CN115960750A - Baeyer-Villiger单加氧酶、突变体及其在制备手性丁内酯中的应用 - Google Patents

Baeyer-Villiger单加氧酶、突变体及其在制备手性丁内酯中的应用 Download PDF

Info

Publication number
CN115960750A
CN115960750A CN202211039656.5A CN202211039656A CN115960750A CN 115960750 A CN115960750 A CN 115960750A CN 202211039656 A CN202211039656 A CN 202211039656A CN 115960750 A CN115960750 A CN 115960750A
Authority
CN
China
Prior art keywords
residue
amino acid
acid sequence
baeyer
replacing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211039656.5A
Other languages
English (en)
Inventor
郁惠蕾
黄启康
张志钧
黄守成
郑宇璁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202211039656.5A priority Critical patent/CN115960750A/zh
Publication of CN115960750A publication Critical patent/CN115960750A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种Baeyer‑Villiger单加氧酶及其突变体在合成光学纯3‑取代手性丁内酯中的应用,本发明以抗辐射不动杆菌(Acinetobacter radioresistens CGMCC No.25186)来源的Baeyer‑Villiger单加氧酶ArBVMO及其突变体为生物催化剂,可催化系列潜手性3‑取代环丁酮的不对称氧化,制备相应光学纯的手性丁内酯。与现有技术相比,本发明具有酶促反应底物浓度高、反应条件温和、环境友好、时空产率高、产品光学纯度高等优势,具有很好的应用前景。

Description

Baeyer-Villiger单加氧酶、突变体及其在制备手性丁内酯中的应用
技术领域
本发明属于生物工程技术领域,尤其是涉及一种来源于抗辐射不动杆菌(Acinetobacter radioresistens)的Baeyer-Villiger单加氧酶及其突变体,含有该加氧酶基因的重组表达载体和重组表达转化体,以及利用该重组Baeyer-Villiger单加氧酶催化潜手性3-取代环丁酮化合物不对称氧化生成相应3-取代手性丁内酯化合物的应用。
背景技术
光学纯3-取代丁内酯的应用范围十分广阔,不仅可以作为聚合材料的前体,而且作为关键砌块参与多种已经应用于临床的药物的合成,包括抗痉挛药物(R)-Baclofen,抗癫痫药物Brivaracetam,治疗原发性青光眼药物Pilocarpine。除此之外,多种3-芳基取代的丁内酯也是合成天然产物木脂素类化合物的重要手性砌块和活性中心,这些化合物大都具有抗癌、抗肿瘤、抗炎症的作用,其中已经获得批准的药物包括抗生殖器疣的Podofilox,用于治疗肺癌以及白血病的Etoposide以及治疗淋巴细胞性白血病的Teniposide,而且还有许多其他的结构类似物和衍生化合物已经作为未来药物发现的优秀先导化合物。不仅如此,手性3-取代丁内酯还可以进一步衍生合成手性内酰胺、手性异戊二烯等,可以用于其他重要化合物的合成,包括商业香水Rosaphen,Zaragozic acid C的侧链和维生素E的侧链等。这些都证明了3-取代手性丁内酯作为手性砌块的重要地位以及广泛应用,具有极大的研究意义以及潜在的商业价值。
不对称Baeyer-Villger氧化法是目前合成3-取代手性丁内酯最为高效和直接的方法。其中化学不对称Baeyer-Villger氧化法因催化剂类型的不同分为过渡金属催化体系和有机分子催化体系。相较于传统的以过氧酸作为氧化剂,目前主要使用H2O2及其衍生物和O2作为绿色的氧化剂。即便如此,化学法催化仍存在着立体选择性不足,反应条件严苛,需要额外添加昂贵且制备复杂的手性试剂等问题。
Baeyer-Villiger单加氧酶介导的酶促不对称氧化因其具有更高的立体选择性,更加温和绿色的反应体系和无需额外添加手性试剂而成为最具前景的替代方案之一。欧洲专利EP1516046A2和美国专利US2003124695A1公开了一系列不同来源的Baeyer-Villiger单加氧酶,Fraaije、Mihovilovic等以此为酶催化平台,研究了它们对多种3-烷基取代和3-芳基取代的环丁酮的不对称氧化反应。但是在250mL反应体系中,3-烷基取代(4.72-5.48mM)和3-芳基取代的底物浓度(1.04-3mM)均处于较低水平,时空产率最高也仅在1g L- 1day-1左右,并且存在产物光学纯度不足的问题。针对这些问题,Collado等联合Codexis公司共同开发了一系列BVMOs的突变体,并且偶联葡萄糖脱氢酶(GDH)用于辅酶再生,催化多种不同的3-取代环丁酮底物,生成了两种对映异构内酯产物,尤其是弥补了不对称氧化芳基取代环丁酮的立体选择性缺失的问题,但仍旧未能解决底物上载量低(最高仅为10mM)、时空产率低(最高仅为2.25g·L-1·day-1)和立体选择性不高的问题。中国专利CN114480315A公布一种Baeyer-Villiger单加氧酶及其突变体催化生成抗癫痫药物布瓦西坦的中间体(R)-3-丙基丁内酯,产物的ee>99%,底物3-丙基环丁酮的浓度最高为120mM。这是目前报道唯一一个催化生成3-取代丁内酯较好的实例,局限在于底物浓度较低,仅催化了一种短链烷基取代的环丁酮。
