CN110898858B - 一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法 - Google Patents

一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法 Download PDF

Info

Publication number
CN110898858B
CN110898858B CN201911288416.7A CN201911288416A CN110898858B CN 110898858 B CN110898858 B CN 110898858B CN 201911288416 A CN201911288416 A CN 201911288416A CN 110898858 B CN110898858 B CN 110898858B
Authority
CN
China
Prior art keywords
mofs
nizn
nanosheet array
reaction
composite photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911288416.7A
Other languages
English (en)
Other versions
CN110898858A (zh
Inventor
吕慧丹
陈丹杨
刘勇平
米喜红
李时庆
班如静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201911288416.7A priority Critical patent/CN110898858B/zh
Publication of CN110898858A publication Critical patent/CN110898858A/zh
Application granted granted Critical
Publication of CN110898858B publication Critical patent/CN110898858B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种NiZn‑MOFs/WO3纳米片阵列复合光催化剂的制备方法,包括以下步骤:(1)在基质上制备WO3纳米片阵列薄膜;(2)在反应釜中,加入草酸和无水乙醇,搅拌溶解后,通入氩气排出空气,加入WCl6,将制备的表面覆有WO3纳米片阵列薄膜的基质倾斜放入反应釜反应,反应完成后清洗干燥,再进行煅烧;(3)将步骤(2)处理的WO3纳米片阵列薄膜放入含硝酸锌、醋酸镍、2‑甲基咪唑和乙醇的反应器中,搅拌后加热反应,反应完后冷却,取出干燥即得到NiZn‑MOFs/WO3纳米片阵列复合光催化剂材料。制备的NiZn‑MOFs/WO3纳米片阵列复合材料较纯相的WO3纳米片阵列具有更强光催化性能。

Description

一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法
技术领域
本发明所属技术领域为光催化、光电化学材料技术领域,特别设计一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法。
背景技术
三氧化钨为一种宽禁带的n型半导体材料,室温下的禁带宽度为2.63eV,可吸收500nm以下的可见光及紫外光,在电致变色、气敏传感器、光催化与光电转换领域具有重要的应用价值。纳米三氧化钨与传统的半导体材料相比,禁带宽度较窄,在可见光条件下具有良好的光电响应性能,并且价格低廉、性能稳定、无害、无毒,可作为光催化剂,利用太阳光降解水中的有机污染物和空气中的废气,高效节能、清洁、无污染。然而,未改性的WO3的光生电子与空穴复合严重和光生载流子迁移速率慢和缓慢的氧析出动力学需要改善,限制了其实际应用。为了克服WO3自身的缺陷,需要对WO3的性能进行修饰。
MOFs的一个关键的结构特征是超高的孔隙率(>90%的自由体积),较高的比表面积、可调的孔径和内表面特性,使其在气体的储存和分离,传感,催化,质子传导和药物运输方面均有广泛的应用。但由于MOFs材料的稳定性差,多数MOFs材料对水敏感,限制了其在许多领域中的应用。如果将MOFs材料与各种功能材料相结合,这样不仅能保留原材料的特性,还有纳米材料的性能,甚至赋予复合材料新的特性。
发明内容
本发明目的在于提供一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,解决现有WO3纳米片阵列材料光电性能不足,光催化效率低的技术问题。
本发明目的是通过以下技术方案来实现的:
一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,包括以下步骤:
(1)在基质上制备WO3纳米片阵列薄膜;
(2)在反应釜中,加入草酸和无水乙醇,搅拌溶解后,通入氩气排出空气,加入WCl6,将步骤(1)制备的表面覆有WO3纳米片阵列薄膜的基质倾斜放入反应釜反应,反应完成后清洗干燥,再进行煅烧;
(3)将步骤(2)处理的WO3纳米片阵列薄膜放入含硝酸锌、醋酸镍、2-甲基咪唑和乙醇的反应器中,搅拌后加热反应,反应完后冷却,取出干燥即得到NiZn-MOFs/WO3纳米片阵列复合光催化剂材料。
本发明NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,将NiZn-MOFs材料与WO3纳米片阵列结合形复合材料,金属有机框架(MOFs)的存在展现优异的电子-空穴对分离效果,另外金属有机框架(MOFs)自身有效孔隙的吸附行为和大量光捕获行为,从而使MOFs/WO3复合材料可以提高光催化效率、光电性能。
本发明步骤(1)中,在基质上制备WO3纳米片阵列薄膜采用醇热法制备。
本发明步骤(1)中,所述基质为FTO。
本发明步骤(2)中,草酸与无水乙醇的质量体积比为0.0025-0.01:1(g/ml);WCl6与无水乙醇的质量体积比为0.0025-0.0075:1(g/ml)。
本发明步骤(2)中,反应温度为150-210℃,反应时间为4-6h。
本发明步骤(2)中,清洗用乙醇和清水冲洗。
本发明步骤(2)中,煅烧温度为450-600 ℃,煅烧时间为2-4h。
本发明步骤(3)中,硝酸锌为27.8 mg,醋酸镍为3.3-8.8 mg,2-甲基咪唑为5-10mg,乙醇6-12mL。
本发明步骤(3)中,反应温度为50-100℃,反应时间为 50-80 min。
进一步地,步骤(3)中加热反应采用水浴加热方式。
与现有技术相比,本发明具有以下有益效果:
(1)本发明方法制备的NiZn-MOFs/WO3纳米片阵列复合光催化剂是NiZn-MOFs原位生长与WO3纳米片阵列表面所形成的复合材料,较纯相的WO3纳米片阵列,增大了比表面积,提高了可见光吸收,促进电子与空穴的分离,提高光电转换效率,增强了光催化性能,在光照下能够产生明显高于纯WO3纳米片阵列的光电流。
(2)本发明NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法操作简便、条件温和、产率高,制备的材料具有较好的光催化分解水的性能,在光电转化方面具有很大的应用价值。
附图说明
图1为实施例1制备的NiZn-MOFs/WO3纳米片阵列复合光催化剂材料的XRD图;
图2为本发明实施例1制备的NiZn-MOFs/WO3纳米片阵列复合光催化剂材料不同放大倍率的SEM图;
图3为本发明实施例1制备的NiZn-MOFs/WO3纳米片阵列复合光催化剂材料TEM图;
图4为本发明实施例1制备的NiZn-MOFs/WO3纳米片阵列复合光催化剂材料的紫外-可见漫反射光谱图;
图5为本发明实施例1制备的NiZn-MOFs/WO3纳米片阵列复合光催化剂材料的光电性能测试图;
图6为本发明实施例1制备的NiZn-MOFs/WO3纳米片阵列复合光催化剂材料的光电转换性能。
具体实施方式
以下结合具体的实施例对本发明作进一步的说明,以便本领域技术人员更好理解和实施本发明的技术方案。
实施例1
一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,包括以下步骤:
(1)采用醇热法在FTO上制备出了WO3纳米片阵列薄膜.
(2)将0.1 g草酸加入40 mL无水乙醇中,充分搅拌至草酸溶解,通入氩气排出空气,然后移入手套箱,迅速加入0.1 g WCl6,后马上倒入反应釜中,将FTO斜插入反应釜,封盖,180 ℃恒温反应4 h,反应结束后,用镊子夹出FTO,分别用清水和乙醇冲洗,干燥,最后,450 ℃煅烧2 h。
(3)采用原位固相合成法制备样品。在玻璃瓶中加入硝酸锌27.8 mg、醋酸镍3.3mg和5 mg 2-甲基咪唑,加入6 mL乙醇,然后将步骤(2)处理的WO3纳米片阵列放入小玻璃瓶中,盖好盖子。磁力搅拌15 min,放入水浴锅中,50℃反应 50 min后取出小玻璃瓶,冷却至室温取出样品,放入烘箱60℃烘干,得到NiZn-MOFs/WO3纳米片阵列复合光催化剂材料。
本实施例中NiZn-MOFs/WO3纳米片阵列复合光催化剂材料的XRD图,如图1所示;NiZn-MOFs/WO3纳米片阵列复合光催化剂材料在不同放大倍率下的SEM图,如图2所示,其中(a)5000倍(b)1万倍(c)3万倍(d)5万倍;NiZn-MOFs/WO3纳米片阵列复合光催化剂材料的TEM图,如图3所示,其中(a)WO3纳米片阵列(b)WO3纳米片阵列(高清)(c)NiZn-MOFs/WO3纳米片阵列(d)NiZn-MOFs/WO3纳米片阵列(高清);NiZn-MOFs/WO3纳米片阵列复合光催化剂材料的紫外-可见漫反射光谱图,如图4所示。
实施例2
一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,包括以下步骤:
(1)采用醇热法在FTO上制备出了WO3纳米片阵列薄膜。
(2)将0.4 g草酸加入40 mL无水乙醇中,充分搅拌至草酸溶解,通入氩气排出空气,然后移入手套箱,迅速加入0.3g WCl6,后马上倒入反应釜中,将FTO斜插入反应釜,封盖,150 ℃恒温反应6 h,反应结束后,用镊子夹出FTO,分别用清水和乙醇冲洗,干燥,最后,600℃煅烧4 h。
(3)采用原位固相合成法制备样品。在玻璃瓶中加入硝酸锌27.8 mg、醋酸镍5 mg和8mg 2-甲基咪唑,加入10 mL乙醇,然后将步骤(2)处理的WO3纳米片阵列放入小玻璃瓶中,盖好盖子。磁力搅拌15 min,放入水浴锅中,50℃反应 100 min后取出小玻璃瓶,冷却至室温取出样品,放入烘箱60℃烘干,得到NiZn-MOFs/WO3纳米片阵列复合光催化剂材料。
实施例3
一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,包括以下步骤:
(1)采用醇热法在FTO上制备出了WO3纳米片阵列薄膜;
(2)将0.2 g草酸加入40 mL无水乙醇中,充分搅拌至草酸溶解,通入氩气排出空气,然后移入手套箱,迅速加入0.2g WCl6,后马上倒入反应釜中,将FTO斜插入反应釜,封盖,210 ℃恒温反应5h,反应结束后,用镊子夹出FTO,分别用清水和乙醇冲洗,干燥,最后,500℃煅烧3 h。
(3)采用原位固相合成法制备样品。在玻璃瓶中加入硝酸锌27.84 mg、醋酸镍8.8mg和10mg 2-甲基咪唑,加入12 mL乙醇,然后将步骤(2)处理的WO3纳米片阵列放入小玻璃瓶中,盖好盖子。磁力搅拌15 min,放入水浴锅中,80℃反应60 min后取出小玻璃瓶,冷却至室温取出样品,放入烘箱60℃烘干,得到NiZn-MOFs/WO3纳米片阵列复合光催化剂材料。
实施例4
一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,包括以下步骤:
(1)采用醇热法在FTO上制备出了WO3纳米片阵列薄膜;
(2)将0.3 g草酸加入40 mL无水乙醇中,充分搅拌至草酸溶解,通入氩气排出空气,然后移入手套箱,迅速加入0.1g WCl6,后马上倒入反应釜中,将FTO斜插入反应釜,封盖,200 ℃恒温反应6 h,反应结束后,用镊子夹出FTO,分别用清水和乙醇冲洗,干燥,最后,500℃煅烧4 h。
(3)采用原位固相合成法制备样品。在玻璃瓶中加入硝酸锌27.8 mg、醋酸镍5 mg和10 mg 2-甲基咪唑,加入6 mL乙醇,然后将步骤(2)处理的WO3纳米片阵列放入小玻璃瓶中,盖好盖子。磁力搅拌15 min,放入水浴锅中,100℃反应 80 min后取出小玻璃瓶,冷却至室温取出样品,放入烘箱60℃烘干,得到NiZn-MOFs/WO3纳米片阵列复合光催化剂材料。
电化学性能测试
本实验是以三电极体系(铂片作为辅助电极,Ag/AgCl电极作为参比电极,以实施例1中所制得的NiZn-MOFs/WO3纳米片阵列复合光催化剂材料作为工作电极),外部环境附加太阳光模拟器提供光源,用0.5 M的硫酸钠溶液为电解液,在一个强度的模拟太阳光下(NEWPORT-9115X 型太阳光模拟器),采用CHI860D 电化学工作站进行光电流性能的测试,以光切换的方式来测试。测试方法包括Mott-Schottky曲线、线性扫描伏安法(LSV)、电流-时间(IT),交流阻抗(EIS)。NiZn-MOFs/WO3纳米片阵列复合光催化剂材料的光电性能测试图如图5所示,光电转换性能如图6所示。
由图1可见NiZn-MOFs和WO3的衍射峰,说明NiZn-MOFs与WO3结合在一起形成了NiZn-MOFs/WO3复合光催化剂材料。
由图2可以看出NiZn-MOFs呈棉絮状长在WO3 NS表面,空间结构更为复杂、反应面积更大,有利于光电催化析氧过程中电解质和气体的传输,从而提高光电催化分解水性能。
由图3中(a)(b)可见WO3是片状结构,晶格清晰,说明结晶性较好;(c)(d)可见WO3纳米片上有不规则形状的薄絮,且晶格清晰,说明NiZn-MOFs成功的生长在纳米片上,且不影响其结晶状态。
由图4可见NiZn-MOFs/WO3复合物纯的WO3纳米片有更好的紫外-可见光吸收,这对于提高光电催化性能是有利的。
图5显示,产生光电流的高低的次序为NiZn-MOFs/WO3>Ni-MOFs/WO3>Zn-MOFs/WO3>WO3, 说明NiZn-MOFs/WO3的光电催化性能优于单一金属MOFs修饰的WO3和没有MOFs修饰的WO3,可见用NiZn-MOFs与WO3形成复合材料可提高其光催化性能。
由图6WO3在380 nm处光量子效率最大,达到4%。NiZn-MOFs/WO3在350 nm处光量子效率为5.5%。NiZn-MOFs/WO3比WO3光吸收边宽。NiZn-MOFs/WO3光量子效率高,说明对光感应强,有利于光电催化分解水。
以上实施实例对本发明不同的实施过程进行了详细的阐述,但是本发明的实施方式并不仅限于此,所属技术领域的普通技术人员依据本发明中公开的内容,均可实现本发明的目的,任何基于本发明构思基础上做出的改进和变形均落入本发明的保护范围之内,具体保护范围以权利要求书记载的为准。

Claims (8)

1.一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,其特征在于,包括以下步骤:
(1)在基质上制备WO3纳米片阵列薄膜;
(2)在反应釜中,加入草酸和无水乙醇,搅拌溶解后,通入氩气排出空气,加入WCl6,将步骤(1)制备的表面覆有WO3纳米片阵列薄膜的基质倾斜放入反应釜反应,反应完成后清洗干燥,再进行煅烧;
(3)将步骤(2)处理的WO3纳米片阵列薄膜放入含硝酸锌、醋酸镍、2-甲基咪唑和乙醇的反应器中,搅拌后加热反应,反应完后冷却,取出干燥即得到NiZn-MOFs/WO3纳米片阵列复合光催化剂材料;
步骤(3)中,硝酸锌为27.8mg,醋酸镍为3.3-8.8mg,2-甲基咪唑为5-10mg,乙醇6-12mL;步骤(3)中,反应温度为50-100℃,反应时间为50-80min。
2.根据权利要求1所述NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,其特征在于,步骤(2)中,草酸与无水乙醇的质量体积比为0.0025-0.01:1(g/ml);WCl6与无水乙醇的质量体积比为0.0025-0.0075:1(g/ml)。
3.根据权利要求2所述NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,其特征在于,步骤(2)中,反应温度为150-210℃,反应时间为4-6h。
4.根据权利要求1-3任一项所述NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,其特征在于,煅烧温度为450-600℃,煅烧时间为2-4h。
5.根据权利要求1所述NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,其特征在于,步骤(3)中加热反应采用水浴加热方式。
6.根据权利要求1或5所述NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,其特征在于,步骤(1)中,在基质上制备WO3纳米片阵列薄膜采用醇热法制备。
7.根据权利要求6所述NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,其特征在于,步骤(1)中,所述基质为FTO。
8.根据权利要求7所述NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法,其特征在于,步骤(2)中,清洗用乙醇和清水冲洗。
CN201911288416.7A 2019-12-16 2019-12-16 一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法 Active CN110898858B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911288416.7A CN110898858B (zh) 2019-12-16 2019-12-16 一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911288416.7A CN110898858B (zh) 2019-12-16 2019-12-16 一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN110898858A CN110898858A (zh) 2020-03-24
CN110898858B true CN110898858B (zh) 2023-01-06

Family

ID=69824403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911288416.7A Active CN110898858B (zh) 2019-12-16 2019-12-16 一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110898858B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111701620B (zh) * 2020-03-30 2022-12-23 河南师范大学 一种三氧化钨/zif-8复合催化剂的合成方法
CN116726999B (zh) * 2023-04-14 2024-02-20 常州大学 用于高效制氢的Ni-MOF/MoO3金属有机复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588860A (zh) * 2015-12-13 2016-05-18 中国科学院福建物质结构研究所 过渡金属氧化物表面异质外延金属有机框架壳层及其制备方法和用途
CN107117831A (zh) * 2017-05-26 2017-09-01 桂林理工大学 一种wo3纳米片阵列的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787190B1 (ko) * 2015-07-02 2017-10-18 한국과학기술원 나노입자 촉매가 포함된 금속유기구조체를 이용하여 기능화된, 다공성 금속산화물 복합체 나노섬유 및 이를 이용한 가스센서용 부재, 가스센서 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588860A (zh) * 2015-12-13 2016-05-18 中国科学院福建物质结构研究所 过渡金属氧化物表面异质外延金属有机框架壳层及其制备方法和用途
CN107117831A (zh) * 2017-05-26 2017-09-01 桂林理工大学 一种wo3纳米片阵列的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"三氧化钨基纳米结构光阳极的制备及其光电化学性能研究";肖永昊;《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》;20190115(第01期);B014-330 *
纳米WO_3材料的制备、应用及研究趋势;李德增等;《材料导报》;20071125;全文 *

Also Published As

Publication number Publication date
CN110898858A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
Chen et al. High piezo/photocatalytic efficiency of Ag/Bi5O7I nanocomposite using mechanical and solar energy for N2 fixation and methyl orange degradation
Zhang et al. Sandwich-like P-doped h-BN/ZnIn2S4 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 and H2O2 evolution
Irfan et al. Enhanced photocatalytic H2 production under visible light on composite photocatalyst (CdS/NiSe nanorods) synthesized in aqueous solution
Wang et al. Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction
Zhang et al. Au nanoparticles sensitized ZnO nanorod@ nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting
Dou et al. Visible-light responsive MOF encapsulation of noble-metal-sensitized semiconductors for high-performance photoelectrochemical water splitting
CN107012474B (zh) 一种规模化太阳能光催化-光电催化分解水制氢的方法
Wei et al. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting
Yang et al. Porous Sn3O4 nanosheets on PPy hollow rod with photo-induced electrons oriented migration for enhanced visible-light hydrogen production
Yan et al. Covalent organic framework based WO3@ COF/rGO for efficient visible-light-driven H2 evolution by two-step separation mode
Li et al. In situ reorganization of Bi3O4Br nanosheet on the Bi24O31Br10 ribbon structure for superior visible-light photocatalytic capability
Feng et al. Active-center-enriched Ni0. 85Se/g-C3N4 S-scheme heterojunction for efficient photocatalytic H2 generation
Zhang et al. Improved photoelectrocatalytic hydrogen generation through BiVO4 quantum-dots loaded on nano-structured SnO2 and modified with carbon quantum-dots
Bai et al. Fabrication of Zn-MOF decorated BiVO4 photoanode for water splitting
Zeng et al. ZnxCd1-xSe nanoparticles decorated ordered mesoporous ZnO inverse opal with binder-free heterojunction interfaces for highly efficient photoelectrochemical water splitting
CN107699901B (zh) 用于光生阴极保护的锌铁铝水滑石/二氧化钛复合膜光阳极的制备方法
Guo et al. Hierarchical TiO 2–CuInS 2 core–shell nanoarrays for photoelectrochemical water splitting
CN110252352B (zh) 一种碳量子点修饰钨酸铋/有序大孔氟掺杂氧化锡复合光催化剂及其制备方法和应用
Wang et al. Construction of octahedral BiFeWOx encapsulated in hierarchical In2S3 core@ shell heterostructure for visible-light-driven CO2 reduction
CN110898858B (zh) 一种NiZn-MOFs/WO3纳米片阵列复合光催化剂的制备方法
Pei et al. Hierarchical Zn1-xCdxS microclusters with superior visible-light-driven photocatalytic hydrogen generation performance
Wang et al. The feasible photoanode of graphene oxide/zinc aluminum mixed metal oxides for the dye-sensitized solar cell
Zhang et al. Photochemical synthesis of Ni-Ni (OH) 2 synergistic cocatalysts hybridized with CdS nanorods for efficient photocatalytic hydrogen evolution
Ma et al. A thin clothe coated architecture of ZnIn2S4/H2Ta2O6 for enhanced photocatalytic hydrogen production
Guan et al. Engineering tandem double pn heterostructured CeO2@ CdS-Cu8S5 hollow spheres for remarkable photocatalytic CO2 reduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant