WO2021208426A1 - 三元复合光催化剂、其制备方法及其应用 - Google Patents

三元复合光催化剂、其制备方法及其应用 Download PDF

Info

Publication number
WO2021208426A1
WO2021208426A1 PCT/CN2020/129807 CN2020129807W WO2021208426A1 WO 2021208426 A1 WO2021208426 A1 WO 2021208426A1 CN 2020129807 W CN2020129807 W CN 2020129807W WO 2021208426 A1 WO2021208426 A1 WO 2021208426A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
black phosphorus
dimensional black
composite photocatalyst
ternary composite
Prior art date
Application number
PCT/CN2020/129807
Other languages
English (en)
French (fr)
Inventor
喻学锋
杨娜
温敏
王佳宏
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2021208426A1 publication Critical patent/WO2021208426A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts

Definitions

  • the invention relates to the technical field of photocatalysis, in particular to a three-element composite photocatalyst, its preparation method and its application.
  • Water is a relatively stable compound.
  • the process of water splitting into hydrogen and oxygen is a process in which Gibbs free energy increases. That is to say, from the perspective of thermodynamics, the water splitting reaction is a non-spontaneous reaction and requires additional energy to proceed.
  • the reaction of photocatalytic decomposition of water to produce hydrogen is to use the energy of photons to drive the water splitting reaction to occur, and then convert it into chemical energy.
  • High-energy far-ultraviolet light (wavelength less than 190 nm) can directly decompose water. However, this type of far-ultraviolet light is difficult to reach the surface of the earth, so it is difficult for ordinary sunlight to split water to produce hydrogen.
  • Photocatalytic water splitting to produce hydrogen is to use the light-absorbing properties of materials to realize the photolysis of water reaction.
  • semiconductor materials such as titanium dioxide and carbon nitride have good photocatalytic properties. After the semiconductor materials are excited by photons, they will generate photo-generated electrons with strong oxidizing ability, which can reduce the protons adsorbed on the semiconductor surface to hydrogen gas. So as to realize the photocatalytic decomposition of water to produce hydrogen.
  • the present invention provides a novel ternary composite photocatalyst containing graphite phase carbon nitride, its preparation method and its application .
  • the present invention provides a ternary composite photocatalyst, comprising a graphite phase carbon nitride and a two-dimensional black phosphorus/transition metal heterojunction mixed with each other, the two-dimensional black phosphorus/transition metal heterojunction Including two-dimensional black phosphorous flakes and transition metal particles supported on the two-dimensional black phosphorous flakes.
  • the mass ratio of the two-dimensional black phosphorus/transition metal heterojunction to the graphite phase carbon nitride is 1:1 to 1:100.
  • the transition metal particles are any one of Co, Ni, Fe, Cu, Pd, and Pt.
  • the present invention also provides a preparation method of the above-mentioned ternary composite photocatalyst, including the steps:
  • the two-dimensional black phosphorus/transition metal heterojunction is dispersed in the graphite phase carbon nitride in an organic medium, mixed and dried to obtain a ternary composite photocatalyst.
  • the molar concentration of the transition metal cation in the transition metal salt solution is 0.001-0.1 mol/L.
  • the ratio of the amount of the two-dimensional black phosphorous flake to the amount of the transition metal cation is 1:0.1-1:10.
  • the deposition process is controlled at a constant temperature, the temperature range is 10-50°C, and the illumination time is 1-500 min.
  • the mixed solution also includes an alcohol electronic sacrificial agent.
  • the volume fraction of the alcohol-based electron sacrificial agent is less than 90%.
  • the preparation method of the above-mentioned ternary composite photocatalyst specifically includes the steps:
  • the present invention further provides an application of a three-way composite photocatalyst, which adopts the above-mentioned three-way composite photocatalyst as a photocatalyst in a process for photolysis of water to produce hydrogen.
  • the hydrogen production rate of the ternary composite photocatalyst is 31-36.4 mmol/h/g.
  • the ternary composite photocatalyst provided by the present invention is obtained by compounding a two-dimensional black phosphorus/transition metal heterojunction with graphite phase carbon nitride (gC 3 N 4 ).
  • Loading transition metal particles (TM) on the surface of the two-dimensional black phosphorus (BP) sheet as a promoter can not only serve as a capture site for photogenerated carriers, improve the dissociation and interface migration efficiency of carriers, but also serve as a redox
  • the active site of the reaction reduces the overpotential of the photocatalytic reaction.
  • Figures 1a and 1b are TEM images of the BP/Ni/gC 3 N 4 ternary composite photocatalyst of Example 1 at different magnifications;
  • 2a and 2b are TEM images of the BP/Co/gC 3 N 4 ternary composite photocatalyst of Example 2 at different magnifications;
  • 3a and 3b are TEM images of the BP/Pt/gC 3 N 4 ternary composite photocatalyst of Example 3 at different magnifications;
  • 4a and 4b are TEM images of the BP/Pd/gC 3 N 4 ternary composite photocatalyst of Example 4 at different magnifications.
  • graphite phase carbon nitride As the most stable structure of carbon nitride compounds, graphite phase carbon nitride (gC 3 N 4 ) has been reported to have visible light catalytic activity .
  • the bandwidth of gC 3 N 4 photocatalyst is about 2.7 eV and can absorb visible light below 460 nm .
  • the conduction band is at -1.1eV and the valence band is at +1.6eV, which thermodynamically meets the requirements of splitting water to produce hydrogen.
  • the activity of pure g-C3N4 to produce hydrogen by photolysis of water is very small.
  • Some embodiments of the present invention provide a method for preparing a novel ternary composite photocatalyst containing graphite phase carbon nitride, including the steps:
  • Two-dimensional black phosphorus flakes are prepared by mechanical peeling, liquid phase peeling, electrochemical peeling and cleaning of massive black phosphorus crystals.
  • the selected transition metal cation in the transition metal salt solution is any one of all transition metal cations of different valences.
  • Transition metals include but are not limited to Co, Ni, Fe, Cu, Pd, and Pt.
  • the valence states of transition metal cations include but are not limited to 2 + , 3 + , and 5 + ; the transition metal salt concentration is 0.001-0.1 mol/L.
  • the molar ratio of two-dimensional black phosphorus flakes to transition metal cations is 1:0.1-1:10.
  • an alcohol electronic sacrificial agent is also added to the mixed solution, that is, step (1-2) is replaced with step (1-2') to combine the transition metal salt solution, alcohol electronic sacrificial agent and two-dimensional
  • step (1-2) is replaced with step (1-2') to combine the transition metal salt solution, alcohol electronic sacrificial agent and two-dimensional
  • the black phosphorus flakes are mixed to obtain a mixed solution.
  • the volume fraction of the alcohol electronic sacrificial agent is 0-90%.
  • the function of the alcohol electronic sacrificial body is to avoid the oxidation of black phosphorus by photo-generated holes and to prevent the destruction of the ternary composite structure;
  • the alcohol electronic sacrificial agent can preferably be one of anhydrous methanol, anhydrous ethanol, and isopropanol .
  • the inert gas here refers to a gas that does not react with solutes and solvents and does not affect subsequent deposition operations.
  • the principle of light deposition is: light excites semiconductor materials to generate photo-generated electrons, which undergo a reduction reaction with transition metal salts, and finally metal particles are deposited on a two-dimensional black phosphorous sheet.
  • the specific operation is: irradiating the mixed solution with single-wavelength light for a certain period of time, depositing transition metal particles on the two-dimensional black phosphor sheet, and obtaining a two-dimensional black phosphor/transition metal heterojunction after multiple cleanings.
  • the wavelength range of the single-wavelength light is It is 400-635 nm, and ordinary single-wavelength light sources in this wavelength range can achieve the purpose of deposition.
  • the temperature range is: 10-50°C; the stirring speed is 100-5000rpm (stirring can ensure that the black phosphorus nanosheets maintain good dispersion in the solution); the light time is: 1-500 min.
  • the two-dimensional black phosphorus/transition metal heterojunction is mixed with gC 3 N 4 , uniformly dispersed by ultrasonic, ball-milled composite, and vacuum-dried to obtain a ternary composite photocatalytic material.
  • the mass ratio of the two-dimensional black phosphorus/transition metal heterojunction to gC 3 N 4 is 1:1-1:100.
  • the dispersion medium of the ultrasonic dispersion treatment is absolute ethanol, the power is 100-2000W, and the time is 0.01-2h.
  • the speed of ball milling compound treatment is 100-1000rpm, and the ball milling time is 0.1-10h.
  • Some embodiments of the present invention provide a new type of ternary composite photocatalyst containing graphite phase carbon nitride, including graphite phase carbon nitride and two-dimensional black phosphorus/transition metal heterojunction mixed with each other, two-dimensional black
  • the phosphorus/transition metal heterojunction includes a two-dimensional black phosphorus sheet and transition metal particles supported on the two-dimensional black phosphorus sheet.
  • the mass ratio of the two-dimensional black phosphorus/transition metal heterojunction to the graphite phase carbon nitride is 1:1-1:100.
  • Transition metal particles include but are not limited to Co, Ni, Fe, Cu, Pd, Pt.
  • Some embodiments of the present invention provide the application of the above-mentioned ternary composite photocatalyst in the process of photodegradation of water for hydrogen production, and the performance of the ternary composite photocatalyst for hydrogen production by photolysis of water is 31-36.4 mmol/h/g.
  • the photocatalytic hydrogen production efficiency of pure BP and pure g-C3N4 is very low, about several tens of ⁇ mol/h/g, which is an order of magnitude smaller than the performance of the ternary composite photocatalyst obtained in the present invention.
  • heterojunctions by selecting different semiconductors is an effective strategy to improve the photocatalytic performance of gC 3 N 4.
  • the difference in energy band structure of different semiconductors is used to construct gradient electron transfer, which is beneficial to promote the separation of photogenerated electrons and holes. , Improve the photocatalytic efficiency of gC 3 N 4 materials.
  • black phosphorus has a graphite-like layered structure.
  • transition metals on the surface of gC 3 N 4 materials as co-catalysts can also improve its catalytic performance.
  • the transition metal When the transition metal is in contact with the semiconductor photocatalyst material, the photogenerated electrons will migrate from the conduction band of the semiconductor to the surface of the transition metal and be trapped. Subsequently, the photogenerated electrons participate in the photocatalytic reduction reaction on its surface, and the remaining photogenerated holes will migrate to the surface of the semiconductor and participate in the photocatalytic oxidation reaction.
  • This process can not only promote the separation of photogenerated electrons and holes, but also realize the spatial separation of oxidation and reduction reactions, thereby improving the quantum efficiency of the photocatalyst and the efficiency of the photocatalytic reaction.
  • transition metals in addition to promoting the separation of photo-generated electrons and holes, transition metals can also provide surface active sites for photocatalytic reactions to reduce the surface reaction overpotential, thereby increasing the surface reaction rate of photocatalytic reactions.