综上所述,酶促不对称氧化合成手性丁内酯相较于化学催化有着诸多优势,但是已知的Baeyer-Villiger单加氧酶(BVMOs)介导的催化反应通常存在底物上载量低,尤其是针对芳基取代的环丁酮,时空产率低,产物光学纯度不足,立体选择性互补性有所缺失等问题。因此,需要研发更加高效广谱的酶催化剂来满足催化反应效率高、底物浓度高,操作简单和生产效率高的工业化需求。
发明内容
本发明的目的是针对现有技术中Baeyer-Villiger单加氧酶催化3-取代环丁酮反应性能的不足,提供一种Baeyer-Villiger单加氧酶、突变体及其在制备手性丁内酯中的应用,即通过优化反应体系以较高时空产率制备光学纯的3-取代手性丁内酯。
本发明的目的可以通过以下技术方案来实现:
本发明的技术方案之一是:
本发明提供一株抗辐射不动杆菌(Acinetobacter radioresistens),已于2022年6月27日保藏于中国普通微生物菌种保藏管理中心,保藏地址为北京市朝阳区北辰西路1号院3号,保藏编号为CGMCC No.25186。
以3-丙基环丁酮为唯一碳源,对土壤微生物进行Baeyer Villiger单加氧酶活性筛选,从上海华东理工大学校园内的土壤样本中分离获得一株抗辐射不动杆菌(Acinetobacter radioresistens),即上述保藏编号CGMCC No.25186。
所述抗辐射不动杆菌CGMCC No.25186具有如下特征:
所述抗辐射不动杆菌为革兰氏阴性菌,球杆菌属,宽1.0-1.5μm,长1.5-2.5μm,在固体培养基上,它们变得更偏向球状,成对或小簇出现,形成光滑、苍白、潮湿,边缘规则的菌落。
所述抗辐射不动杆菌表达如SEQ ID No.2所示氨基酸序列组成的BaeyerVilliger单加氧酶。其中,Baeyer Villiger单加氧酶的核苷酸序列如SEQ ID No.1所示。
本发明的技术方案之二是:
本发明提供一种Baeyer Villiger单加氧酶,所述Baeyer Villiger单加氧酶是如下(a)或(b)的蛋白质:
(a)如SEQ ID No.2所示氨基酸序列组成的蛋白质;
(b)在如SEQ ID No.2所示氨基酸序列中经过取代、缺失或添加一个或几个氨基酸且具有Baeyer-Villiger单加氧酶活性的由(a)衍生的蛋白质。
进一步地,(b)所述的蛋白质为:由SEQ ID No.2所示氨基酸序列在第141位、第187位、第247位、第293位、第390位单独替换一个氨基酸或多位点同时替换氨基酸后而形成的新氨基酸序列组成的蛋白质:
进一步优选地,(b)所述蛋白质为:
(1)将如SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪氨酸残基而形成的新氨基酸序列组成的蛋白质;
(2)将如SEQ ID No.2所示氨基酸序列的第247位亮氨酸残基替换为谷氨酰胺残基而形成的新氨基酸序列组成的蛋白质;
(3)将如SEQ ID No.2所示氨基酸序列的第293位亮氨酸残基替换为苯丙氨酸残基而形成的新氨基酸序列组成的蛋白质;
(4)将如SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪氨酸残基,同时将第187位苏氨酸残基替换为亮氨酸残基而形成的新氨基酸序列组成的蛋白质;
(5)将如SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪氨酸残基,同时将第247位亮氨酸残基替换为谷氨酰胺残基而形成的新氨基酸序列组成的蛋白质;
(6)将如SEQ ID No.2所示氨基酸序列的第247位亮氨酸残基替换为谷氨酰胺残基,同时将第293位亮氨酸残基替换为苯丙氨酸残基而形成的新氨基酸序列组成的蛋白质;
(7)将如SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪氨酸残基,同时将第390位丙氨酸残基替换为丝氨酸残基而形成的新氨基酸序列组成的蛋白质;
(8)将如SEQ ID No.2所示氨基酸序列的第187位苏氨酸残基替换为亮氨酸残基,同时将第390位丙氨酸残基替换为丝氨酸残基而形成的新氨基酸序列组成的蛋白质;
(9)将如SEQ ID No.2所示氨基酸序列的第247位亮氨酸残基替换为谷氨酰胺残基,同时将第390位丙氨酸残基替换为丝氨酸残基而形成的新氨基酸序列组成的蛋白质;
(10)将如SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪谷氨酰胺残基,同时将第247位亮氨酸残基替换为谷氨酰胺残基,将第390位丙氨酸残基替换为丝氨酸残基而形成的新氨基酸序列组成的蛋白质。
本发明所述Baeyer Villiger单加氧酶是从所述抗辐射不动杆菌CGMCC No.25186中获得。对所述抗辐射不动杆菌CGMCC No.25186的Baeyer Villiger单加氧酶进行基因克隆,获得了一个催化性能优良的Baeyer Villiger单加氧酶,命名为ArBVMO,其氨基酸序列如SEQ ID No.2所示。
在筛选获得Baeyer Villiger单加氧酶的基础上,采用定点饱和突变、组合突变等策略对该酶进行定向进化改造,鉴别获得活性显著改善的ArBVMO突变体。通过反复试验,发现将如SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基、第187位苏氨酸残基、第247位亮氨酸残基、第293位亮氨酸残基以及第390位丙氨酸残基进行单点替换或者同时对如上多个氨基酸残基位点进行替换后,仍具有Baeyer Villiger单加氧酶活性,在此基础上获得了酶活性显著改善的ArBVMO突变体。除此之外,将如SEQ ID No.2所示氨基酸序列的其它位点氨基酸残基替换成不影响ArBVMO突变体催化性能的其它氨基酸残基也属于本发明保护范围。
本发明的技术方案之三是:
本发明提供一种编码如技术方案二所述Baeyer Villiger单加氧酶的核酸,具体的,其为如下序列的核酸:
(1)SEQ ID No.1所示的核酸;或
(2)编码如技术方案二所述Baeyer Villiger单加氧酶的核酸。
本发明所述Baeyer Villiger单加氧酶的编码核酸的获得方法为本领域常规:较佳地,通过基因工程技术从所述抗辐射不动杆菌CGMCC No.25186中分离获得;或通过人工全序列合成的方法获得。
本发明的技术方案之四是:
本发明提供一种包含所述Baeyer Villiger单加氧酶核酸序列的重组表达载体。
本发明所述重组表达载体可以通过本领域常规方法将所述Baeyer Villiger单加氧酶核酸连接于各种表达载体上构建而成,所述表达载体可为市售的质粒,优选的为质粒pET-28a(+)。
较佳地,可通过下述方法制得本发明所述的重组表达载体:将通过PCR扩增所得的Baeyer-Villiger单加氧酶的基因序列DNA片段用限制性内切酶EcoR I和Xho I双酶切,同时将空载质粒pET-28a(+)同样用限制性内切酶EcoR I和Xho I双酶切,回收上述酶切后的Baeyer-Villiger单加氧酶的基因DNA片段以及空载质粒pET-28a(+),利用T4 DNA连接酶连接,构建获得含有所述Baeyer-Villiger单加氧酶核酸序列的重组表达载体(pET28a-ArBVMO)。
本发明的技术方案之五是:
本发明提供一种包含所述Baeyer-Villiger单加氧酶核酸序列或重组表达载体的重组表达转化体。
本发明所述重组表达转化体可通过将技术方案四所述的重组表达载体转化至宿主细胞中制得。所述宿主细胞为本领域常规的宿主细胞,只要能满足重组表达载体能够稳定地自行复制,并且携带的Baeyer-Villiger单加氧酶核酸序列可被有效表达即可。所述宿主细胞优选为大肠杆菌,更优选的为:大肠杆菌E.coli BL21(DE3)。将所述重组表达载体转化至大肠杆菌E.coli BL21(DE3)中,即可获得本发明优选的基因工程菌株。
本发明的技术方案之六是:
本发明提供一种所述Baeyer-Villiger单加氧酶催化剂,所述的Baeyer-Villiger单加氧酶催化剂是如下任意一种形式:
(1)培养如技术方案五所述的重组表达转化体,分离含有所述Baeyer-Villiger单加氧酶的转化体细胞;
(2)培养如技术方案五所述的重组表达转化体,分离含有所述Baeyer-Villiger单加氧酶的粗酶液;
(3)将所述Baeyer-Villiger单加氧酶的粗酶液冷冻干燥得到的粗酶粉。
提供一种所述Baeyer-Villiger单加氧酶催化剂的制备方法,较佳地为:培养如技术方案五所述的重组表达转化体,获得重组Baeyer-Villiger单加氧酶。其中所述重组表达转化体培养所用的培养基为本领域任何可使转化体生长并产生本发明的重组Baeyer-Villiger单加氧酶的培养基。所述培养基优选为LB培养基:蛋白胨10g/L,酵母膏5g/L,NaCl10g/L,pH 6.5-7.0。培养方法和培养条件没有特殊的限制,可以根据宿主细胞类型和培养方法等因素的不同,按本领域常规知识进行适当的选择,只要使转化体能够生长并生产所述Baeyer-Villiger单加氧酶即可。重组表达转化体培养的具体操作可按本领域常规操作进行。优选的培养方法为:将本发明所述的重组大肠杆菌,接种至含有卡那霉素的LB培养基中,37℃、200rpm振荡培养过夜。按1-2%(v/v)的接种量接入装有100mL的LB培养基(含卡那霉素)的500mL三角烧瓶中,置于37℃、180rpm摇床振荡培养,当培养液的OD600达到0.6-0.8时,加入终浓度为0.1~0.6mmol/L的异丙基-β-D-硫代半乳糖苷(IPTG)作为诱导剂,16~25℃诱导12~24h后,将培养液离心,收集沉淀,然后用生理盐水洗涤两次,获得重组表达转化体细胞。将收获的重组细胞进行冷冻干燥,即可获得含有所述Baeyer-Villiger单加氧酶突变体的冻干细胞。将收获的重组细胞悬浮于5~10倍体积(v/w)的缓冲液中,超声破碎,离心收集上清液,即可获得所述重组Baeyer-Villiger单加氧酶突变体的粗酶液。收集的粗酶液放置在-80℃下冷冻,然后使用真空冷冻干燥机低温干燥,即可得到冻干酶粉。将所获得的冻干酶粉保存在4℃冰箱内,可以方便地使用。
本发明中所述Baeyer~Villiger单加氧酶的活力测定方法:将含2mmol/L 3-取代环丁酮和0.2mmol/L NADPH的1mL反应体系(50~100mmol/L磷酸钠缓冲液,pH 7.0~9.0)预热至30℃,然后加入适量的ArBVMO或者突变体,30℃保温反应,在分光光度计上检测340nm处NADPH的吸光度变化,记录1min内吸光度的变化值。
用下式计算得到酶活力:
酶活力(U)=EW×V×103/(6220×l)
式中,EW为1min内340nm处吸光度的变化;V为反应液的体积,单位为mL;6220为NADPH的摩尔消光系数,单位为L/(mol·cm);l为光程距离,单位为cm。1个酶活力单位(U)定义为上述条件下每分钟催化氧化1μmol NADPH所需的酶量。
本发明的技术方案之七是:
本发明提供一种所述Baeyer-Villiger单加氧酶在3-取代手性丁内酯合成中的应用,即提供了利用Baeyer-Villiger单加氧酶催化潜手性3-取代环丁酮化合物的不对称还原,制备多种不同3-取代手性丁内酯化合物的方法,其中辅酶NADPH再生所用的脱氢酶是甲酸脱氢酶FDH(Appl Biochem Biotechnol 2020,192:530–543)、葡萄糖脱氢酶GDH(ChemBioChem 2020,21:2680-2688)、醇脱氢酶ADH(Appl Environ Microb,2022,88:e00341-22)中的任意一种。
所述潜手性3-取代环丁酮物可选自以下化合物中的一种或多种:
Figure BDA0003819649980000071
所述Baeyer-Villiger单加氧酶及其突变体催化剂可以催化上述十二种化合物的不对称氧化,生成相应的3-取代手性丁内酯化合物。
在所述应用中,潜手性3-取代环丁酮化合物的浓度可为10~200mmol/L,所述的Baeyer-Villiger单加氧酶突变体的用量可选用为5~10U/mmol潜手性3-取代环丁酮化合物。反应液中NADPH或NADP+的用量为0.05~0.2mmol/L。优选的,反应过程中利用甲酸钠作为辅底物,通过甲酸脱氢酶催化的甲酸钠氧化反应实现反应体系中NADPH的辅酶循环,所述甲酸钠脱氢酶的用量可为7.5~30U/mmol潜手性3-取代环丁酮化合物,所述甲酸钠的用量可为潜手性3-取代环丁酮化合物摩尔浓度的1.5~3.0倍。不对称氧化过程中所需的缓冲液为本领域常规磷酸盐缓冲液,如磷酸钠缓冲液,其浓度较佳为10~100mmol/L。优选的不对称氧化过程在水-有机相构成的两相反应体系中进行,所述的有机相选自甲苯、正己烷、正庚烷、正十二烷、环己烷、甲基叔丁基醚、异丙醚中的一种,并且有机相与水相的体积比为1:3~3:1。所述的不对称还原反应是在振荡或搅拌条件下进行。所述的不对称还原反应的温度为25~35℃,优选为30℃。所述的不对称还原反应的时间以底物完全转化或反应自行终止的时间为准,优选反应时间小于24h。
还原反应结束后,采用常规方法对反应液中的氧化产物3-取代手性丁内酯进行分离提取。将反应液收集后以12000×g,离心15min,分离上层有机相;优选的使用二氯甲烷萃取水相并收集下层有机相,合并有机相后进行浓缩,除去溶剂,获得3-取代手性丁内酯的粗产品。接着用硅胶柱层析法进行纯化,优选流动相为正己烷、石油醚、乙酸乙酯,得到纯的3-取代手性丁内酯产物。
本发明内容中所述的各反应或检测条件,可根据本领域常识进行组合或更改,并可通过实验得到验证。
本发明所用的原料或试剂除特别说明之外,均市售可得。
与现有技术相比,本发明的创新和改进效果在于:
(1)本发明提供了一种催化性能更好的Baeyer-Villiger单加氧酶突变体,能够高效催化取代基大小不同的潜手性3-取代环丁酮的不对称氧化,制备光学纯的3-取代手性丁内酯化合物,如(S)-3-丙基丁内酯、(R)-3-苯基丁内酯、(S)-3-苄基丁内酯和(S)-3-胡椒基丁内酯。
(2)Baeyer-Villiger单加氧酶能够催化浓度高达200mM的疏水性底物3-丙基环丁酮、3-苯基环丁酮、3-苄基环丁酮和3-胡椒基环丁酮的转化,实现99%以上的转化率,时空产率分别达到220g L-1day-1、113g L-1day-1、110g L-1day-1和115gL-1day-1
相对于已经报道的催化该类底物的Baeyer-Villiger单加氧酶,本发明得到的Baeyer-Villiger单加氧酶突变体具有可耐受高浓度底物,产物光学纯度高,时空产率高等优势,因此具有很好的工业应用前景。
生物材料保藏信息
本发明所述的抗辐射不动杆菌Acinetobacter radioresistens,已于2022年6月27日保藏于中国普通微生物菌种保藏管理中心(CGMCC),保藏地址为:北京市朝阳区北辰西路1号院3号,保藏编号为CGMCC No.25186,分类命名是抗辐射不动杆菌Acinetobacterradioresistens。
具体实施方式
下面通过具体实施例对本发明进行详细说明,但不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
下列实施例中的材料的来源为:
空质粒载体pET-28a(+)购自Novagen公司。
E.coli BL21(DE3)感受态细胞、2×Taq PCR MasterMix、琼脂糖凝胶DNA回收试剂盒均购自北京天根生化科技有限公司。
限制性内切酶EcoR I和Xho I均为New England Biolabs(NEB)公司的市售产品。
实施例1抗辐射不动杆菌Acinetobacter radioresistens CGMCC No.25186的筛选
本发明在华东理工大学不同特性的土壤中广泛采集土样,使用不同梯度浓度的环丁酮底物进行培养,对土壤中的菌株进行富集和驯化培养,筛选获得了一株能够高效催化环丁酮不对称氧化为丁内酯的细菌Acinetobacter radioresistens。筛选所用培养基为营养肉汤琼脂培养基(10g/L蛋白胨,3g/L牛肉浸粉,5g/L NaCl,15g/L琼脂,pH 7.3),于30℃的恒温培养箱中培养24h。
实施例2重组质粒pET28a-ArBVMO的构建
采用目的基因PCR扩增和酶切连接技术将ArBVMO的基因构建到空质粒载体pET-28a(+)上,从而获得pET28a-ArBVMO的重组质粒,构建使用的引物为:
上游引物序列:CCGGAATTCATGGATAAACACATTGATG(SEQ ID NO.3所示);
下游引物序列:CCGCTCGAGTTATGAAACCAGTTTAGGCTTAC(SEQ ID NO.4所示)。
其中上游引物中GAATTC序列为EcoR I的酶切位点,下游引物中CTCGAG序列为XhoI的酶切位点。
以抗辐射不动杆菌Acinetobacter radioresistens CGMCC No.25186基因组为模板,用Prime Star DNA聚合酶进行ArBVMO基因的PCR扩增。
其中PCR体系(20μL)为:Prime Star DNA聚合酶10μL,模板1μL,上游引物1μL,下游引物1μL,DMSO 1μL,加灭菌蒸馏水补足至20μL。PCR反应程序:(1)95℃预变性3min;(2)98℃变性10s;(3)57℃退火15s;(4)72℃延伸1.5min;步骤(2)~(4)共进行30个循环;最后72℃延伸10min,4℃保存产物。PCR产物经琼脂糖凝胶电泳分析验证后切胶纯化回收,对回收后的ArBVMO基因的DNA片段与空载质粒pET-28a(+)分别用限制性内切酶EcoR I和Xho I在37℃双酶切6h。双酶切产物经琼脂糖凝胶电泳分析验证后切胶纯化回收,用T4 DNA连接酶将得到的线性化pET-28a(+)质粒与纯化后的ArBVMO基因DNA片段置于16℃连接过夜。将连接产物转化到大肠杆菌E.coli BL21(DE3)感受态细胞中,并均匀涂布于含有50μg/ml卡那霉素的LB琼脂平板上,置于37℃培养箱中静置培养约12h。将转化平板上的转化体用接种环挑入含有50μg/mL卡那霉素的4mL LB液体培养基中,于37℃培养12h后收集菌体并测序,对测序正确的转化体进行保藏。
实施例3半理性设计构建Baeyer-Villiger单加氧酶ArBVMO突变体
对实施例1所述的ArBVMO进行同源建模和分子对接,通过对底物口袋附近的氨基酸进行定点饱和突变和组合突变,进一步提高酶的活性。通过Uniprot、NCBI BLAST以及空间结构模建,如序列表SEQ ID No.2所示氨基酸序列的Baeyer-Villiger单加氧酶的空间立体结构中,在底物3-丙基环丁酮的结合位点周围的氨基酸残基包括:第141位、第187位、第247位、第293位以及第390位的氨基酸。采用定点饱和突变技术,对这些位点的氨基酸残基进行饱和突变,引物设计如表1所示。
表1引物表
Figure BDA0003819649980000111
以pET28a-ArBVMO为模板,使用PrimeStar HS Premix进行PCR扩增。PCR体系为:2×PrimeStar HS premix 10μL,上下游引物各1μL,pETP28a-ArBVMO质粒40ng,DMSO 1μL,加灭菌蒸馏水补足至20μL。PCR反应程序:(1)95℃预变性5min;(2)94℃变性30s;(3)60℃退火30s;(4)72℃延伸7min;步骤(2)~(4)共进行30个循环;最后72℃延伸10min。反应结束后,再加1μL的限制性内切酶Dpn I到20μL的PCR产物中,并在37℃条件下保温2h,使模板充分消化降解,将消化产物转化到大肠杆菌E.coli BL21(DE3)感受态细胞中,并均匀涂布于含有50μg/mL卡那霉素的LB琼脂平板上,置于37℃培养箱中静置培养约12h。将转化平板上的转化体用接种环挑入含有50μg/mL卡那霉素的4mL LB液体培养基中,于37℃培养12h后收集菌体并测序,对测序正确的转化体进行保藏。
所述Baeyer-Villiger单加氧酶突变体氨基酸具有如下序列中的一种:
(1)将如序列表中SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪氨酸残基,命名为ArBVMOM1
(2)将如序列表中SEQ ID No.2所示氨基酸序列的第247位亮氨酸残基替换为谷氨酰胺残基,命名为ArBVMOM2
(3)将如序列表中SEQ ID No.2所示氨基酸序列的第293位亮氨酸残基替换为苯丙氨酸残基,命名为ArBVMOM3
(4)将如序列表中SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪氨酸残基,第187位苏氨酸残基替换为亮氨酸残基,命名为ArBVMOM4
(5)将如序列表中SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪氨酸残基,第247位亮氨酸残基替换为谷氨酰胺残基,命名为ArBVMOM5
(6)将如序列表中SEQ ID No.2所示氨基酸序列的第247位亮氨酸残基替换为谷氨酰胺残基,第293位亮氨酸残基替换为苯丙氨酸残基,命名为ArBVMOM6
(7)将如序列表中SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪氨酸残基,第390位丙氨酸残基替换为丝氨酸残基,命名为ArBVMOM7
(8)将如序列表中SEQ ID No.2所示氨基酸序列的第187位苏氨酸残基替换为亮氨酸残基,第390位丙氨酸残基替换为丝氨酸残基,命名为ArBVMOM8
(9)将如序列表中SEQ ID No.2所示氨基酸序列的第247位亮氨酸残基替换为谷氨酰胺残基,第390位丙氨酸残基替换为丝氨酸残基,命名为ArBVMOM9
(10)将如序列表中SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪氨酸残基,第247位亮氨酸残基替换为谷氨酰胺残基,第390位丙氨酸残基替换为丝氨酸残基,命名为ArBVMOM10
在10mL甲苯-水两相体系中(1:1,v/v),加入10mmol/L的底物3-丙基环丁酮,3g/L的ArBVMO或突变体的整细胞,2.5g/L甲酸脱氢酶,15mmol/L甲酸钠,0.2mmol/L NADP+,其中水相为100mM,pH 8.0的KBP。在6h时结束反应并取样,无水硫酸钠干燥样品后使用GC分析,结果如表2所示。
表2 Baeyer-Villiger单加氧酶突变体活性改进列表
Figure BDA0003819649980000131
实施例4-6重组Baeyer-Villiger单加氧酶突变体M7、M8、M10的表达及活力测定
将实施例2获得的Baeyer-Villiger单加氧酶突变体M7、M8、M10对应的重组大肠杆菌E.coli BL21(DE3)/pET28a-ArBVMO接种至含50μg/mL卡那霉素的LB培养基中,37℃摇床振荡培养12h,之后按1%(v/v)的接种量接入装有50mL LB培养基(含50μg/ml卡那霉素)的250mL三角烧瓶中,置于37℃、200rpm摇床振荡培养,当培养液的OD600达到0.8-1.0时,加入终浓度为0.2mmol/L的IPTG作为诱导剂,16-37℃继续振荡培养,诱导16-24h。将培养液以14000×g离心3min,收集细胞,并用生理盐水洗涤两次,得到静息细胞。将100mL培养液中获得的细胞悬浮于10mL的磷酸钾缓冲液(100mM,pH 8.0)中,冰水浴中进行超声破碎:功率400W,工作4s,间歇6s,进行90个循环,4℃下14000×g离心45min。沉淀用10mL KPB缓冲液(100mM,pH 8.0)重悬,1.5mL Eppendorf管中,与20μL 5×SDS PAGE Loading Buffer混合后,沸水浴或95℃金属浴加热5min,样品立即进行SDS-PAGE分析。SDS-PAGE结果显示,本发明所构建的重组表达转化体表达的目的蛋白含量均可占总蛋白的60%以上,且90%的目的蛋白为可溶性表达。其中M7上清粗酶液,活力为0.61U/mL。另外,将收获的粗酶液冷冻干燥,获得冻干酶粉活力为0.19U/mg;M8上清粗酶液,活力为0.52U/mL。另外,将收获的粗酶液冷冻干燥,获得冻干酶粉活力为0.13U/mg;M10上清粗酶液,活力为0.57U/mL。另外,将收获的粗酶液冷冻干燥,获得冻干酶粉活力为0.16U/mg。
实施例7-18重组Baeyer-Villiger单加氧酶突变体催化系列潜手性底物的不对称氧化
Baeyer-Villiger单加氧酶突变体的活力测定采用分光光度计测定:将含2mmol/L底物1a-1l(溶解于5%甲醇)和0.2mmol/L NADPH的1mL反应体系(100mmol/L磷酸钠缓冲液,pH 8.0)预热至30℃,然后加入适量的突变体纯酶,30℃保温反应,在分光光度计上检测340nm处的吸光度变化,记录1min内吸光度的变化值,计算酶活力,结果见表3。
表3 ArBVMO突变体催化系列潜手性底物不对称氧化反应
Figure BDA0003819649980000141
Figure BDA0003819649980000151
实施例7-18中不同潜手性底物酶法氧化的终产物3-取代手性丁内酯的ee值分析条件如表4所示。
表4 ArBVMO催化不同潜手性底物所得的终产物ee值的分析条件
Figure BDA0003819649980000152
Figure BDA0003819649980000161
实施例19-24重组ArBVMO突变体对不同3-取代环丁酮的动力学参数测定
为了比较ArBVMO与已经报道的对3-取代环丁酮有较好催化效果的CHMOBrevi1在催化性能上的差异,我们对其进行了相关的动力学参数测定。在最适温度、最适pH及最适助溶剂的反应条件下,测定底物(1a或1d或1k)在0.05–6mM浓度范围内对酶促反应速率的影响,当反应速率达到最大值且随着底物浓度增加反应速率仍保持不变,此时的浓度即可认为是底物饱和时的浓度,在此底物浓度条件下测定辅酶NADPH消耗动力学。根据米氏方程,采用Prism 9.0软件拟合得到相关动力学曲线和参数,并根据其参数确定辅酶饱和浓度;在辅酶饱和浓度条件下测定底物动力学。1mL测活体系包含0.05–6mM底物、0.005–0.2mM NADPH、KPB(100mM,pH 8.0或9.0)及适量的纯酶液。动力学参数测定结果如表5所示。
表5 ArBVMO和CHMOBrevi1催化不同潜手性底物的动力学参数比较
Figure BDA0003819649980000162
Figure BDA0003819649980000171
从实施例19-21中我们可以看出,ArBVMO突变体对底物均拥有较低的KM和较好的kcat,并且未观察到底物抑制现象的发生,这意味着其拥有进行高浓度、大规模反应酶促反应的潜力。而从实施例22-24中我们不难发现,虽然虽然CHMOBrevi1拥有更低的KM和更高的kcat,但是存在着严重的底物抑制现象,对于三种不同的底物抑制常数Ki均小于1mM,这严重限制了该酶在高浓度底物条件下的酶促反应以及在工业生产上的应用。
实施例25重组ArBVMOM7催化合成(S)-3-丙基丁内酯
在250mL两相体系中(正庚烷-水,1:3,v/v),含有200mmol/L底物3-丙基环丁酮,150mmol/L的葡萄糖,0.1mmol/L的NADP+,1000U/L的如实施例3获得的重组ArBVMOM7粗酶液以及3000U/L的葡萄糖脱氢酶,其中水相为100mM,pH 8.0的KPB。在转速为250rpm的摇床中于30℃恒温反应,通过TLC监测底物的转化,在5.5h时观察到底物完全转化,然后收集反应液离心取上层有机相,接着等体积二氯甲烷萃取水相,使用分液漏斗分离下层有机相,并合并有机相。使用饱和碳酸氢钠水溶液洗涤有机相,然后用无水Na2SO4干燥过夜,接着减压浓缩有机相,最后用硅胶层析柱纯化粗产品,用正己烷和石油醚(50:1)的流动相洗脱目标产物(S)-3-丙基丁内酯,产物纯度为99.5%,ee值为99.7%(S),时空产率为147g L-1day-1
实施例26重组ArBVMOM7催化合成(S)-3-丙基丁内酯
在250mL两相体系中(甲基叔丁基醚-水,1:2,v/v),含有300mmol/L底物3-丙基环丁酮,150mmol/L的葡萄糖,0.1mmol/L的NADP+,1000U/L的如实施例3获得的重组ArBVMOM7粗酶液以及3000U/L的葡萄糖脱氢酶,其中水相为100mM,pH 8.0的KPB。在转速为250rpm的摇床中于30℃恒温反应,通过TLC监测底物的转化,在5.5h时观察到底物完全转化,然后收集反应液离心取上层有机相,接着等体积二氯甲烷萃取水相,使用分液漏斗分离下层有机相,并合并有机相。使用饱和碳酸氢钠水溶液洗涤有机相,然后用无水Na2SO4干燥过夜,接着减压浓缩有机相,最后用硅胶层析柱纯化粗产品,用正己烷和石油醚(50:1)的流动相洗脱目标产物(S)-3-丙基丁内酯,产物纯度为99.5%,ee值为99.7%(S),时空产率为220g L-1day-1
实施例27重组ArBVMOM8催化合成(R)-3-苯基丁内酯
在250mL两相体系中(异丙醚-水,2:1,v/v),含有180mmol/L底物3-苯基环丁酮,270mmol/L的甲酸钠,0.1mmol/L的NADP+,1000U/L的如实施例3获得的重组ArBVMOM8粗酶液以及3000U/L的甲酸脱氢酶,其中水相为100mM,pH 8.0的KPB。在转速为250rpm的摇床中于30℃恒温反应,通过TLC监测底物的转化,在6h时观察到底物完全转化,然后收集反应液离心取上层有机相,接着等体积二氯甲烷萃取水相,使用分液漏斗分离下层有机相,并合并有机相。使用饱和碳酸氢钠水溶液洗涤有机相,然后用无水Na2SO4干燥过夜,接着减压浓缩有机相,最后用硅胶层析柱纯化粗产品,用乙酸乙酯和石油醚(10:1)的流动相洗脱目标产物(R)-3-苯基丁内酯,产物纯度为99.5%,ee值为99.5%,时空产率为110gL-1day-1
实施例28重组ArBVMOM8催化合成(R)-3-苯基丁内酯
在250mL两相体系中(正己烷-水,3:1,v/v),含有180mmol/L底物3-苯基环丁酮,270mmol/L的甲酸钠,0.1mmol/L的NADP+,1000U/L的如实施例3获得的重组ArBVMOM8粗酶液以及3000U/L的甲酸脱氢酶,其中水相为100mM,pH 8.0的KPB。在转速为250rpm的摇床中于30℃恒温反应,通过TLC监测底物的转化,在6h时观察到底物完全转化,然后收集反应液离心取上层有机相,接着等体积二氯甲烷萃取水相,使用分液漏斗分离下层有机相,并合并有机相。使用饱和碳酸氢钠水溶液洗涤有机相,然后用无水Na2SO4干燥过夜,接着减压浓缩有机相,最后用硅胶层析柱纯化粗产品,用乙酸乙酯和石油醚(10:1)的流动相洗脱目标产物(R)-3-苯基丁内酯,产物纯度为99.5%,ee值为99.5%,时空产率为113gL-1day-1
实施例29重组ArBVMOM8催化合成(R)-3-苯基丁内酯
在250mL两相体系中(环己烷-水,1:1.5,v/v),含有180mmol/L底物3-苯基环丁酮,270mmol/L的异丙醇,0.1mmol/L的NADP+,1000U/L的如实施例3获得的重组ArBVMOM8粗酶液以及3000U/L的醇脱氢酶,其中水相为100mM,pH 8.0的KPB。在转速为250rpm的摇床中于30℃恒温反应,通过TLC监测底物的转化,在6h时观察到底物完全转化,然后收集反应液离心取上层有机相,接着等体积二氯甲烷萃取水相,使用分液漏斗分离下层有机相,并合并有机相。使用饱和碳酸氢钠水溶液洗涤有机相,然后用无水Na2SO4干燥过夜,接着减压浓缩有机相,最后用硅胶层析柱纯化粗产品,用乙酸乙酯和石油醚(10:1)的流动相洗脱目标产物(R)-3-苯基丁内酯,产物纯度为99.5%,ee值为99.5%,时空产率为121gL-1day-1
实施例30重组ArBVMOM10催化合成(S)-3-苄基丁内酯
在250mL两相体系中(正十二烷-水,1:1,v/v),含有150mmol/L底物3-苄基环丁酮,225mmol/L的异丙醇,0.1mmol/L的NADP+,1000U/L的如实施例3获得的重组ArBVMOM10粗酶液以及3000U/L的醇脱氢酶,其中水相为100mM,pH 8.0的KPB。在转速为250rpm的摇床中于30℃恒温反应,通过TLC监测底物的转化,在7.5h时观察到底物完全转化,然后收集反应液离心取上层有机相,接着等体积二氯甲烷萃取水相,使用分液漏斗分离下层有机相,并合并有机相。使用饱和碳酸氢钠水溶液洗涤有机相,然后用无水Na2SO4干燥过夜,接着减压浓缩有机相,最后用硅胶层析柱纯化粗产品,用乙酸乙酯和石油醚(4:1)的流动相洗脱目标产物(S)-3-苄基丁内酯,产物纯度为99%,ee值为99.5%,时空产率为110g L-1day-1
实施例31重组ArBVMOM10催化合成(S)-3-胡椒基丁内酯
在250mL两相体系中(甲苯-水,1:2,v/v),含有200mmol/L底物3-胡椒基环丁酮,300mmol/L的葡萄糖,0.1mmol/L的NADP+,1000U/L的如实施例3获得的重组ArBVMOM10粗酶液以及3000U/L的葡萄糖脱氢酶,其中水相为100mM,pH 8.0的KPB。在转速为250rpm的摇床中于30℃恒温反应,通过TLC监测底物的转化,在8.5h时观察到底物完全转化,然后收集反应液离心取上层有机相,接着等体积二氯甲烷萃取水相,使用分液漏斗分离下层有机相,并合并有机相。使用饱和碳酸氢钠水溶液洗涤有机相,然后用无水Na2SO4干燥过夜,接着减压浓缩有机相,最后用硅胶层析柱纯化粗产品,用乙酸乙酯和石油醚(4:1)的流动相洗脱目标产物(S)-3-胡椒基丁内酯,产物纯度为99%,ee值为99.5%,时空产率为115g L-1day-1
实施例25-31给出了制备不同光学纯3-取代手性丁内酯化合物的实施例,可以看出,利用本发明方法所得重组Baeyer-Villiger单加氧酶酶制剂可以高效地催化不同大小取代基的3-取代环丁酮的不对称氧化,此类化合物可作为合成药物和天然产物的关键手性砌块,具有非常大的应用价值。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种抗辐射不动杆菌(Acinetobacter radioresistens),其特征在于,已于2022年6月27日保藏于中国普通微生物菌种保藏管理中心,保藏地址为:北京市朝阳区北辰西路1号院3号,保藏编号为CGMCC No.25186。
2.一种Baeyer-Villiger单加氧酶,其特征在于,所述Baeyer-Villiger单加氧酶是如下(a)或(b)的蛋白质:
(a)如SEQ ID No.2所示氨基酸序列组成的蛋白质;
(b)在如SEQ ID No.2所示氨基酸序列中经过取代、缺失或添加一个或几个氨基酸且具有Baeyer-Villiger单加氧酶活性的由(a)衍生的蛋白质。
3.根据权利要求2所述的一种Baeyer-Villiger单加氧酶,其特征在于,其中(b)所述的蛋白质为:由SEQ ID No.2所示氨基酸序列在第141位、第187位、第247位、第293位、第390位单独替换一个氨基酸或多位点同时替换氨基酸后而形成的新氨基酸序列组成的蛋白质。
4.根据权利要求3所述的一种Baeyer-Villiger单加氧酶,其特征在于,(b)所述蛋白质具有如下序列的一种:
(1)将如SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪氨酸残基而形成的新氨基酸序列组成的蛋白质;
(2)将如SEQ ID No.2所示氨基酸序列的第247位亮氨酸残基替换为谷氨酰胺残基而形成的新氨基酸序列组成的蛋白质;
(3)将如SEQ ID No.2所示氨基酸序列的第293位亮氨酸残基替换为苯丙氨酸残基而形成的新氨基酸序列组成的蛋白质;
(4)将如SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪氨酸残基,同时将第187位苏氨酸残基替换为亮氨酸残基而形成的新氨基酸序列组成的蛋白质;
(5)将如SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪氨酸残基,同时将第247位亮氨酸残基替换为谷氨酰胺残基而形成的新氨基酸序列组成的蛋白质;
(6)将如SEQ ID No.2所示氨基酸序列的第247位亮氨酸残基替换为谷氨酰胺残基,同时将第293位亮氨酸残基替换为苯丙氨酸残基而形成的新氨基酸序列组成的蛋白质;
(7)将如SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪氨酸残基,同时将第390位丙氨酸残基替换为丝氨酸残基而形成的新氨基酸序列组成的蛋白质;
(8)将如SEQ ID No.2所示氨基酸序列的第187位苏氨酸残基替换为亮氨酸残基,同时将第390位丙氨酸残基替换为丝氨酸残基而形成的新氨基酸序列组成的蛋白质;
(9)将如SEQ ID No.2所示氨基酸序列的第247位亮氨酸残基替换为谷氨酰胺残基,同时将第390位丙氨酸残基替换为丝氨酸残基而形成的新氨基酸序列组成的蛋白质;
(10)将如SEQ ID No.2所示氨基酸序列的第141位苯丙氨酸残基替换为酪谷氨酰胺残基,同时将第247位亮氨酸残基替换为谷氨酰胺残基,将第390位丙氨酸残基替换为丝氨酸残基而形成的新氨基酸序列组成的蛋白质。
5.一种分离的核酸,其特征在于,所述的核酸编码如权利要求3或4任一项所述的Baeyer-Villiger单加氧酶。
6.一种重组表达载体,其特征在于,包括如权利要求5所述的核酸。
7.一种重组表达转化体,其特征在于,包括如权利要求6所述的重组表达载体。
8.一种Baeyer-Villiger单加氧酶催化剂,其特征在于,所述Baeyer-Villiger单加氧酶催化剂包括下述形式中的任一种:
(1)培养如权利要求7所述的重组表达转化体,分离含有所述Baeyer-Villiger单加氧酶或者其突变体的转化体细胞;
(2)培养如权利要求7所述的重组表达转化体,分离含有所述Baeyer-Villiger单加氧酶或者其突变体的粗酶液;
(3)培养如权利要求7所述的重组表达转化体,分离含有所述Baeyer-Villiger单加氧酶或者其突变体的粗酶液,冷冻干燥得到的粗酶粉。
9.一种如权利要求8所述的Baeyer-Villiger单加氧酶催化剂的应用,其特征在于,所述Baeyer-Villiger单加氧酶催化剂在催化潜手性3-取代环丁酮化合物不对称氧化生成相应3-取代手性丁内酯化合物的应用。
10.根据权利要求9所述的一种Baeyer-Villiger单加氧酶催化剂的应用,其特征在于,所述潜手性3-取代环丁酮化合物选自以下化合物:
Figure FDA0003819649970000031
CN202211039656.5A 2022-08-29 2022-08-29 Baeyer-Villiger单加氧酶、突变体及其在制备手性丁内酯中的应用 Pending CN115960750A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211039656.5A CN115960750A (zh) 2022-08-29 2022-08-29 Baeyer-Villiger单加氧酶、突变体及其在制备手性丁内酯中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211039656.5A CN115960750A (zh) 2022-08-29 2022-08-29 Baeyer-Villiger单加氧酶、突变体及其在制备手性丁内酯中的应用

Publications (1)

Publication Number Publication Date
CN115960750A true CN115960750A (zh) 2023-04-14

Family

ID=87353225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211039656.5A Pending CN115960750A (zh) 2022-08-29 2022-08-29 Baeyer-Villiger单加氧酶、突变体及其在制备手性丁内酯中的应用

Country Status (1)

Country Link
CN (1) CN115960750A (zh)

Similar Documents

Publication Publication Date Title
Patel et al. Enantioselective microbial reduction of substituted acetophenones
CN110573605B (zh) 一种慢生根瘤菌单加氧酶及其在制备手性亚砜中的应用
CN109055327B (zh) 醛酮还原酶突变体及其应用
CN111876404A (zh) 一种醛缩酶突变体及其编码基因和应用
CN107858340A (zh) 高催化活性的d‑果糖‑6‑磷酸醛缩酶a突变体、重组表达载体、基因工程菌及其应用
WO2016138641A1 (zh) 假丝酵母及其羰基还原酶的产生及应用
CN115992189A (zh) 一种细菌色氨酸-5-羟化酶及其应用
CN113583988B (zh) 氨基酸脱氢酶突变体及其应用
CN111454918B (zh) 一种烯醇还原酶突变体及其在制备(r)-香茅醛中的应用
CN113322291A (zh) 一种手性氨基醇类化合物的合成方法
CN114891707B (zh) 重组菌株及其全细胞催化生产胆红素的方法
CN116287050A (zh) 亚胺还原酶、突变体及其在四氢-β-咔啉类衍生物合成中的应用
CN115960750A (zh) Baeyer-Villiger单加氧酶、突变体及其在制备手性丁内酯中的应用
CN112553185B (zh) 一种腈水解活性专一性提高的腈水解酶突变体及其应用
CN112226428B (zh) 油酸水合酶突变体及其在制备10-羟基硬脂酸中的应用
CN111394396B (zh) 一种微生物利用甘油发酵生产1,3-丙二醇的方法
CN111154746B (zh) 酰胺酶突变体及其在催化合成2-氯烟酸中的应用
CN114686451A (zh) 胺脱氢酶突变体及其在制备(s)-5-甲基-2-吡咯烷酮中的应用
CN113621589A (zh) 醛酮还原酶KmAKR突变体、工程菌及其应用
CN113652408A (zh) 羰基还原酶突变体及其在(r)-4-氯-3-羟基丁酸乙酯合成中的应用
CN113151131A (zh) 一种产异丁香酚单加氧酶的自诱导培养基及其应用
KR20220039887A (ko) 메탄 및 자일로스를 동시 대사하는 메탄자화균의 개발 및 이를 이용한 시노린 생산방법
CN106047826B (zh) 醛脱氢酶、其重组表达转化体及在他汀前体合成中的应用
CN113174377B (zh) 羰基还原酶、突变体及其在制备地尔硫卓中间体中的应用
CN112410274B (zh) 一种生产子囊霉素的基因工程菌及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination