CN111604068B - 一种Ag-AgBr/TiO2纳米棒复合阵列薄膜的制备方法 - Google Patents

一种Ag-AgBr/TiO2纳米棒复合阵列薄膜的制备方法 Download PDF

Info

Publication number
CN111604068B
CN111604068B CN202010570170.9A CN202010570170A CN111604068B CN 111604068 B CN111604068 B CN 111604068B CN 202010570170 A CN202010570170 A CN 202010570170A CN 111604068 B CN111604068 B CN 111604068B
Authority
CN
China
Prior art keywords
tio
agbr
array film
nanorod
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010570170.9A
Other languages
English (en)
Other versions
CN111604068A (zh
Inventor
王艳芬
程详
刘银
李孟婷
高娟
徐初阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Science and Technology
Original Assignee
Anhui University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Science and Technology filed Critical Anhui University of Science and Technology
Priority to CN202010570170.9A priority Critical patent/CN111604068B/zh
Publication of CN111604068A publication Critical patent/CN111604068A/zh
Application granted granted Critical
Publication of CN111604068B publication Critical patent/CN111604068B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化材料领域,具体涉及一种Ag‑AgBr/TiO2纳米棒复合阵列薄膜的制备方法。该复合薄膜活性组分是Ag‑AgBr和TiO2纳米棒阵列,其结构是由Ag‑AgBr异质结纳米颗粒修饰的一维TiO2纳米棒阵列生长在FTO导电玻璃表面。本发明提供的制备方法操作易于控制,不涉及昂贵设备,适合大规模生产。本发明制备的Ag‑AgBr/TiO2纳米棒复合阵列,将表面等离子体共振效应和异质结构相结合,显示拓展的太阳光光谱响应范围、高效的光生载流子分离效率、良好的光电化学性能和可见光驱动光催化活性,在可见光下对罗丹明B和甲基橙的降解率可分别达到58%和80%。

Description

一种Ag-AgBr/TiO2纳米棒复合阵列薄膜的制备方法
技术领域
本发明属于光催化材料制备领域,具体涉及一种Ag-AgBr/TiO2纳米棒复合阵列薄膜的制备方法。本发明所制备的Ag-AgBr/TiO2纳米棒复合阵列薄膜作为光催化剂,用于可见光降解罗丹明B和甲基橙均取得良好的光催化效果。
背景技术
近年来,TiO2因其良好的生物相容性、较高的光催化活性、化学性能稳定、成本低廉且无毒,被视为解决环境问题和能源危机的理想材料。尤其一维TiO2纳米阵列材料,由于其大的长径比、高比表面积和快速的电子转移效率,在太阳能电池、光催化裂解水或光催化降解有毒有机小分子、电化学能存储及传感器等领域拥有广泛的应用前景(X.D. Wang,etal.,One-dimensional titanium dioxide nanomaterials:nanowires,nanorods,andnanobelts,Chem.Rev.114(2014)9346-9384)。然而,单一相TiO2具有大的禁带宽度 (3.0-3.2eV),只能被紫外光激发响应,太阳光的利用率很低;同时高的光生电子-空穴复合效率,使其光量子效率较低,导致低的光电化学性能和太阳光光催化活性,限制了其实际应用。
与单一组分的材料相比,二元或多元组分的半导体基复合纳米材料不仅能够克服单一相材料性能的局限性,而且兼具多种材料的综合性能,显示了极大的应用前景。近年来,基于银/卤化银(Ag/AgX)复合半导体材料引起了人们广泛的研究兴趣。在光照条件下,AgX纳米材料中的银离子很容易被还原为Ag0原子,形成Ag/AgX异质结构。 Ag和AgX的共存不仅会产生表面等离子体共振(SPR)效应和自敏化,显著增强可见光的吸收,提高太阳光的利用率;同时,金属Ag的存在还可以改善AgX的光稳定性能 (Q.Y.Li,et al.,Synthesis ofcubic Ag@AgCl and Ag@AgBr plasmonicphotocatalysts and comparison of theirphotocatalytic activity for degradation of methyl orange and 2, 4-dichlorophenol,Res.Chem.Intermed.44(2018)4651-4661)。
在材料的制备过程中,纳米材料的制备方法和工艺条件会对复合材料的组分、形貌、晶粒尺寸、异质界面及能带匹配等微结构产生显著影响,进而改变材料的光催化和光电化学性能。因此,选择适宜的制备方法和工艺参数对复合纳米材料的构建具有至关重要的作用。
发明内容
本发明针对Ag-AgBr异质结能够有效拓展宽带隙半导体材料的光响应范围并改善载流子分离效率,有效增强光催化活性的特点,提供一种Ag-AgBr/TiO2纳米棒复合阵列薄膜的制备方法,获得的新颖Ag-AgBr/TiO2纳米棒复合阵列薄膜具有增强的太阳光吸收能力、快速的电荷转移效率、优异的光电化学性能和可见光光催化活性,且成本低廉,制备工艺简单,易于实现产业化生产及应用。
为了实现上述目的,本发明采用的技术方案如下:
本发明提供了一种Ag-AgBr/TiO2纳米棒复合阵列薄膜,其活性组分是Ag-AgBr和TiO2纳米棒阵列,其结构是由Ag-AgBr异质结纳米颗粒修饰的一维TiO2纳米棒阵列生长在FTO导电玻璃表面。
一种Ag-AgBr/TiO2纳米棒复合阵列薄膜的制备方法,其特征在于,包括以下步骤:
(1)将FTO导电玻璃通过玻璃刀裁剪成适宜尺寸,先后利用丙酮、去离子水和无水乙醇超声清洗20-40min,以去除玻璃表面的灰尘和污染物,随后量取15mL浓盐酸(37%) 和0.5mL钛酸四丁酯,加入15mL去离子水中,常温下搅拌30min以上,搅拌速度大于 180r/min,将其倒入底部放有清洗后的FTO玻璃(导电面向下)的50-75mL高压反应釜内胆中,在150-160℃水热条件下反应10-12h,将样品取出利用无水乙醇和去离子水清洗3-5次,在60-80℃下干燥10-15h,得到产物TiO2纳米棒阵列薄膜;
(2)将0.05-0.15mmol碱性矿化剂溶解于35mL去离子水中,在磁力搅拌条件下,将0.1g十六烷基三甲基溴化氨和1mmol硝酸银先后加入到上述溶液中,常温下继续搅拌 30-40min,待用;
(3)将步骤(2)中的混合溶液转移到50-75mL聚四氟乙烯内衬的不锈钢高压反应釜中,其中将步骤(1)所述的产物TiO2纳米棒阵列薄膜放置在反应釜底部,在150-180℃下进行水热反应3-15h;
(4)将步骤(3)中反应结束后的样品取出,经过去离子水清洗、真空干燥,最终得到Ag-AgBr/TiO2纳米棒复合阵列薄膜。
作为优选,本发明更进一步的技术方案是:
步骤(2)中,所述碱性矿化剂为NaOH或C6H12N4中的一种。
步骤(3)中,所述放置在反应釜底部的产物TiO2纳米棒阵列正面朝下、倾斜放置。
步骤(4)中,所述真空干燥条件:真空度1-300Pa,干燥温度60-80℃,干燥时间8-12h。
本发明制备的Ag-AgBr/TiO2纳米棒复合阵列薄膜作为光催化剂在罗丹明B和甲基橙的降解中,显示了良好的可见光驱动光催化效果。本发明制备的Ag-AgBr/TiO2纳米棒复合阵列薄膜用于降解罗丹明B和甲基橙的反应条件为:浓度15mg/L,体积10mL,带有420nm滤波片的300W氙灯用作可见光光源,照射时间150min,降解率最高达到 58%和80%。另外,该复合薄膜还可以作为光阳极在瞬态光电流测试中,光电流密度达到130μA/cm2,并显示了较低的界面电荷传输阻力。
与现有技术相比,采用本发明方法制备Ag-AgBr/TiO2纳米棒复合阵列薄膜具有以下优点:
1、将FTO导电玻璃表面均匀生长一维TiO2纳米棒阵列,随后负载Ag-AgBr异质结纳米颗粒,能够有效避免粉体材料在光催化反应中的团聚现象,且不需要使用离心或抽滤等后处理技术来实现光催化剂和溶液的分离,工序简单。
2、本发明方法在TiO2纳米棒阵列表面采用一步水热法生长Ag-AgBr异质结纳米颗粒,不仅颗粒分布均匀,尺寸可控,而且制备路线简易,不涉及昂贵设备,避免了后续煅烧或还原工艺,产生的Ag-AgBr异质结界面紧密连接,利于界面电荷转移。
3、本发明方法制备的Ag-AgBr/TiO2纳米棒复合阵列薄膜,具有高度有序的一维纳米结构基质、粗糙的表面结构和高的比表面积,有利于有机小分子的吸附、扩散和光催化反应中羟基自由基的传输,进而提高其光生量子效率和光催化效率。
4、本发明方法制备的Ag-AgBr/TiO2纳米棒复合阵列,将贵金属材料的SPR效应和异质结构相结合,显示拓展的太阳光光谱响应范围、高效的光生载流子分离效率,光电化学性能优异,在可见光照射下有机染料罗丹明B、甲基橙的降解中显示了明显增强的光催化效率,因此在太阳能电池光阳极材料和光催化领域拥有潜在的应用前景。
附图说明
图1为本发明实例1制备的(a)TiO2基质和(b)Ag-AgBr/TiO2纳米棒复合阵列薄膜的XRD图谱;
图2为本发明实例1制备的(a)TiO2基质和(b)Ag-AgBr/TiO2纳米棒复合阵列薄膜的SEM图片,(c)复合阵列的EDS图谱;
图3为本发明实例2制备的Ag-AgBr/TiO2纳米棒复合阵列薄膜的(a)XRD图谱和(b)SEM图片;
图4为本发明实例3制备的Ag-AgBr/TiO2纳米棒复合阵列薄膜的SEM图片;
图5为本发明制备的TiO2基质和实例1、实例2和实例3制备的Ag-AgBr/TiO2纳米棒复合阵列薄膜的(a)紫外-可见吸收光谱图和(b)相应计算的禁带宽度;
图6为本发明制备的TiO2基质和实例1、实例2制备的Ag-AgBr/TiO2纳米棒复合阵列薄膜的(a)光电流密度-时间曲线和(b)EIS尼奎斯特图;
图7为本发明(a)实例1和(b)实例2制备的两种Ag-AgBr/TiO2纳米棒复合阵列薄膜作为光催化剂在可见光下降解罗丹明B溶液的紫外-可见吸收图谱,(c)TiO2基质和 Ag-AgBr/TiO2纳米棒复合阵列的光降解效果对比图;
图8为本发明制备的TiO2基质、实例1和实例2制备的Ag-AgBr/TiO2纳米棒复合阵列薄膜作为光催化剂在可见光下降解甲基橙溶液的光降解效果对比图。
具体的实施步骤
下面通过实施例进一步详细说明本发明。但值得注意的是,此处描述的具体实施例仅用以解释本发明,并非限制本发明的范围。在不脱离本发明精神的前提下,本领域技术人员对本发明技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围。
实施例1:
(1)将FTO导电玻璃通过玻璃刀裁剪成2.5cm×5cm适宜尺寸,先后利用丙酮、去离子水和无水乙醇超声清洗20min,以去除玻璃表面的灰尘和污染物,随后量取15mL浓盐酸(37%)和0.5mL钛酸四丁酯,加入15mL去离子水中,常温下搅拌30min,搅拌速度200r/min,随后将其倒入底部放有清洗后的FTO玻璃(导电面向下)的50mL高压反应釜内胆中,在150℃水热条件下反应12h,将样品取出利用无水乙醇和去离子水清洗3次,在60℃下干燥10h,得到产物TiO2纳米棒阵列薄膜;
(2)将0.1mmol氢氧化钠溶解于35mL去离子水中,在磁力搅拌条件下,将0.1g十六烷基三甲基溴化氨和1mmol硝酸银先后加入到上述溶液中,常温下继续搅拌30min,待用;
(3)将步骤(2)中的混合溶液转移到50mL聚四氟乙烯内衬的不锈钢高压反应釜中,其中将步骤(1)所述的产物TiO2纳米棒阵列面向下放置在反应釜底部,在150℃下进行水热反应12h;
(4)将步骤(3)中反应结束后的样品取出,经过去离子水清洗3次,80℃真空干燥12h,最终得到Ag-AgBr/TiO2纳米棒复合阵列薄膜。
实施例2:
(1)将FTO导电玻璃通过玻璃刀裁剪成1.5cm×4cm适宜尺寸,先后利用丙酮、去离子水和无水乙醇超声清洗40min,以去除玻璃表面的灰尘和污染物,随后量取15mL浓盐酸(37%)和0.5mL钛酸四丁酯,加入15mL去离子水中,常温下搅拌40min,搅拌速度180r/min,随后将其倒入底部放有清洗后的FTO玻璃(导电面向下)的75mL高压反应釜内胆中,在160℃水热条件下反应12h,将样品取出利用无水乙醇和去离子水清洗5次,在80℃下干燥15h,得到产物TiO2纳米棒阵列薄膜;
(2)将0.1mmol六亚甲四胺溶解于35mL去离子水中,在磁力搅拌条件下,将0.1g 十六烷基三甲基溴化氨和1mmol硝酸银先后加入到上述溶液中,常温下继续搅拌40min,待用;
(3)将步骤(2)中的混合溶液转移到75mL聚四氟乙烯内衬的不锈钢高压反应釜中,其中将步骤(1)所述的产物TiO2纳米棒阵列面向下放置在反应釜底部,在160℃下进行水热反应12h;
(4)将步骤(3)中反应结束后的样品取出,经过去离子水清洗3次,60℃真空干燥10h,最终得到Ag-AgBr/TiO2纳米棒复合阵列薄膜。
实施例3:
(1)将FTO导电玻璃通过玻璃刀裁剪成2.5cm×5cm适宜尺寸,先后利用丙酮、去离子水和无水乙醇超声清洗30min,以去除玻璃表面的灰尘和污染物,随后量取15mL浓盐酸(37%)和0.5mL钛酸四丁酯,加入15mL去离子水中,常温下搅拌30min,搅拌速度200r/min,随后将其倒入底部放有清洗后的FTO玻璃(导电面向下)的50mL高压反应釜内胆中,在150℃水热条件下反应12h,将样品取出利用无水乙醇和去离子水清洗3次,在60℃下干燥12h,得到产物TiO2纳米棒阵列薄膜;
(2)将0.08mmol氢氧化钠溶解于35mL去离子水中,在磁力搅拌条件下,将0.1g十六烷基三甲基溴化氨和1mmol硝酸银先后加入到上述溶液中,常温下继续搅拌30min,待用;
(3)将步骤(2)中的混合溶液转移到50mL聚四氟乙烯内衬的不锈钢高压反应釜中,其中将步骤(1)所述的产物TiO2纳米棒阵列放置在反应釜底部,在150℃下进行水热反应6h;
(4)将步骤(3)中反应结束后的样品取出,经过去离子水清洗3次,80℃真空干燥14h,最终得到Ag-AgBr/TiO2纳米棒复合阵列薄膜。
将上述实施例中获得的产物进行表征。采用X射线粉末衍射仪(XRD)测试产物的晶体结构;采用扫描电子显微镜(SEM)观察产物的微观形貌;采用紫外-可见漫反射光谱仪对产物进行光响应性能测试;采用电化学工作站来测试样品的光电化学性能,采用可见光照射有机染料罗丹明B和甲基橙来评价产物的光催化活性。
图1为实例1制备的TiO2基质和Ag-AgBr/TiO2纳米棒阵列薄膜的XRD图谱。与图1a相比,图1b中除了TiO2晶相和FTO玻璃基底的衍射峰,还出现了来自AgBr(JCPDS no.06-0438)的新衍射峰,证实了产物含有高结晶度的AgBr晶体。
图2为实例1制备的TiO2基质和Ag-AgBr/TiO2纳米棒阵列薄膜的SEM图片。图2a中TiO2样品是由许多均匀且光滑的纳米棒阵列组装而成。图2b中,当氢氧化钠作为矿化剂时,TiO2纳米棒表面沉积了大量尺寸20-80nm纳米颗粒。图2c可以看出,Ti、Ag、O和 Br元素存在于EDX图谱中,且Ag的原子含量明显高于Br,不符合AgBr中的1:1原子配比条件,证实复合样品中的纳米颗粒是由Ag-AgBr异质结构组成。
图3为实例2制备的Ag-AgBr/TiO2纳米棒复合阵列薄膜的XRD图谱和SEM图片。图3a中,TiO2、Ag和AgBr晶相的特征衍射峰都可以观察到,暗示了Ag-AgBr异质结在TiO2纳米棒阵列表面的成功负载。图3b中,当六亚甲基四胺作矿化剂时,尺寸80-400nm的球形Ag-AgBr纳米颗粒沉积在TiO2纳米棒表面,且分布松散均匀。
图4为实例3制备的Ag-AgBr/TiO2纳米棒复合阵列薄膜的SEM图片。当氢氧化钠作为矿化剂、反应时间为6h时,TiO2纳米棒顶端和侧面负载了大量尺寸更小的微细Ag-AgBr颗粒,尺寸为5-25nm。
图5a给出的紫外-可见吸收光谱中,TiO2基质只能在低于400nm的波长范围内响应,显示了较强的紫外光吸收;实例1、实例2和实例3制备的三种Ag-AgBr/TiO2纳米棒复合阵列薄膜,显示了明显增强的可见光吸收能力,这是由于Ag的SPR吸收和窄带隙AgBr 的协同增强吸收。在图5b中,与TiO2相比,三种Ag-AgBr/TiO2纳米棒复合阵列薄膜具有更窄的带隙宽度,能够吸收更多的可见光,并产生大量的光生电子-空穴对,有利于光电性能的优化。
图6a为模拟太阳光下样品作为光电极的光电流密度-时间曲线。实例1和实例2制备的Ag-AgBr/TiO2电极光电流值分别为130μA/cm2和30μA/cm2,分别是纯TiO2电极的 13倍和3倍。与TiO2基质相比,Ag-AgBr/TiO2电极显示了明显增强的光电流。图6b 为电极的典型EIS奈奎斯特曲线图。与纯TiO2相比,实例1和实例2制备的Ag-AgBr/TiO2电极均显示了较小的半圆半径,暗示了其具有最低的界面电荷转移阻力。结果表明, Ag-AgBr和TiO2异质界面可以提供有效的电子转移途径,促进界面电子的高效转移,极大增强其光电化学活性。
图7a和图7b可以看出,在可见光下实例1和实例2制备的Ag-AgBr/TiO2作为光催化剂时,罗丹明B分子在554nm处的特征吸光度随照射时间的增加而逐渐降低。图7c 中,在可见光照射150min后,TiO2基质作为光催化剂对罗丹明B的降解率为4.7%,而实例1和实例2制备的Ag-AgBr/TiO2对罗丹明B的降解率分别为58%和45%,显示了增强的光降解效率。
图8中,在可见光照射150min后,纯TiO2对甲基橙的降解率为6.1%,实例1和实例2制备的Ag-AgBr/TiO2纳米棒复合阵列薄膜对甲基橙的降解率分别为80%和20.3%。与单一TiO2光催化剂相比,Ag-AgBr/TiO2纳米棒复合阵列薄膜具有明显增强的可见光驱动光催化活性。

Claims (3)

1.一种Ag-AgBr/TiO2纳米棒复合阵列薄膜的制备方法,其特征在于,包括以下步骤:
(1)将FTO导电玻璃通过玻璃刀裁剪成适宜尺寸,先后利用丙酮、去离子水和无水乙醇超声清洗20-40min,以去除玻璃表面的灰尘和污染物,随后量取15mL浓度37%的浓盐酸和0.5mL钛酸四丁酯,加入15mL去离子水中,常温下搅拌30min以上,搅拌速度大于180r/min,将其倒入底部放有清洗后的导电面向下的FTO玻璃的50-75mL高压反应釜内胆中,在150-160℃水热条件下反应10-12 h,将样品取出利用无水乙醇和去离子水清洗3-5次,在60-80℃下干燥10-15h,得到产物TiO2纳米棒阵列薄膜;
(2)将0 .08-0.15mmol碱性矿化剂溶解于35mL去离子水中,所述碱性矿化剂为NaOH或C6H12N4中的一种,在磁力搅拌条件下,将0.1g十六烷基三甲基溴化氨和1mmol硝酸银先后加入到上述溶液中,常温下继续搅拌30-40min,待用;
(3)将步骤(2)中的混合溶液转移到50-75mL聚四氟乙烯内衬的不锈钢高压反应釜中,其中将步骤(1)所述的产物TiO2纳米棒阵列薄膜放置在反应釜底部,在150-180℃温度下进行水热反应3-15h;
(4)将步骤(3)中反应结束后的样品取出,经过去离子水清洗、真空干燥,最终得到可见光驱动Ag-AgBr/TiO2纳米棒复合阵列薄膜。
2.根据权利要求1所述的一种Ag-AgBr/TiO2纳米棒复合阵列薄膜的制备方法,其特征在于:在步骤(3)中,放置在反应釜底部的产物TiO2纳米棒阵列正面朝下、倾斜放置;在步骤(4)中,所述真空干燥条件:真空度1-300Pa,干燥温度60-80℃,干燥时间8-12h。
3.根据权利要求1制备的Ag-AgBr/TiO2纳米棒复合阵列薄膜作为光催化剂在可见光下光降解罗丹明B和甲基橙的应用。
CN202010570170.9A 2020-06-21 2020-06-21 一种Ag-AgBr/TiO2纳米棒复合阵列薄膜的制备方法 Active CN111604068B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010570170.9A CN111604068B (zh) 2020-06-21 2020-06-21 一种Ag-AgBr/TiO2纳米棒复合阵列薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010570170.9A CN111604068B (zh) 2020-06-21 2020-06-21 一种Ag-AgBr/TiO2纳米棒复合阵列薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN111604068A CN111604068A (zh) 2020-09-01
CN111604068B true CN111604068B (zh) 2022-10-28

Family

ID=72200743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010570170.9A Active CN111604068B (zh) 2020-06-21 2020-06-21 一种Ag-AgBr/TiO2纳米棒复合阵列薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN111604068B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567414A (zh) * 2021-07-02 2021-10-29 合肥工业大学 一种zif8衍生半导体异质结-银sers基底及其制备方法和应用
CN114210349A (zh) * 2021-11-18 2022-03-22 中建材蚌埠玻璃工业设计研究院有限公司 一种复合可见光催化剂的制备方法及复合可见光催化剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991006894A1 (en) * 1989-10-18 1991-05-16 Research Corporation Technologies, Inc. Plasmon enhanced photo processes
CN101537350A (zh) * 2009-04-27 2009-09-23 武汉理工大学 可见光活性的Ag/AgCl/TiO2纳米管阵列等离子体光催化剂及其制备方法
CN104689839A (zh) * 2015-02-02 2015-06-10 河西学院 Ag-AgCl/凹凸棒石纳米复合光催化剂的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103623850A (zh) * 2013-11-05 2014-03-12 江苏大学 一种高活性溴化银纳米光催化材料的制备方法
CN103599800B (zh) * 2013-11-22 2015-09-02 中国科学院新疆理化技术研究所 玻璃纤维负载银-溴化银-氧化钛复合材料的制备方法
CN104190449B (zh) * 2014-08-20 2016-03-02 江苏大学 一种Ag/AgCl空心纳米结构光催化材料的制备方法
CN105148888B (zh) * 2015-07-16 2016-05-25 郑州轻工业学院 银/氯化银与二氧化钛复合异质结构纳米材料的制备方法
KR101766590B1 (ko) * 2016-07-06 2017-08-10 경희대학교 산학협력단 복합 나노구조 광촉매 및 이의 제조방법
CN106423259B (zh) * 2016-09-22 2018-12-04 常州大学 一种利用天然凹凸棒石制备Ag-AgBr/Al-MCM-41复合功能材料的方法
CN109046401A (zh) * 2018-07-06 2018-12-21 上海纳米技术及应用国家工程研究中心有限公司 3d形貌银/溴化银/二氧化钛光催化剂的制备及其产品和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991006894A1 (en) * 1989-10-18 1991-05-16 Research Corporation Technologies, Inc. Plasmon enhanced photo processes
CN101537350A (zh) * 2009-04-27 2009-09-23 武汉理工大学 可见光活性的Ag/AgCl/TiO2纳米管阵列等离子体光催化剂及其制备方法
CN104689839A (zh) * 2015-02-02 2015-06-10 河西学院 Ag-AgCl/凹凸棒石纳米复合光催化剂的制备方法

Also Published As

Publication number Publication date
CN111604068A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
Lee et al. All-solution-processed WO3/BiVO4 core–shell nanorod arrays for highly stable photoanodes
Wei et al. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting
Guo et al. Hierarchical TiO 2–CuInS 2 core–shell nanoarrays for photoelectrochemical water splitting
He et al. One-pot construction of chitin-derived carbon/g-C3N4 heterojunction for the improvement of visible-light photocatalysis
CN109778223B (zh) 一种ZnO修饰WO3/BiVO4异质结的制备方法及其在光电催化中的应用
Singh et al. Halide perovskite-based photocatalysis systems for solar-driven fuel generation
Gai et al. 2D-2D heterostructured CdS–CoP photocatalysts for efficient H2 evolution under visible light irradiation
CN111604068B (zh) 一种Ag-AgBr/TiO2纳米棒复合阵列薄膜的制备方法
Zhang et al. Controllable synthesis of Ag@ TiO 2 heterostructures with enhanced photocatalytic activities under UV and visible excitation
Rani et al. Ag implanted ZnO hierarchical nanoflowers for photoelectrochemical water-splitting applications
Fu et al. Partially self-transformed transition-metal chalcogenide interim layer: motivating charge transport cascade for solar hydrogen evolution
US8906711B2 (en) Method for preparing titania pastes for use in dye-sensitized solar cells
CN108511198B (zh) 一种Ni掺杂的BiVO4薄膜光电阳极、其制备方法与用途
Zhong et al. Co-catalyst Ti3C2TX MXene-modified ZnO nanorods photoanode for enhanced photoelectrochemical water splitting
Sun et al. The application of heterostructured SrTiO3-TiO2 nanotube arrays in dye-sensitized solar cells
Li et al. A portable photocatalytic fuel cell based on TiO2 nanorod photoanode for wastewater treatment and efficient electricity generation
CN110898858B (zh) 一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法
CN114452969B (zh) 一种双助催化剂负载的光催化剂及其制备方法与应用
CN109078636B (zh) 一种等离子体光催化剂、其制备方法及其在制氢中的应用
CN111266120A (zh) 一种空心结构的CdS/ZnO复合光催化材料及其制备方法
Hu et al. Synthesis of highly conductive and transparent ZnO nanowhisker films using aqueous solution
Yang et al. Highly efficient solar hydrogen evolution by photoelectro-chemical water splitting over ZnFe2O4-ZnO heterojunction
CN114558591B (zh) 三元Au/ZnIn2S4/NaTaO3纳米立方体复合光催化剂及其制备方法和应用
CN104874410B (zh) 一种钽氧氯微米立方晶体光催化剂及其制备方法和应用
CN113908857B (zh) 一种硫化镉/铝纳米光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant