CN116037214A - 一种Pt NPs@CTF-1复合光催化剂的制备及光催化产氢性能研究 - Google Patents

一种Pt NPs@CTF-1复合光催化剂的制备及光催化产氢性能研究 Download PDF

Info

Publication number
CN116037214A
CN116037214A CN202211388214.1A CN202211388214A CN116037214A CN 116037214 A CN116037214 A CN 116037214A CN 202211388214 A CN202211388214 A CN 202211388214A CN 116037214 A CN116037214 A CN 116037214A
Authority
CN
China
Prior art keywords
nps
ctf
preparation
hours
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211388214.1A
Other languages
English (en)
Inventor
何雯雯
韩旭
姜凤雨
冀芳
沈旺旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN202211388214.1A priority Critical patent/CN116037214A/zh
Publication of CN116037214A publication Critical patent/CN116037214A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种CTFs复合光催化剂的制备方法及其应用。先通过高温快速成核法合成超小的Pt NPs;通过离子热法合成CTF‑1采用浸泡法将Pt NPs负载到合成的CTF‑1上,形成负载量为0.2 wt%的Pt NPs@CTF‑1复合光催化剂。超小的Pt NPs暴露出更多的活性位点大幅提高光催化产氢性能。载体CTF‑1具有良好的耐碱性,使复合材料有良好的稳定性。本发明的Pt NPs负载的CTF‑1复合光催化剂制备方法简单,成本低,可重复性好。

Description

一种Pt NPs@CTF-1复合光催化剂的制备及光催化产氢性能研究
技术领域
本发明涉及一种复合光催化剂的制备及其光催化性能研究。
背景技术
随着科技的发展,化石燃料早已无法实现地球的能源供应。化石燃料具有不可再生性并且燃烧产物污染大,为此人们迫切寻找新能源作为其代替品。氢能作为化石燃料的代替品之一,由于燃烧产物简单绿色一直是化石燃料最佳的替代品。光催化和电催化产氢是制备氢气的重要技术,相较于电催化产氢,光催化产氢技术直接利用太阳能,少一次能源转化,可以实现更低的能耗而更具竞争力。自1972年第一次报道TiO2上的光电化学水分裂以来,各种无机半导体和异质结等已被报道为可见光驱动光催化剂。可惜的是,第一代和第二代催化剂这些材料的主要问题是本身的毒性和腐蚀性,因此研究方向也开始向其他材料发生改变。共价有机骨架(COFs)材料作为一种新型半导体材料由于毒性小、耐腐蚀等优势得到了人们广泛的研究。
共价三嗪骨架(CTFs)材料作为二维COFs的一种,是通过共价和芳香三嗪键构建的,该骨架具有较高的孔密度、丰富的氮含量和较高的化学和热稳定性。即使在强酸和强碱的存在下,CTFs也表现出很高的稳定性,这使它们比其他多孔材料更加具有优势,并具有很强的工业应用的潜力。采用最传统的离子热合成方法得到的非晶态的黑色CTF-1具有较多的缺陷,可以为纳米粒子的负载提供位点。
铂作为贵金属,具有较低的析氢过电位和较高的电子转移能力,是光催化产氢反应最佳的催化活性物质之一。然而由于其稀缺性,使得催化制氢工艺成本变高不利于工业生产。例如,以1,4-二氰苯为原料,在氧化石墨烯存在下进行低温缩合,得到CTF-1/氧化石墨烯杂化材料,在3 wt% Pt的氯铂酸溶液作为助催化剂的条件下实现了高出纯CTF-1的9倍产氢速率。但是测试体系中的Pt并不能回收。为了实现贵金属Pt的回收再利用,合成Pt NPs并将其与载体半导体结合是目前常用的手段。金属纳米材料具有一系列块体材料所不具备的新效应,如小尺寸效应、界面效应和量子隧道效应等。将铂制成较小的纳米粒子可以大幅提升活性位点的利用率,从而在负载量较少的条件下实现高效产氢。最早人们采用光沉积的方法,在含有金属前体和还原剂的溶液中加入半导体材料,在光照下Pt NPs可以沉积到半导体材料表面,但这种方法合成的Pt NPs尺寸大小不一且容易团聚。为此,引入覆盖剂如聚乙烯吡咯烷酮(PVP)不仅可以调控纳米粒子的大小,还可以使其均匀分散阻碍纳米粒子间的团聚。
发明内容
本发明目的在于合成一种Pt NPs@CTF-1复合光催化剂,使Pt NPs负载在CTF-1表面,大幅提高光催化产氢性能。
本发明Pt NPs@CTF-1复合光催化剂制备方法,其特征在于该方法包括以下步骤:
一、制备CTF-1:将对苯二腈和干燥的氯化锌按照1:1的摩尔比加入玻璃管中,抽真空,在马弗炉中加热至400 ℃,恒温40小时。取出样品,研磨,洗涤,抽滤,干燥。
二、制备Pt NPs:将H2PtCl6 H2O和NaOH溶解在7.5 mL乙二醇中,抽真空,通氮气,160 ℃恒温2小时。待冷却后加入10 mL含PVP的乙醇溶液,离心,洗涤,最后保存在乙醇中。
三、制备Pt NPs@CTF-1:取CTF-1投入10 mL Pt NPs乙醇溶液中,搅拌24小时。抽滤,洗涤,干燥,得到Pt NPs@CTF-1复合光催化剂。
进一步的,步骤一称取药品在手套箱中进行。
进一步的,步骤一盐酸溶液和蒸馏水分别洗涤三次,每次不少于6小时。
进一步的,步骤一干燥过程不能鼓风,干燥条件为70 ℃,12小时。
进一步的,步骤二油浴先加热后放入反应器继续加热至160 ℃。
进一步的,步骤二用丙酮和三氯甲烷交替洗涤三次。
进一步的,步骤三用乙醇洗涤三次。
进一步的,步骤三干燥过程不能鼓风,干燥条件为60 ℃,6小时。
本发明具备优点:
(1)本发明制备的Pt NPs@CTF-1较纯CTF-1的产氢速率提升了44倍,具有更高的光催化产氢性能;
(2)尺寸小且均一的1.8 nm的Pt NPs 具有很高的比表面积,处于表面的原子数较多,大幅提升参与反应的活性位点数目;
(3)采用传统的离子热法合成CTF-1操作简单、成本低,产生的缺陷给Pt NPs提供了负载位点,使得Pt NPs均匀负载在CTF-1上,在Pt负载量为0.2 wt%的条件下实现高效产氢;
附图说明:
图1为实施得到的Pt NPs@CTF-1的TEM图。
图2为实施得到的CTF-1的热重图。
图3为实施得到的CTF-1、Pt NPs@CTF-1的光催化产氢图。
图4为实施得到的CTF-1、Pt NPs@CTF-1的光催化循环稳定图。
图5为实施得到的光催化前后Pt NPs@CTF-1的红外光谱图(FT-IR)。
具体实施方式
为能进一步了解本发明的发明内容、特征及其优点,通过以下实施例来进一步阐述:
实施例1
本实施例的Pt NPs@CTF-1复合光催化剂制备方法如下:
步骤一:CTF-1的制备方法:将对苯二腈和干燥的氯化锌按照1:1的摩尔比加入玻璃管中,抽真空,在马弗炉中加热至400 ℃,恒温40小时,取出样品,研磨,用盐酸溶液和蒸馏水洗涤,抽滤,70 ℃干燥过夜得到黑色固体。
步骤二:Pt NPs的制备方法:将0.1 g H2PtCl6 H2O和3.5 mmol NaOH溶解在7.5 mL乙二醇中,抽真空,通氮气,160 ℃恒温2小时,待冷却后加入10 mL含过量PVP的乙醇溶液,离心分离,丙酮和三氯甲烷交替洗涤,最后超声溶解并保存在10 mL乙醇中,形成均匀分散深褐色的Pt NPs乙醇溶液。
步骤三:Pt NPs@CTF-1的制备方法:取1 mL Pt NPs乙醇溶液稀释到10 mL,超声分散后,加入适量CTF-1搅拌24小时,边抽滤边用乙醇洗涤,在60 ℃下干燥过夜,即可得到黑色的Pt NPs@CTF-1复合光催化剂。
实施例2
本实施例的Pt NPs@CTF-1复合材料的制备方法如下:
步骤一同具体实施方式1中步骤一
步骤二同具体实施方式1中步骤二
步骤三:Pt NPs@CTF-1的制备方法:取3 mL Pt NPs乙醇溶液稀释到10 mL,超声分散后,加入适量CTF-1搅拌24小时,边抽滤边用乙醇洗涤,在60 ℃下干燥过夜,即可得到黑色的Pt NPs@CTF-1复合光催化剂。
实施例3
本实施例的Pt NPs@CTF-1复合材料的制备方法如下:
步骤一同具体实施方式1中步骤一
步骤二同具体实施方式1中步骤二
步骤三:Pt NPs@CTF-1的制备方法:取5 mL Pt NPs乙醇溶液稀释到10 mL,超声分散后,加入适量CTF-1搅拌24小时,边抽滤边用乙醇洗涤,在60 ℃下干燥过夜,即可得到黑色的Pt NPs@CTF-1复合光催化剂。
试样表征及性能测试
图1为具体实施例2步骤三制备的Pt NPs@CTF-1的TEM图,结果表明Pt NPs成功的负载到CTF-1表面并且分散均匀。Pt NPs的粒径大概在1.8 nm左右,超小的Pt NPs为产氢性能的提升提供了条件。
图2为具体实施例2步骤一制备的CTF-1的热重图,结果表明CTF-1具有良好的热稳定性,在600 ℃才开始分解。
图3为具体实施例2步骤一制备的CTF-1和步骤三制备的Pt NPs@CTF-1的光催化产氢性能对比图,结果表明负载Pt NPs后材料的光催化性能提升了44倍。
图4为具体实施例2步骤三制备的Pt NPs@CTF-1的产氢循环稳定性测试图,结果表明经过四次循环后产氢性能仍然能保持80%以上。
图5为具体实施例2步骤一制备的CTF-1和步骤三制备的Pt NPs@CTF-1以及测完产氢之后Pt NPs@CTF-1的FT-IR光谱图,结果表明,Pt NPs@CTF-1材料的谱图与CTF-1的基本一致,负载Pt NPs后CTF-1的结构没有发生改变,测完产氢后的Pt NPs@CTF-1谱图也没有明显变化,说明材料具有良好的稳定性。

Claims (8)

1.一种Pt NPs@CTF-1复合光催化剂的制备方法,其特征在于,制备方法包括以下步骤:一、制备CTF-1:将对苯二腈和干燥的氯化锌按照1:1的摩尔比加入玻璃管中,抽真空,在马弗炉中加热至400 ℃,恒温40小时,取出样品,研磨,洗涤,抽滤,干燥;二、制备Pt NPs:将H2PtCl6 H2O和NaOH溶解在7.5 mL乙二醇中,抽真空,通氮气,160 ℃恒温2小时,待冷却后加入10 mL含PVP的乙醇溶液,离心,洗涤,最后保存在乙醇中;三、制备Pt NPs@CTF-1:取CTF-1投入10 mL Pt NPs乙醇溶液中,搅拌24小时,抽滤,洗涤,干燥,得到Pt NPs@CTF-1复合光催化剂。
2.根据权利要求书1所述的CTF-1材料的制备方法,其特征在于:称取药品在手套箱中进行。
3.根据权利要求书1所述的CTF-1材料的制备方法,其特征在于:盐酸溶液和蒸馏水分别洗涤三次,每次不少于6小时。
4.根据权利要求书1所述的CTF-1材料的制备方法,其特征在于:干燥过程不能鼓风,干燥条件为70 ℃,12小时。
5.根据权利要求书1所述的Pt NPs材料的制备方法,其特征在于:油浴先加热后再放入反应器继续加热至160 ℃。
6.根据权利要求书1所述的Pt NPs材料的制备方法,其特征在于:用丙酮和三氯甲烷交替洗涤三次。
7.根据权利要求书1所述的Pt NPs@CTF-1材料的制备方法,其特征在于:用乙醇洗涤三次。
8.根据权利要求书1所述的Pt NPs@CTF-1材料的制备方法,其特征在于:干燥过程不能鼓风,干燥条件60 ℃,6小时。
CN202211388214.1A 2022-11-08 2022-11-08 一种Pt NPs@CTF-1复合光催化剂的制备及光催化产氢性能研究 Pending CN116037214A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211388214.1A CN116037214A (zh) 2022-11-08 2022-11-08 一种Pt NPs@CTF-1复合光催化剂的制备及光催化产氢性能研究

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211388214.1A CN116037214A (zh) 2022-11-08 2022-11-08 一种Pt NPs@CTF-1复合光催化剂的制备及光催化产氢性能研究

Publications (1)

Publication Number Publication Date
CN116037214A true CN116037214A (zh) 2023-05-02

Family

ID=86122980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211388214.1A Pending CN116037214A (zh) 2022-11-08 2022-11-08 一种Pt NPs@CTF-1复合光催化剂的制备及光催化产氢性能研究

Country Status (1)

Country Link
CN (1) CN116037214A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038645A1 (en) * 2017-08-21 2019-02-28 Ecole Polytechnique Federale De Lausanne (Epfl) NOVEL COMPOSITES FOR THE EXTRACTION OF METALLIC OR CONTAMINANT CHEMICAL SPECIES
CN113912844A (zh) * 2021-10-21 2022-01-11 中国矿业大学 一种基于三嗪环连接的芳香族二维有机框架纳米材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038645A1 (en) * 2017-08-21 2019-02-28 Ecole Polytechnique Federale De Lausanne (Epfl) NOVEL COMPOSITES FOR THE EXTRACTION OF METALLIC OR CONTAMINANT CHEMICAL SPECIES
CN113912844A (zh) * 2021-10-21 2022-01-11 中国矿业大学 一种基于三嗪环连接的芳香族二维有机框架纳米材料及其制备方法

Similar Documents

Publication Publication Date Title
CN107876087B (zh) 甲胺铅碘-还原氧化石墨烯复合光催化材料的制备及其光催化制氢的应用
CN107887613B (zh) 基于三维网状氮磷硫共掺杂多孔碳材料的氧还原电极及制备方法与应用
CN111558391A (zh) 一种杂原子掺杂的钴金属催化剂及其制备方法
CN108927178B (zh) 一种金属有机框架材料原位硫化法制备NiS/CdS复合催化剂的方法及应用
CN108607593B (zh) 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂与应用
CN105271217A (zh) 一种氮掺杂的三维石墨烯的制备方法
WO2021208426A1 (zh) 三元复合光催化剂、其制备方法及其应用
CN107899618B (zh) 一种基于大环化合物光敏染料与二氧化钛的杂化材料及其制备方法和在光催化中的应用
CN110745784B (zh) 一种金属氧化物纳米颗粒及其制备方法和应用
CN110854392A (zh) 一种基于金属有机骨架的谷穗状碳材料及制备和应用
CN112007637B (zh) 一种双金属合金-埃洛石复合催化剂及其制备方法和应用
CN115197383A (zh) 一种噻唑基共价有机框架材料及应用
CN111185201B (zh) 铼掺杂硫化钼纳米片/碳布复合材料及其制备方法和在电催化水制氢中的应用
Zhang et al. Synthesis of visible‐light‐driven g‐C3N4/PPy/Ag ternary photocatalyst with improved photocatalytic performance
Lai et al. Building sp carbon-bridged g-C3N4-based electron donor-π-acceptor unit for efficient photocatalytic water splitting
CN114160169B (zh) 一种共价有机框架材料封装钼硫团簇的制备方法及其应用
CN113851664B (zh) 一种制备含sp-氮掺杂石墨炔空心球电催化剂的方法及制得的材料和应用
CN113258085A (zh) 一种含氧硅纳米片负载型贵金属催化剂及其制备方法和应用
CN112695342A (zh) 钴/氮掺杂石墨烯与纳米碳纤维复合材料的制备方法及其产品和应用
He et al. Assembling Ti3C2 MXene on a S‐Scheme Heterojunction with Oxidative Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution
Guo et al. Covalent triazine framework films through in‐situ growth for photocatalytic hydrogen evolution
CN116037214A (zh) 一种Pt NPs@CTF-1复合光催化剂的制备及光催化产氢性能研究
CN108393500B (zh) 一种Mo-Ni合金纳米粒子复合材料及其制备方法和应用
CN116422356A (zh) 一种CuNx团簇修饰TiO2复合材料、原位制备方法及其光催化应用
CN109289925B (zh) 类石墨相氮化碳/镉有机配位聚合物纳米复合材料的制备及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination