CN115950003A - 空气调节系统 - Google Patents

空气调节系统 Download PDF

Info

Publication number
CN115950003A
CN115950003A CN202211723638.9A CN202211723638A CN115950003A CN 115950003 A CN115950003 A CN 115950003A CN 202211723638 A CN202211723638 A CN 202211723638A CN 115950003 A CN115950003 A CN 115950003A
Authority
CN
China
Prior art keywords
air
heat exchanger
ventilation
exhaust
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211723638.9A
Other languages
English (en)
Inventor
山口贵弘
S·范达勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Europe NV
Daikin Industries Ltd
Original Assignee
Daikin Europe NV
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP18211153.4A external-priority patent/EP3663657B1/en
Priority claimed from EP18211149.2A external-priority patent/EP3663656B1/en
Priority claimed from EP18211139.3A external-priority patent/EP3663658B1/en
Application filed by Daikin Europe NV, Daikin Industries Ltd filed Critical Daikin Europe NV
Publication of CN115950003A publication Critical patent/CN115950003A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • F24F1/027Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle mounted in wall openings, e.g. in windows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • F24F12/003Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F2012/007Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using a by-pass for bypassing the heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02743Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using three four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2525Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

提供一种空气调节器(300),包括:具有第一热交换器(341)的第一主空气通道(331);具有第二热交换器(342、343)的第二主空气通道(332);以及排出通风通道(334)。排出通风通道构造成允许通风排出空气穿过第二热交换器。通风排出空气是已经从回气入口(321)吸入并将要从排气出口(324)排出的空气。

Description

空气调节系统
本发明专利申请是国际申请号为PCT/JP2019/047566,国际申请日为2019年12月05日,进入中国国家阶段的申请号为201980077350.9,名称为“空气调节器”的发明专利申请的分案申请。
技术领域
本发明涉及一种空气调节系统。
背景技术
EP0091643A2提出了一种具有全热交换器的空气调节器,上述全热交换器构造成在通风进入空气与通风排出空气之间进行热交换。在该空气调节器中,已经穿过全热交换器的通风排出空气与已经穿过室外热交换器的外部空气合并,然后被排出至外部。因此,该空气调节器可以回收通风排出空气的热量以提高空气调节器的性能。
然而,当外部空气在制冷运转期间相对较高或在制热运转期间相对较低时,难以在室外热交换器中实现良好的热交换效率。因此,即使使用全热交换器,也无法充分地提高空气调节器的性能。
另外,该空气调节器具有带有室内热交换器的室内主空气通道、带有室外热交换器的室外主空气通道、供给通风通道和排出通风通道。由此,空气调节器可以用作空气调节系统的室内单元、空气调节系统的室外单元和通风器。
顺便提及,使用二氧化碳制冷剂正在引发人们的关注。二氧化碳制冷剂具有诸如安全、无毒、全球变暖系数小等许多优点。因此,优选的是,将二氧化碳制冷剂应用于上述空气调节器。同时,即使当发生二氧化碳制冷剂泄漏时,也应当将待空气调节和/或通风的空间中的二氧化碳水平保持得较低。
发明内容
本发明的目的在于提供一种具有更高性能的空气调节器。本发明的另一目的在于提供一种能够以安全的方式防止二氧化碳水平变高的空气调节器和/或空气调节系统。
本发明的第一方面提供一种空气调节器,包括:回气入口和供气出口,上述回气入口和上述供气出口中的每一个均与预定空间连通;第一主空气通道,上述第一主空气通道构造成允许空气在其中朝向供气出口流动;第一热交换器,上述第一热交换器配置在第一主空气通道中,以便使在第一主空气通道中流动的制冷剂与穿过第一主空气通道的空气之间进行热交换;排气出口,上述排气出口与预定空间的外部连通;第二主空气通道,上述第二主空气通道构造成允许空气在其中朝向排气出口流动;第二热交换器,上述第二热交换器配置在第二主空气通道中,以便使在第二主空气通道中流动的制冷剂与穿过第二主空气通道的空气之间进行热交换;以及排出通风通道,上述排出通风通道构造成允许空气在排出通风通道从回气入口朝向排气出口流动,其中,上述排出通风通道构造成允许通风排出空气穿过第二热交换器,上述通风排出空气是已经通过回气入口吸入并将要通过排气出口排放的空气。
