如何进一步增加TiO2薄膜的比表面积,以进一步提高其光催化能力,是目前亟需解决的问题。
发明内容
本发明的目的在于提供一种基于二氧化钛/铜复合薄膜的光催化器件及其制备方法和应用,本发明提供的光催化器件比表面积大,光催化效率高,且使用后光催化器件便于分离回收。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种基于二氧化钛/铜复合薄膜的光催化器件,包括石英玻璃基底、TiO2微腔多孔层和TiO2/Cu复合薄膜,其中,所述TiO2微腔多孔层设置于所述石英玻璃基底的表面,所述TiO2微腔多孔层由TiO2微腔阵列形成,单个TiO2微腔为顶部和底部开口的球腔,且TiO2微腔顶部的开口尺寸大于底部的开口尺寸;所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面均设置有TiO2/Cu复合薄膜,所述TiO2/Cu复合薄膜包括TiO2基体和掺杂在所述TiO2基体中的Cu纳米粒子。
优选地,所述石英玻璃基底呈矩形,所述石英玻璃基底的边长为10~200mm,厚度为0.3~2.2mm,平均透光率为75~99%。
优选地,所述TiO2微腔的内径为500~1500nm,厚度为150~800nm;所述TiO2微腔多孔层的比表面积为1~60m2/g。
优选地,所述TiO2/Cu复合薄膜的厚度为50~200nm;所述TiO2/Cu复合薄膜中Cu与Ti的摩尔比为(0.1~10):100,所述Cu纳米粒子的粒径为5~50nm;所述TiO2/Cu复合薄膜为晶态结构,晶粒的尺寸为10~100nm。
本发明提供了上述技术方案所述基于二氧化钛/铜复合薄膜的光催化器件的制备方法,包括以下步骤:
在石英玻璃基底的表面制备TiO2微腔多孔层,所述TiO2微腔多孔层由TiO2微腔阵列形成,单个TiO2微腔为顶部和底部开口的球腔,且TiO2微腔顶部的开口尺寸大于底部的开口尺寸;
在所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面制备TiO2/Cu复合薄膜,所述TiO2/Cu复合薄膜包括TiO2基体和掺杂在所述TiO2基体中的Cu纳米粒子,得到基于二氧化钛/铜复合薄膜的光催化器件。
优选地,在石英玻璃基底的表面制备TiO2微腔多孔层包括以下步骤:
将聚苯乙烯微球、水和乙醇混合,得到聚苯乙烯微球悬浊液;
将所述聚苯乙烯微球悬浊液滴加于载体的表面,之后将滴加有聚苯乙烯微球悬浊液的载体的一半倾斜浸于乙醇水溶液中,滴加有聚苯乙烯微球悬浊液的载体的另一半暴露在空气中,在表面张力作用下在乙醇水溶液表面的部分区域形成聚苯乙烯微球单分散膜;在乙醇水溶液表面没有聚苯乙烯微球单分散膜的区域滴加非离子表面活性剂溶液,在非离子表面活性剂溶液中非离子表面活性剂的推动作用下,聚苯乙烯微球单分散膜在乙醇水溶液表面形成致密聚苯乙烯微球薄膜,所述致密聚苯乙烯微球薄膜由单层紧密排列的聚苯乙烯微球形成;采用石英玻璃基底将所述致密聚苯乙烯微球薄膜从乙醇水溶液表面捞出,经干燥,在石英玻璃基底的表面得到致密聚苯乙烯微球薄膜;
采用原子层沉积法在所述致密聚苯乙烯微球薄膜中聚苯乙烯微球不占位置的区域沉积TiO2,形成TiO2薄膜;之后采用电感耦合等离子体刻蚀法进行刻蚀,以去除聚苯乙烯微球顶部的TiO2薄膜以及聚苯乙烯微球,在石英玻璃基底表面形成TiO2微腔多孔层。
优选地,所述石英玻璃基底在使用前进行亲水处理,所述亲水处理包括:将石英玻璃基底于亲水处理溶液中浸泡2~4h;所述亲水处理溶液中溶质包括十二烷基苯磺酸钠、十二烷基醇聚氧乙烯醚硫酸钠、十二烷基硫酸铵、单十二烷基醚磷酸酯三乙醇胺盐和十二烷基硫酸钠中的至少一种。
优选地,在所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面制备TiO2/Cu复合薄膜包括以下步骤:
将钛酸四丁酯与无水乙醇混合,得到钛酸四丁酯的乙醇溶液;将硝酸铜与乙醇混合,得到硝酸铜的乙醇溶液;将所述硝酸铜的乙醇溶液滴加至所述钛酸四丁酯的乙醇溶液中,进行水解反应,得到TiO2/Cu复合凝胶;
采用浸提法在TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面涂覆所述TiO2/Cu复合凝胶,形成TiO2/Cu复合凝胶膜,干燥后进行热处理,在所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面形成TiO2/Cu复合薄膜。
优选地,在所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面制备TiO2/Cu复合薄膜时,依次重复进行浸提-干燥-热处理的步骤,重复的次数为2~3次。
本发明提供了上述技术方案所述基于二氧化钛/铜复合薄膜的光催化器件或上述技术方案所述制备方法制备得到的基于二氧化钛/铜复合薄膜的光催化器件在光催化降解有机污染物中的应用。
本发明提供了一种基于二氧化钛/铜复合薄膜的光催化器件,包括石英玻璃基底、TiO2微腔多孔层和TiO2/Cu复合薄膜,其中,所述TiO2微腔多孔层设置于所述石英玻璃基底的表面,所述TiO2微腔多孔层由TiO2微腔阵列形成,单个TiO2微腔为顶部和底部开口的球腔,且TiO2微腔顶部的开口尺寸大于底部的开口尺寸;所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面均设置有TiO2/Cu复合薄膜,所述TiO2/Cu复合薄膜包括TiO2基体和掺杂在所述TiO2基体中的Cu纳米粒子。本发明提供的光催化器件中TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面均设置有TiO2/Cu复合薄膜,在TiO2基体中掺杂Cu纳米粒子,使得可见光部分的吸收明显增加,扩展了TiO2的光响应范围,而且可以在TiO2/Cu复合薄膜表面形成晶格缺陷与捕获中心,减少电子-空穴的复合,提高光催化效率;此外本发明提供的光催化器件解决了金属纳米粒子掺杂的TiO2粉末光催化剂由于颗粒细小,在处理液相有机污染物时难以回收和循环利用的难题;同时本发明提供的光催化器件中TiO2微腔多孔层具有更大的比表面积,表现出更高的光催化效率,能够实现有机污染物的高效催化降解。
本发明提供了所述光催化器件的制备方法,本发明提供的方法操作简单,成本低,适于规模化生产。
附图说明
图1为实施例1制备的基于TiO2/Cu复合薄膜的光催化器件的示意图;图中1为石英玻璃基底;2为TiO2微腔多孔层;3为附着于TiO2微腔表面的TiO2/Cu复合薄膜。
具体实施方式
本发明提供了一种基于二氧化钛/铜复合薄膜的光催化器件,包括石英玻璃基底、TiO2微腔多孔层和TiO2/Cu复合薄膜,其中,所述TiO2微腔多孔层设置于所述石英玻璃基底的表面,所述TiO2微腔多孔层由TiO2微腔阵列形成,单个TiO2微腔为顶部和底部开口的球腔,且TiO2微腔顶部的开口尺寸大于底部的开口尺寸;所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面均设置有TiO2/Cu复合薄膜,所述TiO2/Cu复合薄膜包括TiO2基体和掺杂在所述TiO2基体中的Cu纳米粒子。
本发明提供的光催化器件包括石英玻璃基底,所述石英玻璃基底呈矩形,所述石英玻璃基底的边长优选为10~200mm,更优选为15~50mm;厚度优选为0.3~2.2mm,更优选为1~1.5mm;平均透光率优选为75~99%,更优选为85~95%。
本发明提供的光催化器件包括TiO2微腔多孔层,所述TiO2微腔多孔层设置于所述石英玻璃基底的表面,所述TiO2微腔多孔层由TiO2微腔阵列形成,单个TiO2微腔为顶部和底部开口的球腔,且TiO2微腔顶部的开口尺寸大于底部的开口尺寸。在本发明中,所述TiO2微腔的内径优选为500~1500nm,更优选为500~1000nm;厚度优选为150~800nm,更优选为150~550nm;所述TiO2微腔多孔层的比表面积优选为1~60m2/g,更优选为20~50m2/g。
本发明提供的光催化器件包括TiO2/Cu复合薄膜,所述TiO2/Cu复合薄膜设置于所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面,所述TiO2/Cu复合薄膜包括TiO2基体和掺杂在所述TiO2基体中的Cu纳米粒子。在本发明中,所述TiO2/Cu复合薄膜的厚度优选为50~200nm,更优选为80~100nm;所述TiO2/Cu复合薄膜中Cu与Ti的摩尔比优选为(0.1~10):100,更优选为(1~3):100,所述Cu纳米粒子的粒径优选为5~50nm,更优选为10~30nm;所述TiO2/Cu复合薄膜为晶态结构,是准二维的纳米薄膜,晶粒的尺寸优选为10~100nm,更优选为20~80nm。
本发明提供了上述技术方案所述光催化器件的制备方法,包括以下步骤:
在石英玻璃基底的表面制备TiO2微腔多孔层,所述TiO2微腔多孔层由TiO2微腔阵列形成,单个TiO2微腔为顶部和底部开口的球腔,且TiO2微腔顶部的开口尺寸大于底部的开口尺寸;
在所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面制备TiO2/Cu复合薄膜,所述TiO2/Cu复合薄膜包括TiO2基体和掺杂在所述TiO2基体中的Cu纳米粒子,得到基于二氧化钛/铜复合薄膜的光催化器件。
本发明在石英玻璃基底的表面制备TiO2微腔多孔层,所述TiO2微腔多孔层由TiO2微腔阵列形成,单个TiO2微腔为顶部和底部开口的球腔,且TiO2微腔顶部的开口尺寸大于底部的开口尺寸。本发明通过模板法、原子层沉积法结合ICP刻蚀法在石英玻璃基底表面构筑TiO2微腔多孔层。在本发明中,在石英玻璃基底的表面制备TiO2微腔多孔层优选包括以下步骤:
将聚苯乙烯微球、水和乙醇混合,得到聚苯乙烯微球悬浊液;
将所述聚苯乙烯微球悬浊液滴加于载体的表面,之后将滴加有聚苯乙烯微球悬浊液的载体的一半倾斜浸于乙醇水溶液中,滴加有聚苯乙烯微球悬浊液的载体的另一半暴露在空气中,在表面张力作用下在乙醇水溶液表面的部分区域形成聚苯乙烯微球单分散膜;在乙醇水溶液表面没有聚苯乙烯微球单分散膜的区域滴加非离子表面活性剂溶液,在非离子表面活性剂溶液中非离子表面活性剂的推动作用下,聚苯乙烯微球单分散膜在乙醇水溶液表面形成致密聚苯乙烯微球薄膜,所述致密聚苯乙烯微球薄膜由单层紧密排列的聚苯乙烯微球形成;采用石英玻璃基底将所述致密聚苯乙烯微球薄膜从乙醇水溶液表面捞出,经干燥,在石英玻璃基底的表面得到致密聚苯乙烯微球薄膜;
采用原子层沉积法在所述致密聚苯乙烯微球薄膜中聚苯乙烯微球不占位置的区域沉积TiO2,形成TiO2薄膜;之后采用电感耦合等离子体刻蚀法进行刻蚀,以去除聚苯乙烯微球顶部的TiO2薄膜以及聚苯乙烯微球,在石英玻璃基底表面形成TiO2微腔多孔层。
本发明将聚苯乙烯(PS)微球、水和乙醇混合,得到聚苯乙烯微球悬浊液。本发明利用PS微球作为模板制备TiO2微腔,因此所述PS微球的直径≥TiO2微腔的内径,具体的,所述PS微球的直径优选为500~1500nm,更优选为500~1000nm。本发明对所述PS微球的来源没有特殊限定,采用本领域技术人员熟知的来源即可;在本发明的实施例中,具体是将PS微球原液(本领域技术人员熟知的市售商品)置于离心管内,在8000rpm/s条件下离心10min,去除上清液,将所得PS微球与水、乙醇混合,得到PS微球悬浊液;在本发明中,所述PS微球悬浊液中水和乙醇的体积比优选为1:(2.5~3.5),更优选为1:3;所述PS微球悬浊液中PS微球的浓度优选为1.3~1.7wt%,更优选为1.5wt%。
得到PS微球悬浊液后,本发明将所述聚苯乙烯微球悬浊液滴加于载体的表面,之后将滴加有聚苯乙烯微球悬浊液的载体的一半倾斜浸于乙醇水溶液中,滴加有聚苯乙烯微球悬浊液的载体的另一半暴露在空气中,在表面张力作用下在乙醇水溶液表面的部分区域形成聚苯乙烯微球单分散膜。本发明对所述载体没有特殊限定,具体可以为陶瓷片、玻璃片或塑料片,本发明借助载体和表面张力将聚苯乙烯微球悬浊液铺设于乙醇水溶液的表面,形成聚苯乙烯微球单分散膜。在本发明中,在所述载体表面滴加PS微球悬浊液的用量优选为0.4~0.6μL/mm2,更优选为0.5μL/mm2。在本发明的实施例中,具体是将PS微球悬浊液滴加于载体表面,之后用镊子将滴加有PS微球悬浊液的载体的一半缓慢倾斜浸于乙醇水溶液中,滴加有聚苯乙烯微球悬浊液的载体的另一半暴露在空气中,在表面张力作用下在乙醇水溶液表面的部分区域形成聚苯乙烯微球单分散膜。在本发明中,所述乙醇水溶液中水和乙醇的体积比优选为1:(2.5~3.5),更优选为1:3。
在乙醇水溶液表面的部分区域形成聚苯乙烯微球单分散膜后,本发明在乙醇水溶液表面没有聚苯乙烯微球单分散膜的区域滴加非离子表面活性剂溶液,在非离子表面活性剂溶液中非离子表面活性剂的推动作用下,聚苯乙烯微球单分散膜在乙醇水溶液表面形成致密聚苯乙烯微球薄膜,所述致密聚苯乙烯微球薄膜由单层紧密排列的聚苯乙烯微球形成。在本发明中,所述非离子表面活性剂溶液中非离子表面活性剂优选为椰油脂肪酸单乙醇酰胺,所述非离子表面活性剂溶液的浓度优选为1.3~1.7wt%,更优选为1.5wt%。本发明对所述非离子表面活性剂溶液的用量没有特殊限定,能够推动将聚苯乙烯微球单分散膜聚集形成更为致密的聚苯乙烯微球薄膜即可;在本发明的实施例中,针对200μL PS微球悬浊液而言,用1000mL的移液枪滴加2滴非离子表面活性剂溶液即可。本发明通过在乙醇水溶液表面上没有聚苯乙烯微球单分散膜的区域滴加非离子表面活性剂溶液,在表面张力作用下可以推动PS微球单分散膜迅速聚集,在乙醇水溶液表面形成更为致密的PS微球薄膜。
在乙醇水溶液表面形成致密PS微球薄膜后,本发明采用石英玻璃基底将所述致密聚苯乙烯微球薄膜从乙醇水溶液表面捞出,经干燥,在石英玻璃基底的表面得到致密聚苯乙烯微球薄膜。在本发明中,所述石英玻璃基底在使用前优选进行亲水处理,所述亲水处理优选包括:将石英玻璃基底于亲水处理溶液中浸泡2~4h;所述亲水处理溶液中溶质优选包括十二烷基苯磺酸钠、十二烷基醇聚氧乙烯醚硫酸钠、十二烷基硫酸铵、单十二烷基醚磷酸酯三乙醇胺盐和十二烷基硫酸钠中的至少一种。在本发明中,所述亲水处理溶液的浓度优选为10~15wt%,更优选为12wt%;所述浸泡的时间优选为3h;所述浸泡优选在室温条件下进行,在本发明的实施例中,具体是在25℃条件下进行。在本发明中,所述亲水处理后,优选用氮气将所得石英玻璃基底吹干。在本发明中,对所述石英玻璃基底进行亲水处理前优选还包括超声洗涤,以去除其表面污物;所述超声洗涤采用的试剂优选为丙酮,所述超声洗涤的时间优选为25~35min,更优选为30min。
在本发明的实施例中,具体是将石英玻璃基底缓慢浸入乙醇水溶液中,在致密PS微球薄膜下方轻轻垂直取出所述石英玻璃基底,使致密PS微球薄膜覆盖在石英玻璃基底表面,从乙醇水溶液表面取出后自然晾干,在石英玻璃基底表面得到PS微球阵列形成的致密PS微球薄膜。
在石英玻璃基底的表面得到致密PS微球薄膜后,本发明采用原子层沉积法在所述致密聚苯乙烯微球薄膜中聚苯乙烯微球不占位置的区域沉积TiO2,形成TiO2薄膜;之后采用电感耦合等离子体刻蚀法进行刻蚀,以去除聚苯乙烯微球顶部的TiO2薄膜以及聚苯乙烯微球,在石英玻璃基底表面形成TiO2微腔多孔层。在本发明中,所述致密聚苯乙烯微球薄膜中聚苯乙烯微球不占位置的区域是指除聚苯乙烯微球所占位置以外的其它区域,具体的,所述致密聚苯乙烯微球薄膜中聚苯乙烯微球不占位置的区域不包括聚苯乙烯微球本身所占空间区域以及聚苯乙烯微球与石英玻璃基底的接触区域。在本发明中,所述TiO2薄膜的厚度优选为150~800nm,更优选为150~550nm。在本发明中,采用原子层沉积法在PS微球的表面制备TiO2薄膜的操作参数包括:原子层沉积主腔室内真空度优选为3.0×10-3Torr~5×10-2Torr,更优选为4.5×10-3Torr;反应腔室温度优选为50~100℃,更优选为80℃;外腔室温度优选为150~200℃,更优选为180℃;以Ti(OPr)4和H2O2为前驱体,高纯度氮气为吹扫气,Ti(OPr)4通入100ms,吹扫2s,H2O2通入100ms,吹扫8s。
在本发明中,所述刻蚀的操作参数包括:起辉压强优选为1~2.5Pa,更优选为2Pa;ICP功率优选为350~400W,更优选为400W;射频RF功率优选为50~150W,更优选为100W;CF4气体流量优选为20~40sccm,更优选为30sccm;O2气体流量优选为5~15sccm,更优选为10sccm;Ar气体流量优选为0sccm;刻蚀时间优选为4~10min,更优选为5min。
得到TiO2微腔多孔层后,本发明在所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面制备TiO2/Cu复合薄膜,所述TiO2/Cu复合薄膜包括TiO2基体和掺杂在所述TiO2基体中的Cu纳米粒子,得到基于二氧化钛/铜复合薄膜的光催化器件。本发明通过浸提法结合溶胶-凝胶法将TiO2/Cu复合凝胶膜附着于所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面形成TiO2/Cu复合薄膜。在本发明中,在所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面制备TiO2/Cu复合薄膜优选包括以下步骤:
将钛酸四丁酯与无水乙醇混合,得到钛酸四丁酯的乙醇溶液;将硝酸铜与乙醇混合,得到硝酸铜的乙醇溶液;将所述硝酸铜的乙醇溶液滴加至所述钛酸四丁酯的乙醇溶液中,进行水解反应,得到TiO2/Cu复合凝胶;
采用浸提法在TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面涂覆所述TiO2/Cu复合凝胶,形成TiO2/Cu复合凝胶膜,干燥后进行热处理,在所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面形成TiO2/Cu复合薄膜。
本发明将钛酸四丁酯与无水乙醇混合,得到钛酸四丁酯的乙醇溶液。在本发明中,所述钛酸四丁酯与无水乙醇的体积比优选为1:(1.8~2.2),更优选为1:2。本发明优选将钛酸四丁酯逐滴加入到无水乙醇中,滴加完毕后,搅拌混合25~35min,得到钛酸四丁酯的乙醇溶液。
本发明将硝酸铜与无水乙醇混合,得到硝酸铜的乙醇溶液。在本发明中,所述硝酸铜的乙醇溶液中硝酸铜的浓度优选为3.34~16.68mg/mL,更优选为5.00~15.00mg/mL。本发明对所述硝酸铜与无水乙醇的混合方式没有特殊限定,采用本领域技术人员熟知的方式,能够实现二者均匀混合即可。
得到钛酸四丁酯的乙醇溶液和硝酸铜的乙醇溶液后,本发明将所述硝酸铜的乙醇溶液滴加至所述钛酸四丁酯的乙醇溶液中,进行水解反应,得到TiO2/Cu复合凝胶。在本发明中,所述钛酸四丁酯的乙醇溶液与硝酸铜的乙醇溶液的体积比优选为5:(3.5~4.5),更优选为5:4。本发明优选将硝酸铜的乙醇溶液逐滴加至所述钛酸四丁酯的乙醇溶液中,进行水解反应,得到淡黄色透明的TiO2/Cu复合凝胶。在本发明中,所述水解反应优选在室温条件下进行;所述水解反应的时间优选为1.5~2.5h,更优选为2h,所述水解反应的时间以硝酸铜的乙醇溶液滴加完毕后开始计。
得到TiO2/Cu复合凝胶后,本发明采用浸提法在TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面涂覆所述TiO2/Cu复合凝胶,形成TiO2/Cu复合凝胶膜,干燥后进行热处理,在所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面形成TiO2/Cu复合薄膜。在本发明中,采用浸提法涂覆所述TiO2/Cu复合凝胶时的提拉速度优选为1~7cm/min,更优选为3~4cm/min。在本发明中,所述干燥优选在室温条件下进行,所述干燥的时间优选为5~10min,更优选为8min。在本发明中,所述热处理的温度优选为200~700℃,更优选为300~400℃;时间优选为15~60min,更优选为20~30min;所述热处理优选在马弗炉中进行。
在本发明中,在所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面制备TiO2/Cu复合薄膜时,优选依次重复进行浸提-干燥-热处理的步骤,以得到所需厚度的TiO2/Cu复合薄膜;具体的,所述重复的次数优选为2~3次,即共进行浸提-干燥-热处理的步骤3~4次。
本发明提供的光催化器件结构简单,采用常见的石英玻璃、TiO2和Cu为原材料制作光催化器件,有效地降低了制作成本和光催化成本,因此具有较高的产业化价值。
本发明提供了上述技术方案所述基于二氧化钛/铜复合薄膜的光催化器件或上述技术方案所述制备方法制备得到的基于二氧化钛/铜复合薄膜的光催化器件在光催化降解有机污染物中的应用。本发明提供的光催化器件中,TiO2/Cu复合薄膜负载于TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面,在光作用下表现为电子和空穴的有效分离,且Cu纳米粒子掺杂改变了TiO2的光生载流子传输,在晶格中引入缺陷和改变结晶度从而影响电子与空穴的复合,提高了TiO2光催化活性,能够高效催化降解水中有机污染物,如罗丹明B、有机磷农药以及芳香族胺基化合物等。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例中光催化器件如图1所示,包括石英玻璃基底、TiO2微腔多孔层和TiO2/Cu复合薄膜,其中,所述TiO2微腔多孔层设置于所述石英玻璃基底的上表面,所述TiO2微腔多孔层由TiO2微腔阵列形成,单个TiO2微腔为顶部和底部开口的球腔,且TiO2微腔顶部的开口尺寸大于底部的开口尺寸;所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面均设置有TiO2/Cu复合薄膜,所述TiO2/Cu复合薄膜包括TiO2基体和掺杂在所述TiO2基体中的Cu纳米粒子。
上述光催化器件的制备方法包括以下步骤:
将石英玻璃(平均透光率为90%)切割为20mm×20mm×1.0mm的石英玻璃片,在丙酮中进行超声清洗30min,以去除表面污物,将清洗干净的石英玻璃片置于浓度为12wt%的十二烷基醇聚氧乙烯醚硫酸钠溶液中,于室温条件下(25℃)浸泡3h,以增强石英玻璃片表面亲水性,浸泡后干燥,备用;
取2mL聚苯乙烯(PS)微球原液(PS微球的直径为800nm)置于离心管内,在8000rpm/s的离心速率下离心10min,去除上清液,将所得PS微球与水、乙醇混合,得到PS微球悬浊液;其中,所述水和乙醇的体积比为1:3,所述PS微球悬浊液中PS微球的浓度为1.5wt%;
将200μL所述PS微球悬浊液滴加于载体(具体为陶瓷片)表面(PS微球悬浊液的滴加量为0.5μL/mm2),用镊子将滴加有PS微球悬浊液的载体的一半缓慢倾斜浸于乙醇水溶液(乙醇体积分数为75%)中,滴加有PS微球悬浊液的载体的另一半暴露在空气中,在表面张力的作用下在乙醇水溶液表面的部分区域形成PS微球单分散膜;在乙醇水溶液表面没有PS微球单分散膜的区域用1000mL的移液枪滴加2滴浓度为1.5wt%的椰油脂肪酸单乙醇酰胺溶液,在椰油脂肪酸单乙醇酰胺推动作用下,使PS微球单分散膜迅速聚集,PS微球以单层紧密排列的形式分布,在乙醇水溶液表面形成致密PS微球薄膜;将石英玻璃片缓慢倾斜浸入乙醇水溶液的液面下方,在致密PS微球薄膜下方垂直缓慢取出所述石英玻璃基底,使致密PS微球薄膜覆盖在石英玻璃基底表面,从乙醇水溶液表面取出后自然晾干,在石英玻璃基底表面得到单层PS微球紧密排列形成的致密PS微球薄膜;
采用原子层沉积法在所述致密PS微球薄膜中PS微球不占位置的区域沉积TiO2,形成厚度为80nm的TiO2薄膜;其中,沉积TiO2的操作参数包括:原子层沉积主腔室内真空度为4.5×10-3Torr,反应腔室温度为80℃,外腔室温度为180℃;以Ti(OPr)4和H2O2为前驱体,高纯度氮气为吹扫气,Ti(OPr)4通入100ms,吹扫2s,H2O2通入100ms,吹扫8s;
利用电感耦合等离子体刻蚀法进行刻蚀,以去除PS顶部的TiO2薄膜以及PS微球,在石英玻璃基底表面形成TiO2微腔多孔层,比表面积为50m2/g,TiO2微腔的厚度为200nm;其中,所述刻蚀的操作参数包括:起辉压强为2Pa,ICP功率为400W,射频RF功率为100W,CF4气体流量为30sccm,O2气体流量为10sccm,Ar气体流量为0sccm,刻蚀时间为5min;
按钛酸四丁酯与无水乙醇的体积比为1:2,将钛酸四丁酯逐滴加入到无水乙醇中,搅拌30min得到钛酸四丁酯的乙醇溶液;将硝酸铜与无水乙醇混合,硝酸铜的乙醇溶液,浓度为6mg/mL;按钛酸四丁酯的乙醇溶液与硝酸铜的乙醇溶液的体积比为5:4,在所述钛酸四丁酯的乙醇溶液中逐滴加入硝酸铜的乙醇溶液,滴加完毕后在室温条件下搅拌2h,得到淡黄色透明的TiO2/Cu复合凝胶;
采用浸提法在TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面涂覆所述TiO2/Cu复合凝胶,形成TiO2/Cu复合凝胶膜,其中提拉速度为4cm/min,之后在室温条件下干燥8min,然后在400℃的马弗炉中进行热处理20min;依次重复浸提-干燥-热处理的步骤,共进行3次浸提-干燥-热处理的步骤,在TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面形成TiO2/Cu复合薄膜,得到基于TiO2/Cu复合薄膜的光催化器件;其中,所述TiO2/Cu复合薄膜的厚度为80nm,所述TiO2/Cu复合薄膜为晶态结构,是准二维的纳米薄膜,晶粒的尺寸为20nm,所述TiO2/Cu复合薄膜中Cu纳米粒子的粒度为15nm,Cu与Ti的摩尔比为3:100。
配制100mL浓度为10mg/L的罗丹明B水溶液放入光催化反应烧杯中,将实施例1制备的基于二氧化钛/铜复合薄膜的光催化器件悬挂于丹明B水溶液中,烧杯口密封,将体系置于暗室磁力搅拌20min,使其吸附-脱附达到平衡;然后置于1000W高压氙灯下照射,并保证光催化器件上负载有催化剂(即TiO2微腔多孔层和TiO2/Cu复合薄膜)的一面正对光源方向,进行光催化反应;光照开始后,每隔20min取一次样,每次取5mL样品离心后取上清液在紫外-可见分光光度仪上测其吸光度(λmax=554nm)。测量完毕后将样品倒回烧杯中。结果显示,罗丹明B水溶液吸光度A与浓度C有很好的线性相关性,根据光照前后溶液吸光度的变化,计算降解效率;当光照射4h时,罗丹明B水溶液中罗丹明B的降解率可达95%。说明本发明提供的光催化器件光催化效率高。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种基于二氧化钛/铜复合薄膜的光催化器件,包括石英玻璃基底、TiO2微腔多孔层和TiO2/Cu复合薄膜,其中,所述TiO2微腔多孔层设置于所述石英玻璃基底的表面,所述TiO2微腔多孔层由TiO2微腔阵列形成,单个TiO2微腔为顶部和底部开口的球腔,且TiO2微腔顶部的开口尺寸大于底部的开口尺寸;所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面均设置有TiO2/Cu复合薄膜,所述TiO2/Cu复合薄膜包括TiO2基体和掺杂在所述TiO2基体中的Cu纳米粒子。
2.根据权利要求1所述的基于二氧化钛/铜复合薄膜的光催化器件,其特征在于,所述石英玻璃基底呈矩形,所述石英玻璃基底的边长为10~200mm,厚度为0.3~2.2mm,平均透光率为75~99%。
3.根据权利要求1所述的基于二氧化钛/铜复合薄膜的光催化器件,其特征在于,所述TiO2微腔的内径为500~1500nm,厚度为150~800nm;所述TiO2微腔多孔层的比表面积为1~60m2/g。
4.根据权利要求1或3所述的基于二氧化钛/铜复合薄膜的光催化器件,其特征在于,所述TiO2/Cu复合薄膜的厚度为50~200nm;所述TiO2/Cu复合薄膜中Cu与Ti的摩尔比为(0.1~10):100,所述Cu纳米粒子的粒径为5~50nm;所述TiO2/Cu复合薄膜为晶态结构,晶粒的尺寸为10~100nm。
5.权利要求1~4任一项所述基于二氧化钛/铜复合薄膜的光催化器件的制备方法,其特征在于,包括以下步骤:
在石英玻璃基底的表面制备TiO2微腔多孔层,所述TiO2微腔多孔层由TiO2微腔阵列形成,单个TiO2微腔为顶部和底部开口的球腔,且TiO2微腔顶部的开口尺寸大于底部的开口尺寸;
在所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面制备TiO2/Cu复合薄膜,所述TiO2/Cu复合薄膜包括TiO2基体和掺杂在所述TiO2基体中的Cu纳米粒子,得到基于二氧化钛/铜复合薄膜的光催化器件。
6.根据权利要求5所述的制备方法,其特征在于,在石英玻璃基底的表面制备TiO2微腔多孔层包括以下步骤:
将聚苯乙烯微球、水和乙醇混合,得到聚苯乙烯微球悬浊液;
将所述聚苯乙烯微球悬浊液滴加于载体的表面,之后将滴加有聚苯乙烯微球悬浊液的载体的一半倾斜浸于乙醇水溶液中,滴加有聚苯乙烯微球悬浊液的载体的另一半暴露在空气中,在表面张力作用下在乙醇水溶液表面的部分区域形成聚苯乙烯微球单分散膜;在乙醇水溶液表面没有聚苯乙烯微球单分散膜的区域滴加非离子表面活性剂溶液,在非离子表面活性剂溶液中非离子表面活性剂的推动作用下,聚苯乙烯微球单分散膜在乙醇水溶液表面形成致密聚苯乙烯微球薄膜,所述致密聚苯乙烯微球薄膜由单层紧密排列的聚苯乙烯微球形成;采用石英玻璃基底将所述致密聚苯乙烯微球薄膜从乙醇水溶液表面捞出,经干燥,在石英玻璃基底的表面得到致密聚苯乙烯微球薄膜;
采用原子层沉积法在所述致密聚苯乙烯微球薄膜中聚苯乙烯微球不占位置的区域沉积TiO2,形成TiO2薄膜;之后采用电感耦合等离子体刻蚀法进行刻蚀,以去除聚苯乙烯微球顶部的TiO2薄膜以及聚苯乙烯微球,在石英玻璃基底表面形成TiO2微腔多孔层。
7.根据权利要求6所述的制备方法,其特征在于,所述石英玻璃基底在使用前进行亲水处理,所述亲水处理包括:将石英玻璃基底于亲水处理溶液中浸泡2~4h;所述亲水处理溶液中溶质包括十二烷基苯磺酸钠、十二烷基醇聚氧乙烯醚硫酸钠、十二烷基硫酸铵、单十二烷基醚磷酸酯三乙醇胺盐和十二烷基硫酸钠中的至少一种。
8.根据权利要求5所述的制备方法,其特征在于,在所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面制备TiO2/Cu复合薄膜包括以下步骤:
将钛酸四丁酯与无水乙醇混合,得到钛酸四丁酯的乙醇溶液;将硝酸铜与乙醇混合,得到硝酸铜的乙醇溶液;将所述硝酸铜的乙醇溶液滴加至所述钛酸四丁酯的乙醇溶液中,进行水解反应,得到TiO2/Cu复合凝胶;
采用浸提法在TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面涂覆所述TiO2/Cu复合凝胶,形成TiO2/Cu复合凝胶膜,干燥后进行热处理,在所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面形成TiO2/Cu复合薄膜。
9.根据权利要求8所述的制备方法,其特征在于,在所述TiO2微腔的底部开口处裸露的石英玻璃基底表面以及TiO2微腔表面制备TiO2/Cu复合薄膜时,依次重复进行浸提-干燥-热处理的步骤,重复的次数为2~3次。
10.权利要求1~4任一项所述基于二氧化钛/铜复合薄膜的光催化器件或权利要求5~9任一项所述制备方法制备得到的基于二氧化钛/铜复合薄膜的光催化器件在光催化降解有机污染物中的应用。
CN202011559963.7A 2020-12-25 2020-12-25 一种基于二氧化钛/铜复合薄膜的光催化器件及其制备方法和应用 Active CN112844384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011559963.7A CN112844384B (zh) 2020-12-25 2020-12-25 一种基于二氧化钛/铜复合薄膜的光催化器件及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011559963.7A CN112844384B (zh) 2020-12-25 2020-12-25 一种基于二氧化钛/铜复合薄膜的光催化器件及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112844384A true CN112844384A (zh) 2021-05-28
CN112844384B CN112844384B (zh) 2023-08-11

Family

ID=75996928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011559963.7A Active CN112844384B (zh) 2020-12-25 2020-12-25 一种基于二氧化钛/铜复合薄膜的光催化器件及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112844384B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155661A (zh) * 2022-06-21 2022-10-11 苏州凯清碳中和科技有限公司 一种聚氨酯催化膜及其制备方法与应用
CN116040960A (zh) * 2022-12-29 2023-05-02 中建材玻璃新材料研究院集团有限公司 一种稳定的无机框架结构光催化TiO2薄膜的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239047A (ja) * 1998-12-03 2000-09-05 Nippon Sheet Glass Co Ltd 親水性光触媒部材
CN1468383A (zh) * 2001-06-29 2004-01-14 �ձ�������ʽ���� 光散射/反射基板用感光性树脂组合物、光散射/反射基板、及其制造方法
CN101162743A (zh) * 2007-11-29 2008-04-16 北京航空航天大学 一种微网格结构光催化剂的制备方法
CN101785971A (zh) * 2010-04-09 2010-07-28 华中科技大学 一种用于降解气相有机污染物的光电催化装置
CN101792271A (zh) * 2010-02-02 2010-08-04 太原理工大学 一种纳米二氧化钛异质复合膜的制备方法
CN102151560A (zh) * 2011-01-25 2011-08-17 北京师范大学 光催化降解有机物的二氧化钛光子晶体薄膜及其制备方法
CN103143379A (zh) * 2013-03-06 2013-06-12 北京化工大学 一步法制备氮掺杂二氧化钛反蛋白石薄膜光催化剂的方法
CN111129183A (zh) * 2019-12-27 2020-05-08 太原理工大学 一种宽带光吸收体结构及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239047A (ja) * 1998-12-03 2000-09-05 Nippon Sheet Glass Co Ltd 親水性光触媒部材
CN1468383A (zh) * 2001-06-29 2004-01-14 �ձ�������ʽ���� 光散射/反射基板用感光性树脂组合物、光散射/反射基板、及其制造方法
CN101162743A (zh) * 2007-11-29 2008-04-16 北京航空航天大学 一种微网格结构光催化剂的制备方法
CN101792271A (zh) * 2010-02-02 2010-08-04 太原理工大学 一种纳米二氧化钛异质复合膜的制备方法
CN101785971A (zh) * 2010-04-09 2010-07-28 华中科技大学 一种用于降解气相有机污染物的光电催化装置
CN102151560A (zh) * 2011-01-25 2011-08-17 北京师范大学 光催化降解有机物的二氧化钛光子晶体薄膜及其制备方法
CN103143379A (zh) * 2013-03-06 2013-06-12 北京化工大学 一步法制备氮掺杂二氧化钛反蛋白石薄膜光催化剂的方法
CN111129183A (zh) * 2019-12-27 2020-05-08 太原理工大学 一种宽带光吸收体结构及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘儒平等: "Cu2O纳米晶的合成及光催化性能研究", 《信息记录材料》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155661A (zh) * 2022-06-21 2022-10-11 苏州凯清碳中和科技有限公司 一种聚氨酯催化膜及其制备方法与应用
CN115155661B (zh) * 2022-06-21 2023-09-08 苏州凯清碳中和科技有限公司 一种聚氨酯催化膜及其制备方法与应用
CN116040960A (zh) * 2022-12-29 2023-05-02 中建材玻璃新材料研究院集团有限公司 一种稳定的无机框架结构光催化TiO2薄膜的制备方法
CN116040960B (zh) * 2022-12-29 2024-04-16 中建材玻璃新材料研究院集团有限公司 一种稳定的无机框架结构光催化TiO2薄膜的制备方法

Also Published As

Publication number Publication date
CN112844384B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
Zalfani et al. Novel 3DOM BiVO 4/TiO 2 nanocomposites for highly enhanced photocatalytic activity
Wang et al. Design, modification and application of semiconductor photocatalysts
Qin et al. One-step fabrication of TiO2/Ti foil annular photoreactor for photocatalytic degradation of formaldehyde
WO2017071580A1 (en) A composite photocatalyst, preparation and use thereof
CN109250755B (zh) 一种含有铋缺陷的不同晶相的氧化铋光催化剂及其制备方法
Zhu et al. Cu-Ni nanowire-based TiO2 hybrid for the dynamic photodegradation of acetaldehyde gas pollutant under visible light
Li et al. Novel ZnO-TiO2 nanocomposite arrays on Ti fabric for enhanced photocatalytic application
CN102580742A (zh) 一种活性炭负载氧化亚铜光催化剂及其制备方法
CN111992239B (zh) 银/钒酸铋/氮化碳异质结光催化剂及其制备方法和应用
CN112958061B (zh) 一种氧空位促进直接Z机制介孔Cu2O/TiO2光催化剂及其制备方法
CN112844384A (zh) 一种基于二氧化钛/铜复合薄膜的光催化器件及其制备方法和应用
CN115845888B (zh) PbBiO2Br/Ti3C2复合催化剂的制备方法及其在光催化降解甲基橙中的应用
Cui et al. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite
Tavakoli-Azar et al. Enhanced photocatalytic activity of ZrO2-CdZrO3-S nanocomposites for degradation of Crystal Violet dye under sunlight
Wang et al. Growth of Ag/g-C3N4 nanocomposites on nickel foam to enhance photocatalytic degradation of formaldehyde under visible light
Priya et al. Construction of MoS2 nanoparticles incorporated TiO2 nanosheets heterojunction photocatalyst for enhanced visible light driven hydrogen production
Hongxia et al. A new double Z‐scheme TiO2/ZnO‐g‐C3N4 nanocomposite with enhanced photodegradation efficiency for Rhodamine B under sunlight
CN108579775B (zh) 一种磷酸银/银/二氧化钛纳米花复合材料及其制备方法与应用
CN113198515B (zh) 一种三元光催化剂及其制备方法与应用
CN108772077B (zh) 一种AgIO3/Ag2O异质结光催化材料及其制备方法和应用
CN107983377B (zh) 钨酸镉修饰的银/碘化银复合材料及其制备方法和应用
CN114192143B (zh) 一种钨酸银/偏钒酸银复合光催化剂的制备及其应用
CN110639499B (zh) 一种复合光催化剂及其应用于偏二甲肼废水处理的方法
CN113751071A (zh) 夹层片状Bi2O3/UiO-66-NH2复合材料及其的制备方法和应用
Basheer et al. Electrochemical Disposition of Titanium Dioxide Photocatalyst on Micropores Silicon Wafer for Water Treatment Application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant