CN115197383A - 一种噻唑基共价有机框架材料及应用 - Google Patents

一种噻唑基共价有机框架材料及应用 Download PDF

Info

Publication number
CN115197383A
CN115197383A CN202210879623.5A CN202210879623A CN115197383A CN 115197383 A CN115197383 A CN 115197383A CN 202210879623 A CN202210879623 A CN 202210879623A CN 115197383 A CN115197383 A CN 115197383A
Authority
CN
China
Prior art keywords
organic framework
covalent organic
thiazolyl
framework material
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210879623.5A
Other languages
English (en)
Inventor
李彦光
黄伟
胡永攀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202210879623.5A priority Critical patent/CN115197383A/zh
Publication of CN115197383A publication Critical patent/CN115197383A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化技术领域,具体涉及一种噻唑基共价有机框架材料及应用。本发明使用噻唑氨基单体及其衍生物和三醛基单体在溶剂热条件下制备得到噻唑基共价有机框架材料。噻唑氨基单体及其衍生物通常反应活性较低,具有良好的抗氧化性,因此能够避免共价有机框架材料合成中必要的真空脱气步骤,实现共价有机框架材料的宏量制备。此外,噻唑氨基单体及其衍生物的刚性平面构型不仅有利于分子间有序堆积从而提高材料的结晶性,同时也可以通过π‑π相互作用增强层间电子离域、促进光生电荷传递和分离。所制备的噻唑基共价有机框架材料能够展现出优异的光催化产氢性能以及稳定性。

Description

一种噻唑基共价有机框架材料及应用
技术领域
本发明属于光催化技术领域,具体涉及一种噻唑基共价有机框架材料及应用。
背景技术
随着工业化进程的不断加快,人类对化石能源的过度依赖和消耗所导致的能源和环境问题日趋严峻。氢气(H2)被认为是一种最理想的清洁能源。它不仅具有极高的质量能量密度而且燃烧仅产生水,利用氢燃料代替化石能源可实现零污染和零碳排放。在常见的产氢方法中,光催化水分解产氢是一种绿色经济的制氢方法,这一过程以太阳能作为唯一能量来源能够最大限度的降低能量消耗,是未来能源可持续发展极具潜力的途径。但是,目前光催化产氢技术的发展仍面临一系列的挑战:半导体光催化剂可见光利用率不高、能带结构调节不易,光催化产氢效率低,光催化剂稳定性差等问题。为了解决上述问题,开发高效稳定的半导体光催化剂成为了该领域研究的关键。
共价有机框架材料(CovalentOrganicFrameworks,COFs)是一类新型有机多孔结晶半导体材料。共价有机框架材料以制备成本低廉(主要由C、H、O、B、N以及S等地球丰富的轻质元素组成)、分子设计灵活、合成方法多样、丰富的孔结构、光吸收范围宽以及能带结构方便可调等特性被广泛的应用于光催化领域。自从Lotsch等人在2014年第一次报道了有关COF材料光催化产氢的工作以来,科研工作者在该领域取得了一系列的成果,但COF材料能够达到的光催化析氢性能仍然非常有限(大多数低于1mmolh-1g-1)。因为通常COF材料中的Frenkel激子具有很大的结合能,导致激子解离困难;其次,它们的π-共轭芳族主链的疏水性通常会导致其较大的内部孔隙率难以和水接触。此外,COF材料的制备方法通常需要真空脱气步骤来提高材料的结晶性,虽然这一步骤容易在实验室中进行,但是这一过程限制了工业应用中大规模制备COF材料。需要一种新的材料设计策略来提高COF材料的结晶性和亲水性,并能够大规模制备COF材料。
发明内容
为了解决上述存在的问题,本发明提供一种噻唑基共价有机框架材料,所述噻唑基共价有机框架材料是由噻唑氨基化合物和三醛基单体通过席夫碱偶联反应制备得到;所述噻唑氨基化合物为噻唑氨基单体或噻唑氨基单体的衍生物;
所述噻唑氨基化合物为4-,8-取代位含有烷氧基、醌、羟基和未取代的2,6-二氨基苯并双噻唑、4,4'-(噻唑[5,4-d]噻唑-2,5-二基)二苯胺以及2,5,8-三胺基苯并三噻唑等,如下述N1-N6中的任意一种:
Figure BDA0003763745260000021
所述三醛基单体为2,4,6-三羟基-均苯三甲醛、2-羟基-均苯三甲醛、2,4-二羟基-均苯三甲醛和1,3,5-三(4-甲酰基-3-羟基苯基)苯中的任意一种;如下A1-A4所示:
Figure BDA0003763745260000022
优选的,所述席夫碱偶联反应,包括如下步骤:将所述噻唑氨基化合物和三醛基单体溶解后加入催化剂,加热反应,得到所述噻唑基共价有机框架材料。
噻唑氨基单体及其衍生物通常反应活性较低,具有良好的抗氧化性,因此能够避免共价有机框架材料合成中必要的真空脱气步骤,实现共价有机框架材料的宏量制备。此外,噻唑氨基单体及其衍生物的刚性平面构型不仅有利于分子间有序堆积从而提高材料的结晶性,同时也可以通过π-π相互作用增强层间电子离域、促进光生电荷传递和分离;另外,噻唑氨基单体结构中富含的氮、硫杂原子能够增强材料和水分子间相互作用,从而改善材料的亲水性,暴露更多反应活性位点。
进一步地,所述噻唑氨基化合物和三醛基单体溶解于有机溶剂中;所述有机溶剂包括邻二氯苯、三甲苯、正丁醇、二氧六环、甲醇、乙醇、苯甲醇、乙腈、氯仿、乙二醇、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和N-甲基吡咯烷酮中的一种或多种;
具体的,所述有机溶剂为邻二氯苯和正丁醇,体积比为1:1。
具体的,所述有机溶剂为邻二氯苯和三甲苯,体积比为2:1;
具体的,所述有机溶剂为三甲苯和二氧六环,体积比为1:1。
进一步地,所述催化剂为醋酸、盐酸、三氟乙酸和对甲苯磺酸中的一种或多种;
所述催化剂用水稀释后浓度为0.1-9M;混合溶剂和催化剂的体积比为5-20:1。
具体的,所述催化剂稀释后为6M的醋酸水溶液,所述有机溶剂和醋酸水溶液体积比为10:1。
进一步地,所述加热反应的温度为80-150℃,时间为24-168h。
具体的,所述加热反应的温度为120℃,时间为72h。
优选的,所述噻唑氨基化合物和三醛基单体在席夫碱偶联反应后,冷却至室温(25±5℃),将产物洗涤过滤,收集固体产物并通过索氏提取进一步纯化,最后在真空烘箱中干燥过夜。
进一步地,所述洗涤为:使用N,N-二甲基甲酰胺、四氢呋喃、丙酮对固体产物进行多次洗涤。
进一步地,收集固体产物时采用四氢呋喃进行索氏提取。
进一步地,产物在真空烘箱中干燥过夜的温度为120℃。
本发明还提供一种共价有机框架复合材料,所述共价有机框架复合材料是由上述噻唑基共价有机框架材料与多孔载体原位聚合反应制备得到;所述多孔载体为三聚氰胺泡沫或聚氨酯泡沫。
本发明还提供一种光催化水分解产氢的方法,将光催化材料、水、牺牲电子给体和助催化剂于光照条件下反应;
所述光催化材料为上述噻唑基共价有机框架材料或上述共价有机框架复合材料;
所述牺牲电子给体包括甲醇、异丙醇、糠醇、三乙醇胺、三乙胺、抗坏血酸、抗坏血酸钠、硫化钠、亚硫酸钠、糠醇、5-羟甲基糠醇和甘油中的一种或多种。
优选的,所述助催化剂为Cu、Ni、Co或Pt;所述助催化剂负载于噻唑基共价有机框架材料上,其负载量为0.1-10%。
本发明中,所采用的的酮烯胺结构作为链接单元的COF材料,氨基单体中含有的N,S位置处于间位,噻唑五元环直接和氨基官能团相连,且醛基单体为含有水杨醛结构的三醛基。
CN113072672B公开了一种苯并三噻吩-苯并噻唑基共价有机框架材料的制备及其光催化分解水产氧的应用,其将亚胺作为链接单元的COF材料,并且氨基单体上中含有的N,S原子处于邻位,但噻二唑五元环未和氨基官能团直接相连,且醛基单体为苯并三噻吩三醛基结构;两者链接方式不同,且单体的结构也有所区别。
本发明的技术方案相比现有技术具有以下优点:
1、本发明将富含氮和硫的噻唑结构引入COF骨架中,其刚性平面构型不仅有利于分子间有序堆积获得高结晶性的COF材料,同时也可以通过π-π相互作用增强层间电子离域,从而促进光生电荷传递和分离;另外,噻唑分子中富含的氮、硫杂原子能够增强材料和水分子间相互作用,从而改善材料的亲水性,暴露更多反应活性位点。
2、因为噻唑氨基单体分子较低的反应活性,且具有良好的抗氧化性,因此能够摆脱COF合成中必要的真空脱气步骤,实现COF材料在空气气氛下的宏量制备。所制备的噻唑基共价有机框架光催化剂的最大析氢效率为48.7mmolg-1h-1(λ>420nm)、外量子效率为6.8%(λ=420nm),该产氢性能远远高于之前报道的大部分COF基光催化剂。
附图说明
图1是合成噻唑基共价有机框架材料所选用的氨基单体结构式;
图2是合成噻唑基共价有机框架材料所选用的醛基单体结构式;
图3是利用N1和A1两种单体合成COF材料的合成示意图,简称为COF-BT-11;
图4是COF-BT-11材料的形貌表征,(a)SEM图像;(b)TEM图像;
图5是COF-BT-11材料的结构表征,XRD图谱;
图6是COF-BT-11材料的氮气吸脱附曲线;
图7是COF-BT-11材料的水接触角图像;
图8是利用N3和A2两种单体合成纳米片结构COF材料的SEM图像,简称为COF-BT-32;
图9是利用N6和A4两种单体合成纳米花瓣结构COF材料的SEM图像,简称为COF-BT-64;
图10是三聚氰胺泡沫支撑的COF-BT-11材料的SEM图像;
图11是COF-BT-11材料的光催化产氢性能,(a)氢气产量随时间变化图(b)产氢循环稳定性;
图12是三聚氰胺泡沫支撑的COF-BT-11材料光催化产氢性能图;
图13是COF-BT-11材料以糠醇作为牺牲电子给体条件下的光催化产氢性能。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1溶剂热合成法制备纳米纤维结构的COF-BT-11
首先称量1.67gN1(7.5mmol)和1.05gA1(5mmol)放入200mL耐高温玻璃瓶中。然后依次往玻璃瓶中加入50mL邻二氯苯、50mL正丁醇和10mL的6M乙酸,每加入一种溶剂时需要超声5min形成均匀分散的溶液。随后,将耐高温玻璃瓶密封后放入烘箱中,并在120℃下保温反应72h。通过过滤收集固体产物,用N,N-二甲基甲酰胺、四氢呋喃、丙酮充分洗涤,然后用四氢呋喃对固体产物通过索氏提取的方式进行进一步纯化,最后在120℃条件下真空干燥过夜,产量为2.24g,产率约为92%。图4的左侧是纳米纤维结构COF-BT-11材料的扫描电子显微镜图像,从图中可以明显地观察到COF-BT-11材料由直径约100nm,长度超过1μm的纳米纤维组成。从图4的右侧的透射电子显微镜分析证实了其良好的结构结晶度。其一维介孔孔道沿纳米纤维长轴平行延伸,表明纳米纤维是沿[001]方向堆叠形成的。图5为COF-BT-11的XRD粉末衍射图谱,COF-BT-11材料具有很强的特征衍射峰,XRD的特征峰位置和模拟的分子层A-A堆积方式能够很好的对应。在2θ=3.5°处的最强峰为(100)衍射峰,证明了孔径为25.2
Figure BDA0003763745260000051
的长程有序的结构。在2θ=26.30°处,代表的是COF-BT-11材料的层间距约为3.4
Figure BDA0003763745260000052
,与它的(001)晶面相对应。图6中N2吸脱附实验表明,COF-BT-11具有较大的表面积,为1775m2g-1、总孔体积为0.78cm3g-1、孔径分布大概为2.3nm,与XRD的测试结果相一致。图7显示COF-BT-11具有较小的水接触角,大约为21°,表明其良好的亲水性。
实施例2溶剂热合成三聚氰胺泡沫支撑的COF-BT-11复合材料
首先称取16.8mgN1(0.075mmol)和10.5mgA1(0.05mmol)置于100mL耐高温玻璃瓶瓶中,然后向玻璃瓶中加入5mL邻二氯苯、5mL正丁醇和2mL6M乙酸,接下来将混合溶液充分超声形成分散均匀的溶液。随后,将一块直径为40mm,厚度为3mm的三聚氰胺泡沫浸入上述溶液中,将玻璃瓶密封并在烘箱中120℃保温反应72h。反应结束冷却至室温后,从反应液中取出泡沫,用N,N-二甲基甲酰胺、四氢呋喃、丙酮充分超声清洗,然后用四氢呋喃通过索氏提取的方式对其进行进一步纯化,最后在真空下条件下120℃干燥过夜。图8为三聚氰胺泡沫支撑的COF-BT-11复合材料SEM图。
实施例3溶剂热合成纳米片结构的COF-BT-32:
首先称取143mgN3(0.3mmol)和39mgA2(0.2mmol)装入25mL耐高温玻璃管中。然后向玻璃管中加入4mL邻二氯苯、2mL三甲苯和0.6mL6M乙酸,并将溶液充分超声得到均匀分散的溶液。随后,将玻璃管密封后置于烘箱中120℃保温反应72h。反应结束后冷却至室温,用N,N-二甲基甲酰胺、四氢呋喃、丙酮充分超声清洗获得纳米片结构的COF-BT-32材料,然后用四氢呋喃对固体产物通过索氏提取的方式进行进一步纯化,最后在真空下条件下120℃干燥过夜获得纳米片结构的COF-BT-32(如图9所示)。
实施例4溶剂热合成纳米花瓣结构的COF-BT-64:
首先称取88.2mgN6(0.3mmol)和131.4mgA4(0.3mmol)装入25mL耐高温玻璃管中。然后向玻璃管中加入3mL三甲苯、3mL二氧六环和0.6mL6M乙酸,并将溶液充分超声得到均匀分散的溶液。随后,将玻璃管密封后置于烘箱中120℃保温反应72h。反应结束后冷却至室温,用N,N-二甲基甲酰胺、四氢呋喃、丙酮充分超声清洗获得纳米片结构COF-BT-64材料,然后用四氢呋喃对固体产物通过索氏提取的方式进行进一步纯化,最后在真空下条件下120℃干燥过夜获得纳米花瓣结构的COF-BT-64(如图10所示)。
应用例1
在评价上述噻唑基共价有机框架材料用于光催化析氢反应性能时,以订制的石英Pyrex容器为反应器,容器中预先加入50mL的0.1M抗坏血酸溶液,然后称取10mgCOF-BT-11光催化剂粉末分散在上述溶液中,继续将混合溶液超声处理1h。随后,用移液枪量取将一定体积0.01mM的氯铂酸水溶液(相当于相对于光催化剂约3wt%的Pt)加入反应溶液中,通过原位光沉积的方式将Pt纳米颗粒负载在COF-BT-11材料上。最后将反应器通过三次抽真空-通氩气操作除去反应体系中的空气。在光催化过程中,用带有截止滤光片(λ>420nm)的300W氙灯照射溶液(50-300mWcm-2)。通过循环冷凝水系统将光催化反应体系温度控制在20℃。图11的左侧为5h内COF-BT-11用于光催化析氢产量随时间变化的曲线,第1h生成450μmol的H2。其浓度随反应时间呈线性积累,光照5h后达到2437μmol,平均析氢速率为487μmolh-1或平均质量比析氢速率为48.7mmolh-1g-1
以10h的光催化产氢测试为一个循环,对COF-BT-11材料进行循环稳定性测试。每10h反应结束后将反应液离心并用去离子水多次洗涤,最后将离心得到的COF-BT-11粉末重新分散到50mL0.1M抗坏血酸水溶液中进行下一个光催化产氢循环稳定性测试。图11的右侧是COF-BT-11材料的光催化循环稳定性测试结果,对COF-BT-11材料进行10个循环的光催化析氢反应测试,结果表明在每个循环的10h时间内,光催化析氢的产量基本维持在5000μmol,光催化析氢速率几乎没有降低,表明COF-BT-11材料在总反应时间为100h的光催化反应过程中没有活性损失,证明了COF-BT-11材料具有优异的稳定性。
应用例2
实际应用中,通常需要将粉末状的光催化剂负载到高表面积、光惰性的载体上,以便于光催化剂的循环回收利用。基于此,本发明中将COF-BT-11材料原位生长在多孔三聚氰胺泡沫上用于光催化测试。光催化测试过程中,将三聚氰胺泡沫(直径3cm,厚度3mm)支撑的COF-BT-11复合材料浸入抗坏血酸溶液中并将铂纳米颗粒原位沉积在其表面,在可见光照射下能够稳定地产生H2。如图12所示,在24h内光催化产生H2的总量达到4717μmol,H2平均生成速率为28μmolcm-2h-1。反应结束后,将溶液中的三聚氰胺泡沫直接取出用去离子水冲洗即可循环回收使用,这一过程中不会引起催化剂的损失。
应用例3
利用有机分子的阳极转化来替代牺牲剂的氧化反应,能够提高整体光催化体系的经济效益、降低产氢成本。基于此,本发明利用糠醇代替抗坏血酸作为电子给体来实现光催化制氢反应。在反应过程中,糠醇被选择性氧化为2-呋喃甲醛,它是塑料和制药工业的重要化学中间体。图13展示了在糠醇存在下在光催化析氢产量随时间的变化曲线。24h光催化反应时间内共产生52.9μmol的H2,对应的平均H2生成速率为220.4μmolh-1g-1。虽然产氢速率远低于抗坏血酸作为牺牲剂的反应条件,但是选择经济价值更高、热力学和动力学上更易发生的有机氧化反应代替较难发生的析氧反应或牺牲剂消耗,构建双功能的氧化还原反应体系,实现高效产氢的同时获得高附加值化学品,能够提升光催化能源转化效益。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种噻唑基共价有机框架材料,其特征在于,所述噻唑基共价有机框架材料是由噻唑氨基化合物和三醛基单体通过席夫碱偶联反应制备得到;所述噻唑氨基化合物为噻唑氨基单体或噻唑氨基单体的衍生物;
所述噻唑氨基化合物为下述N1-N6中的任意一种:
Figure FDA0003763745250000011
所述三醛基单体为下述A1-A4中的任意一种:
Figure FDA0003763745250000012
2.如权利要求1所述的噻唑基共价有机框架材料,其特征在于,所述席夫碱偶联反应,包括如下步骤:将所述噻唑氨基化合物和三醛基单体溶解后加入催化剂,加热反应,得到所述噻唑基共价有机框架材料。
3.如权利要求2所述的噻唑基共价有机框架材料,其特征在于,所述噻唑氨基化合物和三醛基单体溶解于有机溶剂中;所述有机溶剂包括邻二氯苯、三甲苯、正丁醇、二氧六环、甲醇、乙醇、苯甲醇、乙腈、氯仿、乙二醇、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和N-甲基吡咯烷酮中的一种或多种。
4.如权利要求2所述的噻唑基共价有机框架材料,其特征在于,所述催化剂为醋酸、盐酸、三氟乙酸和对甲苯磺酸中的一种或多种。
5.如权利要求2所述的噻唑基共价有机框架材料,其特征在于,所述加热反应的温度为80-150℃,时间为24-168h。
6.一种共价有机框架复合材料,其特征在于,所述共价有机框架复合材料是由权利要求1-5中任一项所述噻唑基共价有机框架材料与多孔载体通过原位聚合反应制备得到;所述多孔载体为三聚氰胺泡沫或聚氨酯泡沫。
7.一种光催化水分解产氢的方法,其特征在于,将光催化材料、水、牺牲电子给体和助催化剂于光照条件下反应;
所述光催化材料为权利要求1-5中任一项所述噻唑基共价有机框架材料或权利要求6所述共价有机框架复合材料。
8.如权利要求7所述的光催化水分解产氢的方法,其特征在于,所述牺牲电子给体包括甲醇、异丙醇、糠醇、三乙醇胺、三乙胺、抗坏血酸、抗坏血酸钠、硫化钠、亚硫酸钠、糠醇、5-羟甲基糠醇和甘油中的一种或多种。
9.如权利要求7所述的光催化水分解产氢的方法,其特征在于,所述助催化剂负载于光催化材料上,负载量为0.1-10%。
10.如权利要求7所述的光催化水分解产氢的方法,其特征在于,所述助催化剂为Cu、Ni、Co或Pt。
CN202210879623.5A 2022-07-25 2022-07-25 一种噻唑基共价有机框架材料及应用 Pending CN115197383A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210879623.5A CN115197383A (zh) 2022-07-25 2022-07-25 一种噻唑基共价有机框架材料及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210879623.5A CN115197383A (zh) 2022-07-25 2022-07-25 一种噻唑基共价有机框架材料及应用

Publications (1)

Publication Number Publication Date
CN115197383A true CN115197383A (zh) 2022-10-18

Family

ID=83583633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210879623.5A Pending CN115197383A (zh) 2022-07-25 2022-07-25 一种噻唑基共价有机框架材料及应用

Country Status (1)

Country Link
CN (1) CN115197383A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115532243A (zh) * 2022-10-25 2022-12-30 中国检验检疫科学研究院 磁性纳米粒及其制备方法和应用
CN115646545A (zh) * 2022-12-03 2023-01-31 福州大学 一种联吡啶基团连接的苯并三噻吩基共价有机光催化材料的制备及其光催化全分解水应用
CN114849773B (zh) * 2022-04-25 2023-04-11 南京信息工程大学 含席夫碱结构共价有机框架的光催化剂、制备方法与应用
CN118005948A (zh) * 2024-04-09 2024-05-10 蓝固(湖州)新能源科技有限公司 一种电解液添加剂及其制备方法和应用
CN118027327A (zh) * 2023-11-29 2024-05-14 生态环境部南京环境科学研究所 一种提高载流子分离效率的COFs材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105440058A (zh) * 2015-11-04 2016-03-30 兰州大学 一种基于苯并噻唑单元的共价有机框架材料的合成方法
CN113101972A (zh) * 2021-04-09 2021-07-13 兰州大学 聚氨酯泡沫海绵上BiOX/BCCN复合材料的制备方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105440058A (zh) * 2015-11-04 2016-03-30 兰州大学 一种基于苯并噻唑单元的共价有机框架材料的合成方法
CN113101972A (zh) * 2021-04-09 2021-07-13 兰州大学 聚氨酯泡沫海绵上BiOX/BCCN复合材料的制备方法及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JIN-XIAN CUI等: ""A metal-free covalent organic framework as a photocatalyst for CO2 reduction at low CO2 concentration in a gas–solid system"", 《 JOURNAL OF MATERIALS CHEMISTRY A》, vol. 9, no. 44, pages 24895 *
KIM, YOUNG HYUN等: "\"Benzothiazole-Based Covalent Organic Frameworks with Different Symmetrical Combinations for Photocatalytic CO2 Conversion\"", 《CHEMISTRY OF MATERIALS》, vol. 33, no. 22, pages 8705 - 8711 *
LIU, FULAI等: ""Regulating Excitonic Effects in Covalent Organic Frameworks to Promote Free Charge Carrier Generation"", 《ACS CATALYSIS》, vol. 12, no. 15, pages 9494 - 9502 *
ZHONG, HONG等: "" Covalent Organic Framework Hosting Metalloporphyrin-Based Carbon Dots for Visible-Light-Driven Selective CO2 Reduction"", 《ADVANCED FUNCTIONAL MATERIALS》, vol. 30, no. 35, pages 1 - 8 *
李丽等: ""共价有机框架材料在光催化领域中的应用"", 《高等学校化学学报》, vol. 41, no. 9, pages 1917 - 1932 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114849773B (zh) * 2022-04-25 2023-04-11 南京信息工程大学 含席夫碱结构共价有机框架的光催化剂、制备方法与应用
CN115532243A (zh) * 2022-10-25 2022-12-30 中国检验检疫科学研究院 磁性纳米粒及其制备方法和应用
CN115646545A (zh) * 2022-12-03 2023-01-31 福州大学 一种联吡啶基团连接的苯并三噻吩基共价有机光催化材料的制备及其光催化全分解水应用
CN118027327A (zh) * 2023-11-29 2024-05-14 生态环境部南京环境科学研究所 一种提高载流子分离效率的COFs材料及其制备方法和应用
CN118005948A (zh) * 2024-04-09 2024-05-10 蓝固(湖州)新能源科技有限公司 一种电解液添加剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN115197383A (zh) 一种噻唑基共价有机框架材料及应用
Wang et al. Rational preparation of cocoon-like g-C3N4/COF hybrids: Accelerated intramolecular charge delivery for photocatalytic hydrogen evolution
Su et al. Branch-like ZnS–DETA/CdS hierarchical heterostructures as an efficient photocatalyst for visible light CO 2 reduction
Long et al. Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis
Elewa et al. Triptycene-based discontinuously-conjugated covalent organic polymer photocatalysts for visible-light-driven hydrogen evolution from water
Vilela et al. Conjugated porous polymers for energy applications
Ampelli et al. CO 2 capture and reduction to liquid fuels in a novel electrochemical setup by using metal-doped conjugated microporous polymers
CN112608490B (zh) 硫醚功能化的芘基共价有机框架材料及其制备方法和应用
Gao et al. Construction of heterostructured g-C3N4@ TiATA/Pt composites for efficacious photocatalytic hydrogen evolution
Deng et al. Enhancing built-in electric field via molecular dipole control in conjugated microporous polymers for boosting charge separation
Liu et al. Hydrogen-bonding-assisted charge transfer: significantly enhanced photocatalytic H 2 evolution over gC 3 N 4 anchored with ferrocene-based hole relay
CN107899618B (zh) 一种基于大环化合物光敏染料与二氧化钛的杂化材料及其制备方法和在光催化中的应用
CN113019459B (zh) 一种二氧化钛卟啉基共价有机框架复合材料及其制备方法和应用
CN114570429B (zh) 一种单原子负载共价有机框架材料及其制备与在光解水制氢中的应用
Han et al. Effect of the cross-linker length of thiophene units on photocatalytic hydrogen production of triazine-based conjugated microporous polymers
CN115646545B (zh) 一种联吡啶基团连接的苯并三噻吩基共价有机光催化材料的制备及其光催化全分解水应用
Wang et al. Covalently connected core–shell NH2-MIL-125@ COFs-OH hybrid materials for visible-light-driven CO2 reduction
Zeng et al. Metal-free synthesis of pyridyl conjugated microporous polymers for photocatalytic hydrogen evolution
Luo et al. Photocatalytic conversion of arylboronic acids to phenols by a new 2D donor–acceptor covalent organic framework
CN114160169B (zh) 一种共价有机框架材料封装钼硫团簇的制备方法及其应用
CN110229347B (zh) 一种金属螯合的双孔共价有机骨架材料及其制备与应用
CN114085388B (zh) 一种含恶二唑连接基元的共价有机框架材料
Lei et al. Application of fully conjugated covalent organic frameworks in photocatalytic carbon dioxide reduction performance
Xue et al. Chemical conversion of imine-into quinoline-linked covalent organic frameworks for photocatalytic oxidation
CN114849785A (zh) 一种三嗪环共价有机框架材料掺杂卟啉钴光催化剂的制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221018

RJ01 Rejection of invention patent application after publication