  • step (2) uses 450nm blue light as the light source, 20°C constant temperature, 2500rpm stirring conditions, light for 20min, so that Ni particles grow uniformly on the two-dimensional thin layer of black phosphorus, and centrifuged with anhydrous ethanol several times After cleaning, a two-dimensional black phosphorus/nickel heterojunction is obtained.
  • step (3) Take 10 mg of two-dimensional black phosphorus/nickel heterojunction obtained in step (3) and disperse gC 3 N 4 in 30 mL absolute ethanol solution at a mass ratio of 1:10.
  • the power of ultrasonic dispersion treatment is 300 W, and the time is 0.01h; the ball milling composite speed is 200rpm, the ball milling time is 5h, and the BP/Ni/gC 3 N 4 ternary composite photocatalyst is obtained.
  • TEM transmission electron microscope
  • step (3) Use 450nm blue light as the light source of the sealed mixed solution in step (2), under the constant temperature of 20°C, 2500rpm stirring conditions, light for 20min, so that the two-dimensional thin layer of black phosphorus uniformly grows Co particles, and then use anhydrous ethanol several times Centrifugal cleaning, a two-dimensional black phosphorus/cobalt heterojunction is obtained.
  • step (3) Take 10 mg of the two-dimensional black phosphorus/cobalt heterojunction material obtained in step (3) and disperse gC 3 N 4 in 30 mL absolute ethanol solution at a mass ratio of 1:10.
  • the power of ultrasonic dispersion treatment is 300W, and the time It is 0.01h; the ball milling composite speed is 200rpm, and the ball milling time is 5h, that is, the BP/Co/gC 3 N 4 ternary composite photocatalyst is obtained.
  • the TEM photos of the BP/Co/gC 3 N 4 ternary composite photocatalyst are shown in Figures 2a and 2b.
  • the black particles are deposited Co metal ions, the darker black flakes are gC 3 N 4 , and the bottom layer
  • the dark large flakes are two-dimensional black phosphorous flakes.
  • step (3) Use 450nm blue light as the light source of the sealed mixed solution in step (2), under the constant temperature 20°C, 2500rpm stirring conditions, light for 20min, so that the two-dimensional thin layer of black phosphorus uniformly grows Pt particles, and centrifuged for several times with absolute ethanol After cleaning, a two-dimensional black phosphorus/platinum heterojunction is obtained.
  • step (3) Take 10 mg of two-dimensional black phosphorus/platinum heterojunction material obtained in step (3) and disperse gC 3 N 4 in 30 mL absolute ethanol solution at a mass ratio of 1:10.
  • the power of ultrasonic dispersion treatment is 300W, and the time It is 0.01h; the ball-milling composite speed is 200rpm and the ball-milling time is 5h, then the BP/Pt/gC 3 N 4 ternary composite photocatalyst can be obtained.
  • the TEM photos of the BP/Pt/gC 3 N 4 ternary composite photocatalyst are shown in Figures 3a and 3b.
  • the black particles are deposited Pt metal ions, the darker black flakes are gC 3 N 4 , and the bottom layer is dark.
  • the large flakes are two-dimensional black phosphorous flakes.
  • step (3) Use the 450nm blue light as the light source of the sealed mixed solution in step (2), under the constant temperature of 20°C, 2500rpm stirring conditions, light for 20min, so that the two-dimensional thin layer of black phosphorus uniformly grows Pd particles, and centrifuged with anhydrous ethanol several times After cleaning, a two-dimensional black phosphorus/palladium heterojunction is obtained.
  • step (3) from step (3) the resulting two-dimensional black phosphorus / palladium heterostructures with 10mg gC 3 N 4 mass ratio of 1:10 to power dispersed in 30mL of absolute ethanol, the ultrasonic dispersion treatment is 300W, time The ball milling composite speed is 200 rpm, and the ball milling time is 5 hours.
  • the BP/Pd/gC 3 N 4 ternary composite photocatalyst is obtained.
  • the TEM photos of the BP/Pd/gC 3 N 4 ternary composite photocatalyst are shown in Figures 4a and 4b.
  • the black particles are deposited Pd metal ions, the darker black flakes are gC 3 N 4 , and the bottom layer is dark.
  • the large flakes are two-dimensional black phosphorous flakes.
  • Example 2 Disperse 1 mg of the BP/Ni/gC 3 N 4 prepared in Example 1 in 3.75 mL of ultrapure water, and then add 1.25 mL of isopropanol as an electronic sacrifice. After the residual oxygen in the tube was degassed with argon for 30 minutes, the mixture was sealed in a quartz tube, and 500 ⁇ L of CH 4 gas was added as an internal standard with a syringe. The photocatalytic reaction was carried out with 420nm wavelength light source illumination, and after the reaction was completed, a sample was taken to detect the hydrogen content.
  • Example 3 1 mg of the BP/Pt/gC 3 N 4 prepared in Example 3 was dispersed in 3.75 mL of ultrapure water, and then 1.25 mL of isopropanol was added as an electronic sacrifice. After the residual oxygen in the tube was degassed with argon for 30 minutes, the mixture was sealed in a quartz tube, and 500 ⁇ L of CH 4 gas was added as an internal standard with a syringe. The photocatalytic reaction was carried out with 420nm wavelength light source illumination, and after the reaction was completed, a sample was taken to detect the hydrogen content.
  • Example 4 1 mg of the BP/Pd/gC 3 N 4 prepared in Example 4 was dispersed in 3.75 mL of ultrapure water, and then 1.25 mL of isopropanol was added as an electronic sacrifice. After the residual oxygen in the tube was degassed with argon for 30 minutes, the mixture was sealed in a quartz tube, and 500 ⁇ L of CH 4 gas was added as an internal standard with a syringe. The photocatalytic reaction was carried out with 420nm wavelength light source illumination, and after the reaction was completed, a sample was taken to detect the hydrogen content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种三元复合光催化剂、其制备方法及其应用,该三元复合光催化剂包括相互混合的石墨相氮化碳和二维黑磷/过渡金属异质结,所述二维黑磷/过渡金属异质结包括二维黑磷片和负载在二维黑磷片上的过渡金属粒子。在二维黑磷(BP)薄片表面负载过渡金属粒子(TM)作为助催化剂,不仅可以作为光生载流子的捕获位点,提升载流子的解离与界面迁移效率,还可以作为氧化还原反应的活性位点,降低光催化反应的过电势,有效提高了石墨相氮化碳的光催化效率。

Description

三元复合光催化剂、其制备方法及其应用 技术领域
本发明涉及光催化技术领域,具体涉及三元复合光催化剂、其制备方法及其应用。
背景技术
随着人口和经济的迅速增长,世界能源的消耗成倍增长,加速了化石燃料的枯竭,开发新能源代替化石燃料已经刻不容缓。新型清洁能源中,氢能普遍被认为是一种理想、无污染的绿色能源,原因是氢气燃烧后的唯一产物是水。但是传统的制氢方法耗能大,使得氢气价格昂贵,严重限制了氢能在各行各业中的广泛应用。太阳光是可再生能源,通过光照的方式从水中获得氢气作为能源使用后又回到了水的形态,清洁环保具有广阔的应用前景。光催化剂成为决定光催化过程能否实际应用的关键因素之一。
水是一种相对稳定的化合物,水分解成氢气和氧气的过程是一个吉布斯自由能增加的过程,也就是说从热力学的角度,水分解反应是非自发反应,必须外加能量才能进行。光催化分解水制氢的反应,就是利用光子的能量推动水分解反应的发生,然后转化为化学能。具有高能量的远紫外光线(波长小于190 nm)可以直接分解水,然而此类远紫外线难以到达地球表面,所以普通太阳光的照射难以实现水分解制氢。光催化分解水制氢是利用材料的吸光特性实现光解水反应的发生。其中,半导体材料如二氧化钛、氮化碳等具有良好的光催化性能,半导体材料在受到光子的激发后,会产生具有较强氧化能力的光生电子,可以将吸附在半导体表面的质子还原为氢气,从而实现光催化分解水制氢。
近年来,为了降低成本,非金属光催化剂的研发引起人们的广泛关注。作为氮化碳化合物最稳定的一种结构,石墨相氮化碳(g-C3N4)被报道具有可见光催化活性,然而纯g-C3N4光解水制氢的活性非常小,这是由于光生电子和空穴在g-C3N4内部很容易快速再复合,以热量或光能的形式释放,造成纯g-C3N4光催化剂分解水制氢活性非常小,因此为了提高g-C3N4的光催化效率,需要对g-C3N4进行改性修饰,以提高材料的光催化效率。
技术问题
为解决上述现有技术中纯石墨相氮化碳光催化剂的光催化效率太低的问题,本发明提供了一种包含石墨相氮化碳的新型三元复合光催化剂、其制备方法及其应用。
技术解决方案
为了达到上述发明目的,本发明提供一种三元复合光催化剂,包括相互混合的石墨相氮化碳和二维黑磷/过渡金属异质结,所述二维黑磷/过渡金属异质结包括二维黑磷片和负载在二维黑磷片上的过渡金属粒子。
优选地,所述二维黑磷/过渡金属异质结与所述石墨相氮化碳的质量比为1:1-1:100。
优选地,所述过渡金属粒子为Co、Ni、Fe、Cu、Pd、Pt中的任意一种。
本发明还提供一种上述的三元复合光催化剂的制备方法,包括步骤:
将过渡金属盐溶液与二维黑磷片混合,得到混合溶液;
对混合溶液进行光照,在二维黑磷片上沉积过渡金属粒子,得到二维黑磷/过渡金属异质结;
将二维黑磷/过渡金属异质结于石墨相氮化碳分散于有机介质中,混合并干燥后得到三元复合光催化剂。
优选地,所述过渡金属盐溶液中过渡金属阳离子的摩尔浓度为0.001-0.1 mol/L。
优选地,所述二维黑磷片与所述过渡金属阳离子的物质的量之比为1:0.1-1:10。
进一步地,所述沉积的过程控制为恒温,温度范围为10-50℃,光照时间为1-500 min。
进一步地,所述混合溶液中还包括醇类电子牺牲剂。
进一步优选地,在所述混合溶液中,所述醇类电子牺牲剂的体积分数在90%以下。
进一步地,上述的三元复合光催化剂的制备方法,具体包括步骤:
首先,将过渡金属盐溶液、二维黑磷片混合装入反应容器,得到混合溶液,密封反应容器,通入惰性气体5-300 min;
然后,在10-50℃的恒温条件下,采用单波长光对混合溶液照射5-300 min,在二维黑磷片上沉积过渡金属粒子,多次清洗后得到二维黑磷/过渡金属异质结,其中,单波长光的波长范围为400-635 nm;
最后,将二维黑磷/过渡金属异质结于石墨相氮化碳分散于有机介质中,并以功率为100-2000 W的超声分散处理0.01-2 h,再进行转速为100-1000 rpm、时长0.1-10 h的球磨复合,干燥后得到三元复合光催化剂。
本发明进一步提供一种三元复合光催化剂的应用,采用上述的三元复合光催化剂作为光解水制氢工艺的光催化剂。
进一步地,所述三元复合光催化剂的光解水制氢速率为31-36.4 mmol/h/g。
有益效果
本发明提供的三元复合光催化剂,是通过将二维黑磷/过渡金属异质结与石墨相氮化碳(g-C 3N 4)复合得到的。在二维黑磷(BP)薄片表面负载过渡金属粒子(TM)作为助催化剂,不仅可以作为光生载流子的捕获位点,提升载流子的解离与界面迁移效率,还可以作为氧化还原反应的活性位点,降低光催化反应的过电势。
附图说明
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:
图1a和图1b为实施例1的BP/Ni/g-C 3N 4三元复合光催化剂不同放大倍率的TEM图;
图2a和图2b为实施例2的BP/Co/g-C 3N 4三元复合光催化剂不同放大倍率的TEM图;
图3a和图3b为实施例3的BP/Pt/g-C 3N 4三元复合光催化剂不同放大倍率的TEM图;
图4a和图4b为实施例4的BP/Pd/g-C 3N 4三元复合光催化剂不同放大倍率的TEM图。
本发明的实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。
作为氮化碳化合物最稳定的一种结构,石墨相氮化碳(g-C 3N 4)被报道具有可见光催化活性 g-C 3N 4光催化剂的带宽约为2.7eV 可以吸收460 nm以下的可见光。其导带位于-1.1eV而价带处于+1.6eV,在热力学上满足分解水制氢的要求。然而纯g-C3N4光解水制氢的活性非常小,这是由于光生电子和空穴在g-C 3N 4内部很容易快速再复合,以热量或光能的形式释放,造成纯g-C 3N 4光催化剂分解水制氢活性非常小,因此为了提高纯g-C 3N 4的光催化效率,需要对其进行改性修饰。
本发明的发明人基于现有纯石墨相氮化碳光催化剂的光催化效率太低的问题,研究并提供了一种包含石墨相氮化碳的新型三元复合光催化剂、其制备方法及其应用。
1、本发明的一些实施方案提供了一种包含石墨相氮化碳的新型三元复合光催化剂的制备方法,包括步骤:
(1)制备二维黑磷/过渡金属异质结。
(1-1)二维黑磷薄片的制备:通过机械剥离、液相剥离、电化学剥离清洗块状黑磷晶体等方法制备得到二维黑磷薄片。
块状黑磷的剥离方法为现有技术,因此,本发明对这一操作不作过多描述。
(1-2)将过渡金属盐溶液与二维黑磷薄片混合,得到混合溶液。
选用的过渡金属盐溶液中的过渡金属阳离子为不同价态的所有过渡金属阳离子中的任意一种。过渡金属包括但不限于Co、Ni、Fe、Cu、Pd、Pt,过渡金属阳离子的价态包括但不限于2 +、3 +、5 +;过渡金属盐浓度为0.001-0.1 mol/L。
二维黑磷薄片与过渡金属阳离子的摩尔比为1:0.1-1:10。
在优选的方案中,在混合溶液中还加入醇类电子牺牲剂,即,将步骤(1-2)替换为步骤(1-2’)将过渡金属盐溶液、醇类电子牺牲剂与二维黑磷薄片混合,得到混合溶液。
在混合溶液中,醇类电子牺牲剂的体积分数为0-90%。
醇类电子牺牲体的作用是避免光生空穴对黑磷的氧化,防止破环三元复合结构;醇类电子牺牲剂可优选为:无水甲醇、无水乙醇、异丙醇其中的一种。
(1-3)除去空气:通入对惰性气体以除去反应容器及混合溶液中的空气,通入时间为5-300min。
这里的惰性气体指的是不与溶质、溶剂反应,不影响后续沉积操作的气体。可以选择稀有气体,如高纯氩气。
(1-4)对混合溶液进行光照,在二维黑磷片上沉积过渡金属粒子,多次清洗后得到二维黑磷/过渡金属异质结。
光沉积的原理为:光激发半导体材料,使其产生光生电子,与过渡金属盐发生还原反应,最终在二维黑磷片上沉积得到金属颗粒。
具体操作为:采用单波长光对混合溶液照射一定时间,在二维黑磷片上沉积过渡金属粒子,多次清洗后得到二维黑磷/过渡金属异质结,其中,单波长光的波长范围为400-635 nm,该波长范围内的普通单波长光源均可以实现沉积目的。
沉积过程中保持恒温,温度范围为:10-50℃;搅拌速度为100-5000rpm(搅拌可以保证黑磷纳米片在溶液中保持良好的分散性);光照时间为:1-500 min。
(2)二维黑磷/过渡金属异质结与石墨相氮化碳(g-C 3N 4)的复合:
将二维黑磷/过渡金属异质结与g-C 3N 4混合,超声分散均匀后球磨复合,真空干燥后得到三元复合光催化材料。
二维黑磷/过渡金属异质结与g-C 3N 4的质量比例为1:1-1:100。
超声分散处理的分散介质为无水乙醇,功率为100-2000W,时间为0.01-2h。
球磨复合处理的转速为100-1000rpm,球磨时间为0.1-10h。
2、本发明的一些实施方案提供了一种包含石墨相氮化碳的新型三元复合光催化剂,包括相互混合的石墨相氮化碳和二维黑磷/过渡金属异质结,二维黑磷/过渡金属异质结包括二维黑磷片和负载在二维黑磷片上的过渡金属粒子。
二维黑磷/过渡金属异质结与所述石墨相氮化碳的质量比为1:1-1:100。
过渡金属粒子包括但不限于Co、Ni、Fe、Cu、Pd、Pt。
3、本发明的一些实施方案提供了上述三元复合光催化剂在光解水制氢工艺中的应用,该三元复合光催化剂的光解水制氢性能在31-36.4 mmol/h/g。
纯BP及纯g-C3N4的光催化产氢效率都很低,约在几十μmol/h/g,相比本发明获得的三元复合光催化剂的性能要小一个数量级。
通过选择不同的半导体进行异质结的构建是一种有效改进g-C 3N 4光催化性能的策略,利用不同半导体能带结构的差异性构建梯度电子转移,有利于促进光生电子与空穴的分离,提高g-C 3N 4材料的光催化效率。黑磷作为一种新型的半导体材料,具备类石墨层状结构,是一种直接带隙半导体材料(块状黑磷禁带宽度0.3eV),其对光的响应可拓展到红外光区;同时其禁带宽度还可通过调控黑磷烯的层数进行改变(单层黑磷禁带宽度2.1eV),且黑磷具有良好的载流子迁移率。利用黑磷烯的特性将它与g-C 3N 4构建复合催化剂,可以提高复合材料的载流子迁移率及导电性能,可以避免光生电子和空穴的快速再复合,促进光生电荷的界面迁移,因而可以显著提高光催化效率。
在g-C 3N 4材料表面负载过渡金属作为助催化剂也可以提升其催化性能。当过渡金属与半导体光催化剂材料接触时,光生电子会由半导体的导带向过渡金属表面迁移并被捕获。随后,光生电子在其表面参与光催化还原反应,而留下的光生空穴会向半导体的表面迁移并参与光催化氧化反应。这一过程不仅可以促进光生电子和空穴的分离,而且可以实现氧化反应和还原反应的空间分离,从而能够提高光催化剂的量子效率和光催化反应的效率。此外,除了可以促进光生电子和空穴的分离之外,过渡金属还可以为光催化反应提供表面活性位点来降低表面反应过电势,从而提高光催化反应的表面反应速率。
以下将结合具体的实施例来说明本发明的上述三元复合光催化剂、其制备方法及其应用,本领域技术人员所理解的是,下述实施例仅是本发明上述三元复合光催化剂、其制备方法及其应用的具体示例,而不用于限制其全部。实施例中未注明具体技术或条件的,按照本领域内的常规技术或条件或者按照产品说明书进行,所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
(1)二维薄层黑磷片的剥离:将块体黑磷作为工作电极,与惰性电极用导线相连后一同浸入含0.05M(M为mol/L的简写)四丁基铵阳离子的N,N-二甲基甲酰胺电解液中,20V持续通电3min后,将膨胀的黑磷块体清洗数次后,300W超声震荡2min,500rpm转速下离心3min,离心完成后取上层清液即得到二维黑磷薄片,将得到的二维黑磷薄片12000rpm离心10min用超纯水清洗两次。
(2)取0.5mg二维黑磷薄片加入1mL 0.005M的NiCl 2溶液,加入4mL超纯水,形成混合溶液。在装有所得混合溶液的石英管加入小磁子,用橡胶塞及石蜡密封石英管;用较粗长针头伸入石英管底部通入高纯氩气配合较低短针头除去石英管及溶液中的空气,除气完成后用石蜡将针孔密封。
(3)将步骤(2)密封的混合溶液以450nm蓝光为光源、20℃恒温、2500rpm搅拌条件下,光照20min,使二维薄层黑磷上均匀生长Ni颗粒,用无水乙醇多次离心清洗后得到二维黑磷/镍异质结。
(4)取步骤(3)所得10mg二维黑磷/镍异质结与g-C 3N 4以1:10的质量比例分散在30mL无水乙醇溶液中,超声分散处理的功率为300W,时间为0.01h;球磨复合转速为200rpm,球磨时间为5h,得到BP/Ni/g-C 3N 4三元复合光催化剂。
BP/Ni/g-C 3N 4三元复合光催化剂的透射电子显微镜(TEM)照片如图1a、1b所示,其中,黑色颗粒为沉积的Ni金属离子,颜色较深的黑色小片状为g-C 3N 4,底层暗色大片为二维黑磷薄片。
实施例2
(1)二维薄层黑磷片的剥离:将块体黑磷作为工作电极,与惰性电极用导线相连后一同浸入含0.05M四丁基铵阳离子的N,N-二甲基甲酰胺电解液中,20V持续通电3min后,将膨胀的黑磷块体清洗数次后,300W超声震荡2min,500rpm转速下离心3min,离心完成后取上层清液即得到二维黑磷薄片,将得到的二维黑磷薄片12000rpm离心10min用超纯水清洗两次。
(2)取0.5mg二维黑磷薄片加入1mL 0.005M的CoCl 2溶液,加入4mL超纯水,形成混合溶液。在装有所得混合溶液的石英管加入小磁子,用橡胶塞及石蜡密封石英管;用较粗长针头伸入石英管底部,通入高纯氩气配合较低短针头除去石英管及溶液中的空气,除气完成后用石蜡将针孔密封。
(3)将步骤(2)密封的混合溶液以450nm蓝光为光源,在恒温20℃、2500rpm搅拌条件下,光照20min,使二维薄层黑磷上均匀生长Co颗粒,用无水乙醇多次离心清洗,得到二维黑磷/钴异质结。
(4)取步骤(3)所得10mg二维黑磷/钴异质结材料与g-C 3N 4以1:10的质量比例分散在30mL无水乙醇溶液中,超声分散处理的功率为300W,时间为0.01h;球磨复合转速为200rpm,球磨时间为5h,即得到BP/Co/g-C 3N 4三元复合光催化剂。
BP/Co/g-C 3N 4三元复合光催化剂的TEM照片如图2a、2b所示,其中,黑色颗粒为沉积的Co金属离子,颜色较深的黑色小片状为g-C 3N 4,底层暗色大片为二维黑磷薄片。
实施例3
(1)二维薄层黑磷片的剥离:将块体黑磷作为工作电极,与惰性电极用导线相连后一同浸入含0.05M四丁基铵阳离子的N,N-二甲基甲酰胺电解液中,20V持续通电3min后,将膨胀的黑磷块体清洗数次后,300W超声震荡2min,500rpm转速下离心3min,离心完成后取上层清液即得到二维黑磷薄片,将得到的二维黑磷薄片12000rpm离心10min,用超纯水清洗两次。
(2)取0.5mg二维黑磷薄片加入1 mL 0.005M的H 2PtCl 6溶液,加入4mL超纯水,形成混合溶液。在装有所得混合溶液的石英管加入小磁子,用橡胶塞及石蜡密封石英管;用较粗长针头伸入石英管底部,然后通入高纯氩气配合较低短针头除去石英管及溶液中的空气,除气完成后用石蜡将针孔密封。
(3)将步骤(2)密封的混合溶液以450nm蓝光为光源,恒温20℃、2500rpm搅拌条件下,光照20min,使二维薄层黑磷上均匀生长Pt颗粒,用无水乙醇多次离心清洗,得到二维黑磷/铂异质结。
(4)取步骤(3)所得10mg二维黑磷/铂异质结材料与g-C 3N 4以1:10的质量比例分散在30mL无水乙醇溶液中,超声分散处理的功率为300W,时间为0.01h;球磨复合转速为200rpm,球磨时间为5h,即可得到BP/Pt/ g-C 3N 4三元复合光催化剂。
BP/Pt/g-C 3N 4三元复合光催化剂的TEM照片如图3a、3b所示,其中,黑色颗粒为沉积的Pt金属离子,颜色较深的黑色片状为g-C 3N 4,底层暗色大片为二维黑磷薄片。
实施例4
(1)二维薄层黑磷片的剥离:将块体黑磷作为工作电极,与惰性电极用导线相连后一同浸入含0.05M四丁基铵阳离子的N,N-二甲基甲酰胺电解液中,20V持续通电3min后,将膨胀的黑磷块体清洗数次后,300W超声震荡2min,500rpm转速下离心3min,离心完成后取上层清液即得到二维黑磷薄片,将得到的二维黑磷薄片12000rpm离心10min,用超纯水清洗两次。
(2)取0.5mg二维黑磷薄片加入1mL 0.005M的H 2PdCl 6溶液,加入4mL超纯水,形成混合溶液。在装有所得混合溶液的石英管加入小磁子,用橡胶塞及石蜡密封石英管;用较粗长针头伸入石英管底部,然后通入高纯氩气配合较低短针头除去石英管及溶液中的空气,除气完成后用石蜡将针孔密封。
(3)将步骤(2)密封的混合溶液以450nm蓝光为光源,恒温20℃、2500rpm搅拌条件下,光照20min,使二维薄层黑磷上均匀生长Pd颗粒,用无水乙醇多次离心清洗,得到二维黑磷/钯异质结。
(4)取步骤(3)所得二维黑磷/钯异质结材料10mg与g-C 3N 4以1:10的质量比例分散在30mL无水乙醇溶液中,超声分散处理的功率为300W,时间为0.01h;球磨复合转速为200rpm,球磨时间为5h,得到BP/Pd/g-C 3N 4三元复合光催化剂。
BP/Pd/g-C 3N 4三元复合光催化剂的TEM照片如图4a、4b所示,其中,黑色颗粒为沉积的Pd金属离子,颜色较深的黑色片状为g-C 3N 4,底层暗色大片为二维黑磷薄片。
实施例5
将1mg实施例1所制备的BP/Ni/g-C 3N 4分散在3.75mL超纯水中,然后加入1.25 mL异丙醇作为电子牺牲体。用氩气将管内残余氧气除气30min后,将混合物密封在石英管中,用进样针加入500 μL CH 4气体作为内标。使用420nm波段光源光照进行光催化反应,反应结束后取样检测氢气含量。
测试时,使用1mL的进样器抽取石英管上层气体注入到气体色谱仪(GC)进行测量,将得到的峰面积与气相色谱仪中的标准氢气面积进行换算,得知BP/Ni/g-C 3N 4光催化分解水产氢的速率为33.8mmol/g/h。
实施例6
将1mg实施例3所制备的BP/Pt/g-C 3N 4分散在3.75mL超纯水中,然后加入1.25mL异丙醇作为电子牺牲体。用氩气将管内残余氧气除气30min后,将混合物密封在石英管中,用进样针加入500 μL CH 4气体作为内标。使用420nm波段光源光照进行光催化反应,反应结束后取样检测氢气含量。
测试时,使用1mL的进样器抽取石英管上层气体注入到气体色谱仪(GC)进行测量,将得到的峰面积与气相色谱仪中的标准氢气面积进行换算,得知BP/Pt/g-C 3N 4光催化分解水产氢的速率为36.4mmol/g/h。
实施例7
将1mg实施例4所制备的BP/Pd/g-C 3N 4分散在3.75mL超纯水中,然后加入1.25mL异丙醇作为电子牺牲体。用氩气将管内残余氧气除气30min后,将混合物密封在石英管中,用进样针加入500 μL CH 4气体作为内标。使用420nm波段光源光照进行光催化反应,反应结束后取样检测氢气含量。
测试时,使用1mL的进样器抽取石英管上层气体注入到气体色谱仪(GC)进行测量,将得到的峰面积与气相色谱仪中的标准氢气面积进行换算,即得BP/Pd/g-C 3N 4光催化分解水产氢的速率为31.9 mmol/g/h。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (12)

  1. 三元复合光催化剂,其特征在于,包括相互混合的石墨相氮化碳和二维黑磷/过渡金属异质结,所述二维黑磷/过渡金属异质结包括二维黑磷片和负载在二维黑磷片上的过渡金属粒子。
  2. 根据权利要求1所述的三元复合光催化剂,其特征在于,所述二维黑磷/过渡金属异质结与所述石墨相氮化碳的质量比为1:1-1:100。
  3. 根据权利要求1所述的三元复合光催化剂,其特征在于,所述过渡金属粒子为Co、Ni、Fe、Cu、Pd、Pt中的任意一种。
  4. 一种如权利要求1-3任一所述的三元复合光催化剂的制备方法,其特征在于,包括步骤:
    将过渡金属盐溶液与二维黑磷片混合,得到混合溶液;
    对混合溶液进行光照,在二维黑磷片上沉积过渡金属粒子,得到二维黑磷/过渡金属异质结;
    将二维黑磷/过渡金属异质结于石墨相氮化碳分散于有机介质中,混合并干燥后得到三元复合光催化剂。
  5. 根据权利要求4所述的制备方法,其特征在于,所述过渡金属盐溶液中过渡金属阳离子的摩尔浓度为0.001-0.1 mol/L。
  6. 根据权利要求5所述的制备方法,其特征在于,所述二维黑磷片与所述过渡金属阳离子的物质的量之比为1:0.1-1:10。
  7. 根据权利要求4所述的制备方法,其特征在于,所述沉积的过程控制为恒温,温度范围为10-50℃,光照时间为1-500 min。
  8. 根据权利要求4-7任一所述的制备方法,其特征在于,所述混合溶液中还包括醇类电子牺牲剂。
  9. 根据权利要求8所述的制备方法,其特征在于,在所述混合溶液中,所述醇类电子牺牲剂的体积分数在90%以下。
  10. 根据权利要求4-7任一所述的制备方法,其特征在于,具体包括步骤:
    首先,将过渡金属盐溶液、二维黑磷片混合装入反应容器,得到混合溶液,密封反应容器,通入惰性气体5-300 min;
    然后,在10-50℃的恒温条件下,采用单波长光对混合溶液照射5-300 min,在二维黑磷片上沉积过渡金属粒子,多次清洗后得到二维黑磷/过渡金属异质结,其中,单波长光的波长范围为400-635 nm;
    最后,将二维黑磷/过渡金属异质结于石墨相氮化碳分散于有机介质中,并以功率为100-2000 W的超声分散处理0.01-2 h,再进行转速为100-1000 rpm、时长0.1-10 h的球磨复合,干燥后得到三元复合光催化剂。
  11. 一种三元复合光催化剂的应用,其特征在于,采用权利要求1-3任一所述的三元复合光催化剂作为光解水制氢工艺的光催化剂。
  12. 根据权利要求11所述的应用,其特征在于,所述三元复合光催化剂的光解水制氢速率为31-36.4 mmol/h/g。
PCT/CN2020/129807 2020-04-13 2020-11-18 三元复合光催化剂、其制备方法及其应用 WO2021208426A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010286639.6 2020-04-13
CN202010286639.6A CN113522327B (zh) 2020-04-13 2020-04-13 三元复合光催化剂、其制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2021208426A1 true WO2021208426A1 (zh) 2021-10-21

Family

ID=78083488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129807 WO2021208426A1 (zh) 2020-04-13 2020-11-18 三元复合光催化剂、其制备方法及其应用

Country Status (2)

Country Link
CN (1) CN113522327B (zh)
WO (1) WO2021208426A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114289053A (zh) * 2021-12-23 2022-04-08 北京中海前沿材料技术有限公司 一种光催化剂及其制备方法与应用
CN114602507A (zh) * 2022-03-25 2022-06-10 青海民族大学 一种硫化镉@石墨相氮化碳复合光催化剂及其制备方法和应用
CN115304032A (zh) * 2022-09-13 2022-11-08 中国石油大学(华东) 一种还原分子氧合成过氧化氢的光催化制备方法
CN115318315A (zh) * 2022-09-07 2022-11-11 东北师范大学 一种磁性碳纳米管/红磷/氮化碳三元非金属光催化剂及其制备方法和用途
CN115814836A (zh) * 2022-12-27 2023-03-21 陕西科技大学 一种高性能紫磷烯/氮化硼气凝胶复合光催化材料及其制备方法和应用
CN116851024A (zh) * 2023-09-04 2023-10-10 新乡学院 一种无金属三元异质结膜及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990083B (zh) * 2022-08-04 2022-11-18 河北工业大学 光酶集成催化剂及其制备和应用
CN115445644B (zh) * 2022-09-14 2023-08-01 湖北兴发化工集团股份有限公司 一种黑磷改性氧化铝载体的制备方法及其应用
CN115709086A (zh) * 2022-11-21 2023-02-24 深圳先进技术研究院 一种紫磷基光催化材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107469845A (zh) * 2017-08-04 2017-12-15 深圳先进技术研究院 一种黑磷/贵金属复合材料、其制备方法以及应用
CN108355696A (zh) * 2018-02-05 2018-08-03 中国科学院深圳先进技术研究院 黑磷/g-C3N4复合可见光光催化材料及其制备方法和应用
CN108654671A (zh) * 2018-05-03 2018-10-16 华南师范大学 一种复合光催化剂及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040372A1 (en) * 2012-09-13 2014-03-20 The Chinese University Of Hong Kong Cop2 loaded red phosphorus, preparation and use of the same
CN107802835B (zh) * 2017-12-04 2020-12-08 中南大学 一种黑磷纳米片/铂纳米粒子复合材料及其制备方法和应用
CN109107597A (zh) * 2018-08-31 2019-01-01 华南农业大学 一种过渡金属磷化物/g-C3N4复合材料及其制备方法与应用
CN109433232A (zh) * 2018-11-21 2019-03-08 江苏大学 超薄黑磷烯非金属助催化剂材料及制备方法和其复合材料
CN110841670B (zh) * 2019-11-21 2021-01-01 湖南大学 零维黑磷量子点/一维管状氮化碳复合光催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107469845A (zh) * 2017-08-04 2017-12-15 深圳先进技术研究院 一种黑磷/贵金属复合材料、其制备方法以及应用
CN108355696A (zh) * 2018-02-05 2018-08-03 中国科学院深圳先进技术研究院 黑磷/g-C3N4复合可见光光催化材料及其制备方法和应用
CN108654671A (zh) * 2018-05-03 2018-10-16 华南师范大学 一种复合光催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOPPELLA RAMIREDDY; YANG WOOSEOK; TAN JEIWAN; KWON HYEOK-CHAN; PARK JAEMIN; MOON JOOHO: "Black phosphorus supported Ni2P co-catalyst on graphitic carbon nitride enabling simultaneous boosting charge separation and surface reaction", APPLIED CATALYSIS B. ENVIRONMENTAL, vol. 242, 9 October 2018 (2018-10-09), AMSTERDAM, NL , pages 422 - 430, XP085513784, ISSN: 0926-3373, DOI: 10.1016/j.apcatb.2018.10.018 *
DONG, YUMING: "Preparation of Transition Metal-Based Cocatalysts by Photoreduction and its Photocatalysis Application", PROCEEDINGS OF THE 16TH CHINESE SYMPOSIUM ON PHOTOCHEMISTRY (2019), JINAN, SHANDONG, CHINA; 2019-10-12, 31 October 2019 (2019-10-31), CN, pages 86, XP009531504, DOI: 10.26914/c.cnkihy.2019.076866 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114289053A (zh) * 2021-12-23 2022-04-08 北京中海前沿材料技术有限公司 一种光催化剂及其制备方法与应用
CN114602507A (zh) * 2022-03-25 2022-06-10 青海民族大学 一种硫化镉@石墨相氮化碳复合光催化剂及其制备方法和应用
CN115318315A (zh) * 2022-09-07 2022-11-11 东北师范大学 一种磁性碳纳米管/红磷/氮化碳三元非金属光催化剂及其制备方法和用途
CN115318315B (zh) * 2022-09-07 2023-08-04 东北师范大学 一种磁性碳纳米管/红磷/氮化碳三元非金属光催化剂及其制备方法和用途
CN115304032A (zh) * 2022-09-13 2022-11-08 中国石油大学(华东) 一种还原分子氧合成过氧化氢的光催化制备方法
CN115814836A (zh) * 2022-12-27 2023-03-21 陕西科技大学 一种高性能紫磷烯/氮化硼气凝胶复合光催化材料及其制备方法和应用
CN115814836B (zh) * 2022-12-27 2024-03-05 陕西科技大学 一种高性能紫磷烯/氮化硼气凝胶复合光催化材料及其制备方法和应用
CN116851024A (zh) * 2023-09-04 2023-10-10 新乡学院 一种无金属三元异质结膜及其制备方法
CN116851024B (zh) * 2023-09-04 2024-02-20 新乡学院 一种无金属三元异质结膜及其制备方法

Also Published As

Publication number Publication date
CN113522327A (zh) 2021-10-22
CN113522327B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2021208426A1 (zh) 三元复合光催化剂、其制备方法及其应用
Chen et al. In situ photochemical fabrication of CdS/g-C3N4 nanocomposites with high performance for hydrogen evolution under visible light
Zhang et al. Nano-designed semiconductors for electro-and photoelectro-catalytic conversion of carbon dioxide
Chao et al. Oxygen-incorporation in Co2P as a non-noble metal cocatalyst to enhance photocatalysis for reducing water to H2 under visible light
CN108499585B (zh) 含磷复合物及其制备与应用
Li et al. In-situ construction of sequential heterostructured CoS/CdS/CuS for building “electron-welcome zone” to enhance solar-to-hydrogen conversion
Liu et al. Interfacial engineering of Ti3C2 MXene/CdIn2S4 Schottky heterojunctions for boosting visible-light H2 evolution and Cr (VI) reduction
Xia et al. Novel 2D Zn-porphyrin metal organic frameworks revived CdS for photocatalysis of hydrogen production
CN111389442A (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
Deng et al. Nanomaterial-based photocatalytic hydrogen production
CN107887613A (zh) 基于三维网状氮磷硫共掺杂多孔碳材料的氧还原电极及制备方法与应用
CN112076791A (zh) 一种在泡沫镍表面原位生长Ni-MOF薄膜光催化剂及其制备方法和应用
CN110368968B (zh) NiFe-LDH/Ti3C2/Bi2WO6纳米片阵列及制法和应用
CN111348728B (zh) 一种MOF和HrGO共修饰的钒酸铋电极及其制备方法和应用
Liu et al. Interfacing CdS particles on Ni foam as a three-dimensional monolithic photocatalyst for efficient visible-light-driven H2 evolution
CN111346642A (zh) 高分散金属纳米颗粒/生物质碳复合电极材料及其制备方法与应用
CN111774058A (zh) 一种异质结复合光催化剂及其制备方法和应用
Chen et al. Construction of CuCd-BMOF/GO composites based on phosphonate and their boosted visible-light photocatalytic degradation
Zahran et al. Nickel sulfate as an influential precursor of amorphous high-valent Ni (III) oxides for efficient water oxidation in preparation via a mixed metal-imidazole casting method
Zhou et al. In situ growth of CdIn2S4 on NH2-MIL-125 as efficient photocatalysts for H2 production under visible-light irradiation
Yang et al. Modulable Cu (0)/Cu (I)/Cu (II) sites of Cu/C catalysts derived from MOF for highly selective CO2 electroreduction to hydrocarbons
Wang et al. Boosting photocatalytic dehydrogenation and simultaneous selective oxidation of benzyl alcohol to benzaldehyde over flower-like MoS2 modified Zn0. 5Cd0. 5S solid solution
Jiang et al. Synergistic effect of Z-scheme junction and core–shell architecture over NH2-MIL-125@ Ag@ AgCl ternary heterojunction for cooperative CO and H2O2 production
Chen et al. Cocatalyst-modified In 2 S 3 photocatalysts for C–N coupling of amines integrated with H 2 evolution
Chen et al. Cobalt phosphate-modified (GaN) 1–x (ZnO) x/GaN branched nanowire array photoanodes for enhanced photoelectrochemical performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931267

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20931267

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/12/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20931267

Country of ref document: EP

Kind code of ref document: A1