利用上述构造,与使用外部空气时相比,在使用通风排出空气时,穿过第二热交换器的空气的温度与在第二热交换器中流动的制冷剂的温度之间的差较大。因此,能够以简单的结构提高包括第二热交换器的空气调节系统的性能。也可以在制冷运转期间和制热运转期间扩大低负载下的运转范围。
根据如上所述的空气调节器的优选实施方式,第二主空气通道构造成基本上仅允许通风排出空气穿过第二热交换器。
利用这种构造,可以使上述温度差最大化。因此,可以进一步提高空气调节系统的性能。
根据如上所述的空气调节器中的任一个的另一优选实施方式,上述空气调节器还包括:外气入口,上述外气入口与预定空间的外部连通,其中,上述第二主空气通道构造成允许空气在其中从外气入口朝向排气出口流动。
利用这种构造,能够对第二穿过空气是否穿过第二热交换器进行切换。因此,例如当外部空气的温度与在第二热交换器中流动的制冷剂的温度之间的差相对较高时,可以减小通风排出空气的流动。
本发明的第二方面提供一种空气调节器,包括:回气入口和供气出口,上述回气入口和上述供气出口中的每一个均与预定空间连通;第一主空气通道,上述第一主空气通道构造成允许空气在其中从回气入口朝向供气出口流动;第一热交换器,上述第一热交换器配置在第一主空气通道中,以便使在第一热交换器中流动的制冷剂与穿过第一热交换器的空气之间进行热交换;外气入口和排气出口,上述外气入口和上述排气出口中的每一个均与预定空间的外部连通;第二主空气通道,上述第二主空气通道构造成允许空气在其中从外气入口朝向排气出口流动;第二热交换器,上述第二热交换器配置在第二主空气通道中,以便使在其中流动的制冷剂与穿过其中的空气之间进行热交换;以及排出通风通道,上述排出通风通道构造成允许空气在其中从回气入口朝向排气出口流动,
其中,上述排出通风通道构造成允许通风排出空气穿过第二热交换器,上述通风排出空气是已经通过回气入口吸入并将要通过排气出口排放的空气。
利用上述构造,通过利用通风排出空气,使穿过第二热交换器的空气的温度与在第二热交换器中流动的制冷剂的温度之间的差增大。因此,可以利用简单的结构来提高空气调节器的性能。
根据如上所述的空气调节器的优选实施方式,排出通风通道构造成在第二穿过空气穿过第二热交换器之前允许第二穿过空气与通风排出空气混合,上述第二穿过空气是已经通过外气入口吸入并将要通过排气出口排放的空气。
利用这种构造,可以在制冷运转时和制热运转这两个期间扩大低负载下的运转范围。因此,可以进一步提高空气调节器的性能。
根据如上所述的空气调节器中的任一个的另一优选实施方式,上述空气调节器还包括:供给通风通道,上述供给通风通道构造成允许空气在供给通风通道中从外气入口朝向供气出口流动。
利用这种构造,空气调节器允许空气从外部流到预定空间,以执行预定空间的强制空气供给。因此,能够增强预定空间的通风。
根据如上所述的空气调节器中的任一个的另一优选实施方式,上述排出通风通道构造成允许第一穿过空气在第一穿过空气穿过第一热交换器之前与通风进入空气混合,上述第一穿过空气是已经通过回气入口吸入并将要通过供气出口排放的空气,上述通风进入空气是已经通过外气入口吸入并将要通过供气出口排放的空气。
利用这种构造,通过利用通风进入空气,使穿过第一热交换器的空气的温度与在第一热交换器中流动的制冷剂的温度之间的差增大。因此,可以利用简单的结构来提高空气调节器的性能。
根据如上所述的空气调节器中的任一个的另一优选实施方式,上述空气调节器还包括全热交换器,上述全热交换器形成供给通风通道的至少一部分和排出通风通道的至少一部分,以便在通风进入空气与通风排出空气之间进行热交换。
利用这种构造,通风进入空气的温度通过通风排出空气的温度而得到缓和。因此,即使当通风进入空气被吸入到待空气调节的空间中时,也可以减小空气调节器的空气调节的负载。
根据如上所述的空气调节器中的任一个的另一优选实施方式,上述空气调节器还包括:空气流量调节器,上述空气流量调节器构造成对至少第一穿过空气、第二穿过空气和上述通风排出空气中的每一个的流量进行调节,上述第一穿过空气是已经通过回气入口吸入并将要通过供气出口排放的空气,上述第二穿过空气是已经通过外气入口吸入并将要通过排气出口排放的空气。
利用这种构造,可以对第一穿过空气、第二穿过空气以及通风排出空气中的每一个的流量进行调节。因此,可以优化空气调节器的空气调节性能和/或通风性能。对空气的流量进行调节可以包括对空气的流速进行调节、对空气相对于其它空气的流量比进行调节和/或对是否使空气流动进行切换。
根据如上所述的空气调节器中的任一个的另一优选实施方式,上述空气流量调节器包括:第一主挡板,上述第一主挡板配置在第一主空气通道中;第二主挡板,上述第二主挡板配置在第二主空气通道中;以及排出挡板,上述排出挡板配置在排出通风通道中。
利用这种构造,由于使用了挡板,因此,能够以简单的结构对第一穿过空气、第二穿过空气以及通风排出空气中的每一个的流量进行调节。
根据如上所述的空气调节器中的任一个的另一优选实施方式,第一热交换器布置成使得第一热交换器的空气穿过方向相对于第一主空气通道的延伸方向倾斜;并且第二热交换器布置成使得第二热交换器的空气穿过方向相对于第二主空气通道的延伸方向倾斜。
利用这种构造,可以使第一热交换器的空气穿过面积小于第一主空气通道的截面积,并且可以使第二热交换器的空气穿过面积小于第二主空气通道的截面积。因此,可以减小空气调节器的尺寸并同时维持第一热交换器和第二热交换器的热交换能力。
根据如上所述的空气调节器中的任一个的另一优选实施方式,第一主空气通道和第二主空气通道布置成基本上平行,并且构造成使得从回气入口到供气出口的方向与从外气入口到排气出口的方向基本上相反。
利用这种构造,第一主空气通道和第二主空气通道可以被分隔成两侧。因此,可以得到容易定位在预定空间与其外部之间的空气调节器。此外,第一穿过空气和第二穿过空气基本上逆流地流动。因此,可以得到适于布置诸如第一热交换器、第二热交换器等部件的构造。
根据如上所述的空气调节器中的任一个的另一优选实施方式,第一主空气通道和第二主空气通道布置成基本上平行,并且构造成使得从回气入口到供气出口的方向与从外气入口到排气出口的方向基本上相同。
利用这种构造,第一主空气通道和第二主空气通道可以被分隔成两侧。因此,可以得到容易定位在预定空间与其外部之间的空气调节器。此外,第一穿过空气和第二穿过空气基本上平行地流动。因此,可以得到适于使第一穿过空气和第二穿过空气顺畅地穿过的构造。
根据如上所述的空气调节器中的任一个的另一优选实施方式,供给通风通道和排出通风通道布置成基本上平行,并且构造成使得从外气入口到供气出口的方向与从回气入口到排气出口的方向基本上相反。
利用这种构造,通风进入空气与通风排出空气基本上逆流地流动。因此,可以得到适于布置诸如全热交换器、第一风扇、第二风扇等部件的构造。
根据如上所述的空气调节器中的任一个的另一优选实施方式,供给通风通道和排出通风通道布置成基本上平行,并且构造成使得从外气入口到供气出口的方向与从回气入口到排气出口的方向基本上相同。
利用这种构造,通风进入空气与通风排出空气基本上平行地流动。因此,可以得到适于使通风进入空气和通风排出空气顺畅地穿过的构造。
根据如上所述的空气调节器中的任一个的另一优选实施方式,上述空气调节器还包括:配管连接机构,上述配管连接机构经由与制冷剂压缩机的排放侧连接的高压气体制冷剂配管和与制冷剂压缩机的吸入侧连接的低压气体制冷剂配管,将第一热交换器和第二热交换器中的每一个与制冷剂压缩机连接,使得第一热交换器、第二热交换器和制冷剂压缩机形成热泵回路。
利用这种构造,可以在不将热泵回路的制冷剂压缩机等安装于空气调节器的情况下得到上述空气调节系统。因此,可以得到紧凑、轻便、静音和/或易于设计、安装和/或维护的空气调节器。
根据如上所述的空气调节器中的任一个的另一优选实施方式,第一热交换器和第二热交换器中的每一个构造成使二氧化碳制冷剂在其中流动。
使用二氧化碳制冷剂的系统的热交换效率倾向于低于使用诸如R410A或其他HFC的其他制冷剂的类似系统。在这一点上,在上述空气调节器中,由于第二热交换器能够与通风排出空气进行热交换,因此,即使使用二氧化碳制冷剂,也可以提高热交换效率。
根据如上所述的空气调节器中的任一个的另一优选实施方式,空气流量调节器构造成对第二穿过空气和通风排出空气的流量进行调节,使得经过第二热交换器的空气的温度处于在第二热交换器中流动的二氧化碳制冷剂的超临界温度以下。
利用这种构造,可以将在第二热交换器中经受与二氧化碳制冷剂的热交换的空气的温度维持在二氧化碳制冷剂的超临界温度以下。
根据如上所述的空气调节器中的任一个的另一优选实施方式,第一热交换器和第二热交换器中的每一个构造成使二氧化碳制冷剂在其中流动。空气流量调节器构造成对第二穿过空气和通风排出空气的流量进行调节,使得经过第二热交换器的空气的温度处于在第二热交换器中流动的二氧化碳制冷剂的超临界温度以下。
使用二氧化碳制冷剂的系统的热交换效率倾向于低于使用诸如R410A或其他HFC的其他制冷剂的类似系统。在这一点上,在上述空气调节器中,由于第二热交换器能够与通风排出空气进行热交换,因此,即使使用二氧化碳制冷剂,也可以提高热交换效率。另外,可以将在第二热交换器中经受与二氧化碳制冷剂的热交换的空气的温度维持在二氧化碳制冷剂的超临界温度以下。
根据如上所述的空气调节器中的任一个的另一优选实施方式,上述空气流量调节器构造成对通风排出空气是否经过第二热交换器进行切换。
利用这种构造,能够以更安全的方式实现适当的气流。
根据如上所述的空气调节器中的任一个的另一优选实施方式,上述空气调节器还包括控制器,上述控制器构造成对是否满足从外气入口吸入空气调节器中的空气的温度高于或等于预定阈值的预定条件进行判断,其中,空气流量调节器构造成对第二穿过空气和通风排出空气的流动进行调节,使得如果满足预定条件,则通风排出空气经过第二热交换器,而如果不满足预定条件,则防止通风排出空气经过第二热交换器。
利用这种构造,可以适当地降低在第二热交换器中经受与制冷剂的热交换的空气的温度。因此,可以进一步提高第二热交换器的热交换效率。
根据如上所述的空气调节器中的任一个的另一优选实施方式,空气流量调节器构造成对已经穿过全热交换器的通风排出空气是否经过第二热交换器进行切换。
利用这种构造,能够以更安全的方式实现适当的气流。
根据如上所述的空气调节器中的任一个的另一优选实施方式,第二热交换器包括:第二主热交换器,上述第二主热交换器构造成使得在其中流动的制冷剂与穿过其中的空气之间进行热交换;以及第二副热交换器,上述第二副热交换器配置在排出通风通道中,以使在其中流动的制冷剂与穿过其中的空气之间进行热交换。
换言之,第二副热交换器布置成使得通风排出空气相对于第二穿过空气的流量比在第二副热交换器中比在第二主热交换器中大。由此,在制冷运转中,制冷剂可以经受与流过第二主热交换器之后的更冷的空气的热交换。因此,在制冷运转中可以提高热交换效率。
根据如上所述的空气调节器中的任一个的另一优选实施方式,当第二热交换器用作冷凝器时,第二副热交换器构造成使已经流过第二主热交换器的制冷剂在其中流动。
利用这种构造,可以确保制冷运转的热交换效率的提高。
根据如上所述的空气调节器中的任一个的另一优选实施方式,第二热交换器包括:第二主热交换器,上述第二主热交换器构造成使得在其中流动的制冷剂与穿过其中的空气之间进行热交换;以及第二副热交换器,上述第二副热交换器配置在排出通风通道中,以使在其中流动的制冷剂与穿过其中的空气之间进行热交换。
换言之,第二副热交换器布置成使得通风排出空气相对于第二穿过空气的流量比在第二副热交换器中比在第二主热交换器中大。由此,在制冷运转时,制冷剂可以经受与流过第二主热交换器之后的更冷的空气的热交换。因此,在制冷运转中可以提高热交换效率。
根据如上所述的空气调节器中的任一个的另一优选实施方式,当第二热交换器用作冷凝器时,第二副热交换器构造成使已经流过第二主热交换器的制冷剂在其中流动。
利用这种构造,可以确保制冷运转的热交换效率的提高。
根据如上所述的空气调节器中的任一个的另一优选实施方式,第二副热交换器布置成允许通风排出空气穿过其中,并且防止第二穿过空气穿过其中。
利用这种构造,容易使通风排出空气相对于第二穿过空气的流量比在第二副热交换器中比在第二主热交换器中大。第二副热交换器可以布置成不允许第二穿过空气穿过其中。
根据如上所述的空气调节器中的任一个的另一优选实施方式,第二副热交换器和第二主热交换器沿着通风排出空气的气流方向依次串联地布置。
利用这种构造,可以使通风排出空气在穿过第二副热交换器之后与第二穿过空气混合。因此,容易使通风排出空气相对于第二穿过空气的流量比在第二副热交换器中比在第二主热交换器中大。
根据如上所述的空气调节器中的任一个的另一优选实施方式,全热交换器、第二副热交换器以及第二主热交换器沿着通风排出空气的气流方向依次串联地布置。
利用这种构造,可以进一步提高第二热交换器的热交换效率。
根据如上所述的空气调节器中的任一个的另一优选实施方式,第二主热交换器布置成允许第二穿过空气穿过其中,并且防止通风排出空气穿过其中。
利用这种构造,容易使通风排出空气相对于第二穿过空气的流量比在第二副热交换器中比在第二主热交换器中大。第二主热交换器可以布置成不允许通风排出空气穿过其中。
根据如上所述的空气调节器中的任一个的另一优选实施方式,第二主热交换器和第二副热交换器形成板状形状;并且排出通风通道具有分隔板,上述分隔板将空气被吸入到第二主热交换器和第二副热交换器的空间分隔成空气被吸入到第二主热交换器的主空间和空气被吸入到第二副热交换器的副空间。
利用这种构造,分隔板在第二主热交换器和第二副热交换器的上游侧将第二主空气通道和排出通风通道分隔。因此,容易使通风排出空气相对于第二穿过空气的流量比在第二副热交换器中比在第二主热交换器中大。
根据如上所述的空气调节器中的任一个的另一优选实施方式,第二副热交换器构造成与第二穿过空气的至少一部分接触。
利用这种构造,在第二副热交换器中流动的制冷剂与第二穿过空气进行热交换。因此,即使当通风排出空气未穿过第二副热交换器时,也可以提高空气调节器的性能。
根据如上所述的空气调节器中的任一个的另一优选实施方式,第二副热交换器在从回气入口到排气出口的方向上配置在全热交换器的下游侧。
利用这种构造,在全热交换器中,通风进入空气的温度与通风排出空气的温度之间的差不会由于第二副热交换器而减小。因此,能够将全热交换器的热交换效率维持得较高。
根据如上所述的空气调节器中的任一个的另一优选实施方式,上述空气调节器还包括:电预热器,上述电预热器在外气入口与全热交换器之间配置在供给通风通道中。
利用这种构造,在制热运转时、即当第一热交换器用作冷凝器时,能够在通风进入空气流入全热交换器中之前对该通风进入空气进行预热。因此,防止了冷空气从供气出口排放,并且可以减小全热交换器的热交换负载。
根据如上所述的空气调节器中的任一个的另一优选实施方式,上述空气调节器还包括:壳体,上述壳体对至少第一主空气通道、第二主空气通道和排出通风通道进行容纳;第一风扇,上述第一风扇构造成将壳体中的空气吸向供气出口;以及第二风扇,上述第二风扇构造成将壳体中的空气吸向排气出口。
利用这种构造,空气调节系统的室内单元、空气调节系统的室外单元以及通风器的部件在同一壳体中集成为一个单元。因此,可以得到易于设计、安装和/或维护的空气调节器。此外,由于在空气调节器中产生适当的气流,因此,可以确保空气调节器的性能。
本发明的第三方面提供了一种空气调节器,包括:回气入口和供气出口,上述回气入口和上述供气出口中的每一个均与预定空间连通;第一主空气通道,上述第一主空气通道构造成允许空气在其中从回气入口朝向供气出口流动;第一热交换器,上述第一热交换器配置在第一主空气通道中,以便使在其中流动的二氧化碳制冷剂与穿过其中的空气之间进行热交换;外气入口和排气出口,上述外气入口和上述排气出口中的每一个均与预定空间的外部连通;第二主空气通道,上述第二主空气通道构造成允许空气在其中从外气入口朝向排气出口流动;第二热交换器,上述第二热交换器配置在第二主空气通道中,以便使在其中流动的二氧化碳制冷剂与穿过其中的空气之间进行热交换;供给通风通道,上述供给通风通道构造成允许空气在其中从外气入口朝向供气出口流动;排出通风通道,上述排出通风通道构造成允许空气在其中从回气入口朝向排气出口流动;第一风扇,上述第一风扇构造成形成朝向供气出口的气流;第二风扇,上述第二风扇构造成形成朝向排气出口的气流;以及控制器,上述控制器构造成获取指示预定空间中的二氧化碳水平的CO2信息,并且根据CO2信息对至少第一风扇和第二风扇进行控制。
利用上述构造,可以使第一风扇和第二风扇这两者运转,以便根据预定空间中的二氧化碳水平来增加预定空间内的通风量。因此,即使在例如发生二氧化碳制冷剂的泄漏时,也可以防止在待由空气调节器进行空气调节和/或通风的空间中二氧化碳水平变高。预定空间中的二氧化碳水平可以是存在于预定空间中或从预定空间中抽出的空气的二氧化碳浓度。
附图说明
图1是示出根据本发明的实施方式的包括多个空气调节器的空气调节系统的布置的示意图。
图2是示出空气调节器的安装的立体图。
图3是示出空气调节器的结构构造的示意图。
图4是空气调节器的示意性配管图。
图5是空气调节系统的示意性配管图。
图6是示出空气调节系统的功能构造的框图。
图7是示出空气调节器的热回收标准状态的示意图。
图8是示出空气调节器的非热回收标准状态的示意图。
图9是示出空气调节器的低通风状态的示意图。
图10是示出空气调节器的空气调节状态的示意图。
图11是示出空气调节器的低制冷状态的示意图。
图12是示出空气调节器的自由制冷状态的示意图。
图13是示出空气调节器的制冷剂排空状态的示意图。
图14是用于说明空气调节器及其周围的压力平衡的示意图。
图15是示出由空气调节器执行的处理的流程图。
图16是示出空气调节器的第一变形的示意性构造的示意图。
图17是示出空气调节器的第二变形的示意性构造的示意图。
图18是示出空气调节器的第三变形的示意性构造的示意图。
图19是示出空气调节器的第四变形的示意性构造的示意图。
图20是示出空气调节器的第五变形的示意性构造的示意图。
图21是示出空气调节器的第六变形的示意性构造的示意图。
图22是空气调节系统的变形的配管示意图。
具体实施方式
下面,参照附图对本发明的空气调节器和空气调节系统的优选实施方式进行说明。
<空气调节系统的构造>
图1是示出根据本实施方式的包括多个空气调节器的空气调节系统的布置的示意图。
空气调节系统100是使用二氧化碳(CO2)制冷剂的热泵型空气调节系统。如图1所示,空气调节系统100的大部分布置在建筑200中。该建筑具有多个预定空间220和机器空间210。每个预定空间220是根据需要进行通风和/或空气调节的空间。尽管在本实施方式中预定空间220的数量为四个,但是它可以为一个、两个或任何其他数量个。尽管在本实施方式中机器空间210在建筑200内,但是它可以基本上位于建筑200的外部230。空间的位置布置不限于图1中所示的布置。
空气调节系统100包括多个空气调节器300、制冷剂压缩机系统400、多个房间CO2传感器510以及机器空间CO2传感器511。多个空气调节器300具有基本上相同的构造。多个房间CO2传感器510和机器空间CO2传感器511具有基本上相同的构造。
第一空气调节器300-1至第四空气调节器300-4分别布置在第一预定空间220-1至第四预定空间220-4中或是附近。制冷剂压缩机系统400从机器空间210延伸到每个空气调节器300。制冷剂压缩机系统400包括布置在机器空间210中的压缩机单元410。第一房间CO2传感器510-1至第四房间CO2传感器510-4分别布置在第一预定空间220-1至第四预定空间220-4中。机器空间CO2传感器511布置在机器空间210中。优选的是,CO2传感器510、511中的每一个定位成靠近相应的空间220、210的底部。作为CO2传感器510、511中的每一个,可以利用执行一般制冷剂泄漏检测的传感器。
图2是示出空气调节器300的安装的立体图。
每个预定空间220在垂直方向上基本上由天花板261和地板262分隔,并且在水平方向上基本上由一个或多个内壁240分隔。内壁240中的至少一个在面向建筑200的外壁520(见图1)的同时,与该面向的外壁520间隔开。
如图2所示,空气调节器300位于预定空间220与外部230之间。更具体地,空气调节器300安装在由天花板261、地板262、内壁240和外壁520限定出的后壁空间270中。
内壁240在面向空气调节器300的区域中设置有检查开口(未示出),并且设置有对该开口进行覆盖的检修门243。内壁240形成有作为内壁240的开口的RA(回气:return-air)吸入格栅241和SA(供气:supply-air)排放格栅242。外壁250形成有作为外壁250的开口的OA(外气:outside-air)吸入格栅251和EA(排气:exhaust-air)排放格栅252。每一个格栅241、242、251、252的后壁空间270侧通过管道(未示出)等而与空气调节器300连接。由此,空气调节器300在两个不同的位置处与预定空间220连通,并且在两个不同的位置处与外部230连通。
优选的是,空气调节器300具有在水平方向上较薄的基本上盒形形状。这种形状有利于在将空气调节器300布置在后壁空间270中的同时,保持后壁空间270尽可能地薄。同时,空气调节器300的布置不限于图2中所示的布置。例如,空气调节器300的一部分可以暴露于预定空间220和/或外部230,并且整个空气调节器300可以暴露于预定空间220或外部230。
在每个空气调节器300中,空气调节系统的室内单元、空气调节系统的室外单元、通风器和空气热回收器的部件被集成。
图3是示出空气调节器300的结构构造的示意图。
例如,图3中的左侧和右侧分别对应于图2中的上侧和下侧,并且图3中的竖直方向对应于图2中的深度方向。换言之,图3中的左侧和右侧可以分别对应于使用空气调节器300的状态下的上侧和下侧,并且图3中的竖直方向可以对应于沿着内壁240和/或外壁520延伸的水平方向。
空气调节器300具有壳体301、回气入口321、供气出口322、外气入口323、排气出口324、RA分隔件311、SA分隔件312、OA分隔件313、EA分隔件和全热交换器344。
壳体301是具有基本上长方体形状且对空气调节器300的大部分进行容纳的盒状构件。壳体301包括一对相对的主面(在图3中向前和向后布置,因此省略),上述主面基本上平行于内壁240和/或外壁250。
回气入口321和供气出口322中的每一个均与预定空间220连通,并且外气入口323和排气出口324中的每一个均与外部230连通(见图2)。更具体地,回气入口321、供气出口322、外气入口323和排气出口324中的每一个均具有形成在壳体301中的开口。回气入口321、供气出口322、外气入口323和排气出口324通过管道等分别与RA吸入格栅241、SA排放格栅242、OA吸入格栅251和EA排放格栅252依次连接。
回气入口321、供气出口322、外气入口323和排气出口324基本上沿着相同的平面布置,上述平面基本上平行于壳体301的如上所述的主面、即基本上平行于内壁240和/或外壁250。
供气出口322和外气入口323布置在壳体301的同一个第一面302上,优选地布置在使用空气调节器300的状态下更靠近供气排放格栅242和外气吸入格栅251的一侧。回气入口321和排气出口324布置在壳体301的与第一面302相反的同一第二面303上,优选地布置在使用空气调节器300的状态下更靠近回气吸入格栅241和排气排放格栅252的一侧。
壳体301具有彼此相反的第三面304和第四面305,并且上述第三面304和第四面305中的每一个与第一面302和第二面303连接。回气入口321和供气出口322布置成相比于第四面305更靠近第三面304,并且外气入口323和排气出口324布置成相比于第三面304更靠近第四面305。换言之,回气入口321、供气出口322、外气入口323和排气出口324依次布置在壳体301周围。
作为如上所述的主面,壳体301还具有彼此相反的第五面和第六面(未示出),上述第五面和第六面中的每一个与所有的第一面302至第四面305连接。
RA分隔件311、SA分隔件312、OA分隔件313和EA分隔件314布置在壳体301内,并且它们中的每一个与壳体301的第五面和第六面连接。分隔件311、312、313、314中的每一个基本上平行于第三面304和/或第四面305。
RA分隔件311布置成靠近回气入口321。同时,RA分隔件311构造成在RA分隔件311与壳体301的第二面303之间形成开口。SA分隔件312布置成靠近供气出口322,并且基本上与RA分隔件311齐平。SA分隔件312与壳体301的第一面302和RA分隔件311这两者连接。同时,RA分隔件311和SA分隔件312在其间形成有开口。因而,RA分隔件311和SA分隔件312的分隔件单元(以下称为“第一分隔件单元316”)对壳体301的内部空间进行分隔,同时具有靠近回气入口321的开口和位于中间的另一开口。
OA分隔件313布置成靠近外气入口323。同时,OA分隔件313构造成在OA分隔件313与壳体301的第一面302之间形成开口。EA分隔件314布置成靠近排气出口324,并且基本上与OA分隔件313齐平。同时,EA分隔件314构造成在EA分隔件314与壳体301的第二面303之间形成开口。该开口在下文中被称为“内孔315”。EA分隔件314与OA分隔件313连接。同时,OA隔板313和EA隔板314在其间形成有开口。因此,OA分隔件313和EA分隔件314的分隔件单元(以下称为“第二分隔件单元”)对壳体301的内部空间进行分隔,同时具有靠近外气入口323的开口、位于中间的另一开口以及靠近排气出口324的另一开口(内孔315)。
第一分隔件单元316和第二分隔件单元317彼此间隔开。第一分隔件单元316布置在第三面304侧,并且第二分隔件单元317布置在第四面305侧。换言之,第一分隔件单元316布置成比第二分隔件单元317更靠近回气入口321和供气出口322,并且第二分隔件单元317布置成比第一分隔件单元316更靠近外气入口323和排气出口324。
第一分隔件单元316和第二分隔件单元317从回气入口321与排气出口324之间的区域以及供气出口322与外气入口323之间的区域基本上彼此平行地延伸。优选的是,如图2所示,第一分隔件单元316和第二分隔件单元317的延伸方向朝向外气入口323和/或回气入口321稍微倾斜。第一分隔件单元316的RA分隔件311和第二分隔件单元317的EA分隔件314在其间形成与回气入口321连通的空间。SA分隔件312和OA分隔件313在其间形成与外气入口323连通的空间。
全热交换器344配置在第一分隔件单元316与第二分隔件单元317之间。全热交换器344具有经由衬套彼此交叉而不彼此合并的多个第一空气路径和多个第二空气路径(在图3中部分示出)。全热交换器344构造成使得在穿过第一空气路径的空气与穿过第二空气路径的空气之间进行全热交换。
全热交换器344布置成使得第一空气路径与形成在SA分隔件312和OA分隔件313之间的如上所述的空间以及形成在RA分隔件311和SA分隔件312之间的如上所述的开口中的每一个连通。全热交换器344也布置成使得第二空气路径与形成在RA分隔件311和EA分隔件314之间的如上所述的空间以及形成在OA分隔件313和EA分隔件314之间的如上所述的开口中的每一个连通。
因此,空气调节器300具有容纳在壳体301中的第一主空气通道331、第二主空气通道332、供给通风通道333和排出通风通道334。
第一主空气通道331是基本上由壳体301的第三面304和第一分隔件单元316在其间形成的空间。第一主空气通道331构造成允许空气在其中从回气入口321朝向供气出口322流动。已经通过回气入口321吸入并将要通过供气出口322排放的空气在下文中被称为“第一穿过空气611”。如图3中的一个点划线箭头所示,第一穿过空气611在第一主空气通道331中流动。
第二主空气通道332是基本上由壳体301的第四面305和第二分隔件单元317在其间形成的空间。第二主空气通道332构造成允许空气在其中从外气入口323朝向排气出口324流动。已经通过外气入口323吸入并将要通过排气出口324排放的空气在下文中被称为“第二穿过空气612”。如图3中的一个点划线箭头所示,第二穿过空气612在第二主空气通道332中流动。
应当注意的是,第一主空气通道331和第二主空气通道332布置成基本上平行,并且构造成使得从回气入口321到供气出口322的方向与从外气入口323到排气出口324的方向基本上相反。
供给通风通道333基本上由OA分隔件313的靠近外气入口323的如上所述的开口、OA分隔件313与SA分隔件312之间形成的如上所述的空间、全热交换器344的第一空气路径、以及SA分隔件312与RA分隔件311之间形成的如上所述的开口形成。供给通风通道333构造成允许空气在其中从外气入口323朝向供气出口322流动。已经通过外气入口323吸入并将要通过供气出口322排出的空气在下文中被称为“通风进入空气613”。如图3中的一个点划线箭头所示,通风进入空气613流过第二主空气通道332的一部分及供给通风通道333,然后流过第一主空气通道331的一部分。
排出通风通道334基本上由RA分隔件311的靠近回气入口321的如上所述的开口、RA分隔件311与EA分隔件314之间形成的如上所述的空间、全热交换器344的第二空气路径以及OA分隔件313与EA分隔件314之间形成的如上所述的开口形成。排出通风通道334构造成允许空气在其中从回气入口321朝向排气出口324流动。已经通过回气入口321吸入并将要通过排气出口324排出的空气在下文中被称为“通风排出空气614”。如图3中的一个点划线箭头所示,通风排出空气614流过第一主空气通道331的一部分、排出通风通道334,然后流过第二主空气通道332的一部分。
也可以说,全热交换器344形成供给通风通道333的至少一部分和排出通风通道334的至少一部分。因此,全热交换器344构造成使得通风进入空气613与通风排出空气614之间进行热交换。
空气调节器300还具有第一热交换器341、第二主热交换器342和第二副热交换器343。第一热交换器341以及一组第二主热交换器342和第二副热交换器343构造成用作热泵回路的蒸发器和冷凝器。第一热交换器341、第二主热交换器342和第二副热交换器343中的每一个构造成使得在其中流动的制冷剂与穿过其中的空气之间进行热交换。应当注意的是,第二主热交换器342和第二副热交换器343也可以视为单个热交换器(第二热交换器342、343)。
第一热交换器341配置在第一主空气通道331中。更具体地,第一热交换器341配置在形成在RA分隔件311和SA分隔件312之间的如上所述的开口(即,全热交换器344的第一空气路径的出口)与供气出口322之间。换言之,第一热交换器341布置成不仅使第一穿过空气611穿过其中,还使通风进入空气613穿过其中。也可以说,供给通风通道333构造成允许第一穿过空气611在第一穿过空气611穿过第一热交换器341之前与通风进入空气613混合。优选的是,第一热交换器341布置成使得第一热交换器341的空气穿过方向相对于第一主空气通道331的延伸方向倾斜。
第二主热交换器342配置在第二主空气通道332中。更具体地,第二主热交换器342配置在形成在OA分隔件313和EA分隔件314之间的如上所述的开口(即,全热交换器344的第二空气路径的出口)与排气出口324之间。换言之,第二主热交换器342布置成不仅使第二穿过空气612穿过其中,还使通风排出空气614穿过其中。也可以说,排出通风通道334构造成允许第二穿过空气612在第二穿过空气612穿过第二主热交换器342之前与通风排出空气614混合。优选的是,第二主热交换器342布置成使得第二主热交换器342的空气穿过方向相对于第二主空气通道332的延伸方向倾斜。
第二副热交换器343配置在排出通风通道334中。第二副热交换器343在从回气入口321到排气出口324的方向上配置在全热交换器344的下游侧(即,在全热交换器344的第二空气路径的出口侧)。更具体地,第二副热交换器343布置在第二主空气通道332中,以便对形成在OA分隔件313与EA分隔件314之间的如上所述的开口进行覆盖(即,对全热交换器344的第二空气通道的出口进行覆盖)。
因此,全热交换器344、第二副热交换器343和第二主热交换器342沿着通风排出空气614的气流方向依次串联地布置。可以说,第二副热交换器343布置成在允许通风排出空气614穿过其中并且防止第二穿过空气612穿过其中的同时,使第二副热交换器343与第二穿过空气612的至少一部分接触。也可以说,第二副热交换器343布置成使得在第二副热交换器343中的通风排出空气614相对于第二穿过空气612的流量比大于在第二主热交换器342中的通风排出空气614相对于第二穿过空气612的流量比。
排出通风通道334还具有位于壳体301内的排出旁路通道335。排出旁路通道335基本上由EA分隔件314的靠近排气出口324的如上所述的内孔315形成。
排出旁路通道335构造成允许空气在其中从回气入口321朝向排气出口324流动,而不穿过第一热交换器341、全热交换器344和第二主热交换器342中的任一个。已经通过回气入口321吸入并将要通过排气出口324排出而不穿过全热交换器344(即,穿过排出旁路通道335)的空气在下文中被称为“排出旁路空气615”。如图3中的一个点划线箭头所示,排出旁路空气615流过第一主空气通道331的一部分及排出旁路通道335,然后流过第二主空气通道332的一部分。可以说,排出旁路空气615是通风排出空气614的一部分。
空气调节器300还具有第一风扇345、第二风扇346、第三风扇347、第一主挡板351、第二主挡板352、第二副挡板353和排出旁路挡板(排出挡板)354,它们中的每一个都是电动机挡板。
第一风扇345配置在第一主空气通道331中,以便优选地从壳体301的内部对供气出口322进行覆盖。第一风扇345构造成将壳体301内的空气吸向供气出口322。
第二风扇346配置在第二主空气通道332中,以便优选地从壳体301的内部对排气出口324进行覆盖。第二风扇346构造成将壳体301内的空气吸向排气出口324。
第三风扇347配置在供给通风通道333中、即在外气入口323与全热交换器344之间。第三风扇347构造成经由全热交换器344的第一空气路径从外气入口323朝向供气出口322抽吸空气。
第一主挡板351配置在回气入口321与第一热交换器341之间的第一主空气通道331中。更具体地,第一主挡板351布置在第一主空气通道331和排出通风通道334分支的点与第一主空气通道331和供给通风通道333合并的点之间。因此,第一主挡板351构造成对第一穿过空气611的流量进行调节。应当注意的是,在本实施方式中,对空气的流动进行调节可以包括以逐步或非逐步方式对空气的流速进行调节、以逐步或非逐步方式对空气相对于其他空气的流量比进行调节、和/或对是否使空气流动进行切换。
第二主挡板352配置在外气入口323与第一热交换器341之间的第二主空气通道332中。更具体地,第二主挡板352布置在第二主空气通道332和供给用通风通道333的分支的点与第二主空气通道332和排出用通风通道334合并的点之间。因此,第二主挡板352构造成对第二穿过空气612的流量进行调节。
第二副挡板353配置在供给通风通道333中、即在外气入口323与全热交换器344之间。更具体地,第二副挡板353布置在第二主空气通道332和供给通风通道333分支的点与第三风扇347之间。因此,第二副挡板353构造成对通风进入空气613的流量进行调节。
排出旁路挡板354在内孔315处配置在排出旁路通道335中。因此,排出旁路挡板354构造成对排出旁路空气615的流量进行调节。
对一个空气流量的调节将会影响另一个空气流量。因此,也可以说第一主挡板351、第二主挡板352、第二副挡板353以及排出旁路挡板354中的每一个是构造成对空气调节器300中的空气流量进行调节的空气流量调节器350的一部分(见图6)。此外,可以说,因相同的原因,第一风扇345、第二风扇346和第三风扇347中的每一个也包括空气流量调节器350。
空气调节器300还可以具有电预热器348。电预热器348配置在外气入口323与全热交换器344之间的供给通风通道333中。更具体地,电预热器348布置在第三风扇347与全热交换器344的第一空气路径的入口之间。电预热器348构造成当第一热交换器341用作冷凝器时对穿过其中的空气进行加热。
图4是空气调节器300的示意性配管图。
空气调节器300具有配管连接机构370、液体制冷剂配管360、第一膨胀阀361和第二膨胀阀362、接收器363以及释放阀420。
配管连接机构370构造成将第一热交换器341和第二热交换器342、343(第二主热交换器342及第二副热交换器343)中的每一个与制冷剂压缩机系统400(见图1)连接。因此,配管连接机构370构造成经由高压气体制冷剂配管430和低压气体制冷剂配管440,将第一热交换器341和第二热交换器342、343与配置在空气调节器300中任一个的壳体301的外部的压缩机单元410连接。
配管连接机构370包括高压气体制冷剂端口371、低压气体制冷剂端口372以及作为切换机构的四通阀373。
高压气体制冷剂端口371构造成将四通阀373与制冷剂压缩机系统400的高压气体制冷剂配管430连接(见图5)。低压气体制冷剂端口372构造成将四通阀373与制冷剂压缩机系统400的低压气体制冷剂配管440连接(见图5)。
四通阀373可以是具有四个配管连接端口的电动机阀。四通阀373与第一热交换器341和第二热交换器342、343中的每一个连接。因此,四通阀373构造成在制冷模式连接状态与制热模式连接状态之间对空气调节器300的状态进行切换。
在此,制冷模式连接状态是第一热交换器341与低压气体制冷剂配管440连接且第二热交换器342、343与高压气体制冷剂配管430连接的状态。在制冷模式连接状态下,可以在空气调节器300中实现制冷运转。制冷运转是第一热交换器341用作热泵回路的蒸发器且第二热交换器342、343用作热泵回路的冷凝器的运转。
另一方面,制热模式连接状态是第一热交换器341与高压气体制冷剂配管430连接且第二热交换器342、343与低压气体制冷剂配管440连接的状态。在制热模式连接状态下,可以在空气调节器300中实现制热运转。制热运转是第一热交换器341用作热泵回路的冷凝器且第二热交换器342、343用作热泵回路的蒸发器的运转。
液体制冷剂配管360在与四通阀373和第一热交换器341及第二热交换器342、343连接的一侧相反的一侧处,将第二主热交换器342、第二副热交换器343和第一热交换器341依次串联地连接。因此,液体制冷剂配管360构造成使得制冷剂在串联的第二主热交换器342、第二副热交换器343和第一热交换器341中以该顺序和/或以相反的顺序流动。
因此,第一热交换器341、第二热交换器342、343、制冷剂压缩机系统400和液体制冷剂配管360形成热泵回路。
在此,术语“热泵回路”是指构造成通过使作为热介质的制冷剂在蒸发器与冷凝器之间循环而将热能从蒸发器的周围区域传递到冷凝器的周围区域的系统。“热泵回路”可以至少具有依次串联地连接的制冷剂压缩机、冷凝器、膨胀阀和蒸发器。制冷剂压缩机构造成对制冷剂进行加压并使制冷剂循环通过制冷剂回路。冷凝器构造成通过从制冷剂压缩机排放的制冷剂来进行热量释放。膨胀阀构造成使从冷凝器排放的制冷剂减压。蒸发器构造成通过从膨胀阀排放的制冷剂进行吸热,并且将制冷剂朝向制冷剂压缩机输送。
第一膨胀阀361和第二膨胀阀362配置在液体制冷剂配管360中。第一膨胀阀361和第二膨胀阀362可以是电磁阀。第一膨胀阀361布置成比第二膨胀阀362更靠近第一热交换器341,以在第一热交换器341用作蒸发器时对释放到第一热交换器341中的制冷剂的量进行控制。第二膨胀阀362布置成比第一膨胀阀361更靠近第二热交换器342、343,以在第二热交换器342、343用作蒸发器时对释放到第二热交换器342、343中的制冷剂的量进行控制。
接收器363在第一膨胀阀361与第二膨胀阀362之间配置在液体制冷剂配管360中。接收器363构造成吸收在热泵回路中循环的制冷剂的量的波动。
因此,第一热交换器341和第二主热交换器342可以在相同的制冷剂回路中用作一组冷凝器和蒸发器。不仅如此,第一热交换器341和第二主热交换器342中的每一个的功能均可以在蒸发器与冷凝器之间切换。
应当注意的是,第二副热交换器343构造成当第二主热交换器342用作冷凝器时,使已经流过第二主热交换器342的制冷剂在其中流动。此外,第二主热交换器342构造成当第二主热交换器342用作蒸发器时,使已经流过第二副热交换器343的制冷剂在其中流动。
释放阀420可以是具有安全阀功能的电磁阀。释放阀420与液体制冷剂配管360连接,并且构造成通过打开而从液体制冷剂配管360排放热泵回路中的制冷剂。优选的是,释放阀420布置在建筑200的外部230(见图1)。在这种情况下,可以从液体制冷剂配管360向外部230分支出一个配管,以用于位于外部230的释放阀420与液体制冷剂配管360连接。
图5是空气调节系统100的示意性配管图。
如上所述,空气调节系统100包括多个空气调节器300和制冷剂压缩机系统400。制冷剂压缩机系统400包括压缩机单元410、高压气体制冷剂配管430和低压气体制冷剂配管440。
压缩机单元410具有至少一个制冷剂压缩机411。制冷剂压缩机411构造成从吸入侧吸入制冷剂,对吸入的制冷剂进行压缩,并且从排放侧排放压缩后的制冷剂。压缩机单元410可以具有对压缩机单元410的基本上所有其他部件进行容纳的壳体。
高压气体制冷剂配管430与制冷剂压缩机411的排放侧连接。高压气体制冷剂配管430朝向空气调节器300分支并与该空气调节器300连接。分支的高压气体制冷剂配管430分别与空气调节器300的高压气体制冷剂端口371连接。低压气体制冷剂配管440与制冷剂压缩机411的吸入侧连接。低压气体制冷剂配管440朝向空气调节器300分支并与该空气调节器300连接。分支的低压气体制冷剂配管440分别与空气调节器300的低压气体制冷剂端口372连接。
因此,空气调节器300和制冷剂压缩机系统400中的每一个形成热泵回路。至少压缩机单元410由多个空气调节器300共用。另外,高压气体制冷剂配管430的至少一部分和低压气体的一部分也由多个空气调节器300共用。因此,实现了制冷剂配管道的双管系统。
特别是在使用二氧化碳制冷剂时,由于制冷剂的压力较高,因此,需要使制冷剂配管较厚。在这一点上,通过使用如上所述的双管系统,可以减小配管的总长度并简化配管连接。因此,诸如成本降低和配管的空间减小的效果变得更加显著。
压缩机单元410可以具有与气体制冷剂配管流体地连接并构造成对液体制冷剂和气体制冷剂进行分隔的储液器(未示出)。
图6是示出空气调节系统100的功能构造的框图。
如上所述,空气调节系统100包括房间CO2传感器510、机器空间CO2传感器511、空气调节器300和压缩机单元410。空气调节器300具有空气流量调节器350、制冷剂调节器374和单元控制器381。压缩机单元410具有制冷剂压缩机411、系统控制器412和系统存储器413。
房间CO2传感器510构造成对预定空间220中的二氧化碳水平进行检测,并且将指示检测到的二氧化碳水平的CO2信息发送到单元控制器381。机器空间CO2传感器511构造成对机器空间210中的二氧化碳水平进行检测,并且将指示检测到的二氧化碳水平的CO2信息发送到系统控制器412。二氧化碳水平可以是空气中的二氧化碳浓度的值、或者是与二氧化碳浓度的预定范围对应的预定值中的指标值。
房间CO2传感器510可以将CO2信息直接地发送到对应的空气调节器300的单元控制器381、和/或系统控制器412。房间CO2传感器510还可以经由系统控制器412将CO2信息间接地发送到单元控制器381、和/或经由单元控制器381将CO2信息间接地发送到系统控制器412。同样的可以应用于机器空间CO2传感器511。房间CO2传感器510和机器空间CO2传感器511中的每一个可以通过有线通信和/或无线通信来发送CO2信息。
空气流量调节器350包括第一主挡板351、第二主挡板352、第二副挡板353以及排出旁路挡板354(见图3)。因此,空气流量调节器350构造成对第一穿过空气611、第二穿过空气612、通风进入空气613、通风排出空气614和排出旁路空气615中的每一个的流动进行调节。
制冷剂调节器374构造成对第二热交换器342、343、液体制冷剂配管360和第一热交换器341中的制冷剂的循环量进行调节。制冷剂调节器374还构造成对二氧化碳制冷剂是否在以上元件中流动进行切换。应当注意的是,在本实施方式中,对制冷剂的循环量进行调节可以包括对制冷剂的流动进行调节和/或对是否使制冷剂流动进行切换。
制冷剂调节器374可以包括电磁阀(未示出)和/或四通阀373(见图4),所述电磁阀布置在热泵回路中且分别靠近高压气体制冷剂端口371和低压气体制冷剂端口372。制冷剂调节器374也可以构造成对第一膨胀阀361和第二膨胀阀362中的每一个的开度进行控制。制冷剂调节器374还可以通过向系统控制器412和/或单元控制器381发送指令信号来对制冷剂压缩机411的旋转频率进行控制。
单元控制器381构造成对空气调节器300的运转进行控制。更具体地,单元控制器381构造成对至少第一风扇345、第二风扇346、第三风扇347、空气流量调节器350和制冷剂调节器374进行控制。由此,单元控制器381在空气调节器300的多个预定运转状态之间对空气调节器300的状态进行切换。关于预定运转状态的细节稍后说明。单元控制器381还构造成获取从至少对应的房间CO2传感器510发送的CO2信息。优选的是,单元控制器381还构造成获取从其他房间CO2传感器510和机器空间CO2传感器511发送的CO2信息。单元控制器381构造成根据所获取的CO2信息执行上述运转控制。
单元控制器381包括:运算电路,诸如CPU(中央处理单元);由CPU使用的工作存储器,诸如RAM(随机存储器);以及存储由CPU使用的控制程序和信息的记录介质,诸如ROM(只读存储器),尽管它们未示出。因此,单元控制器381构造成通过CPU执行控制程序来执行信息处理和信号处理,以对空气调节器300的运转进行控制。
系统控制器412构造成对空气调节系统100的运转进行控制,包括制冷剂压缩机411的输出(旋转速度)。系统控制器412构造成获取从房间CO2传感器510和机器空间CO2传感器511中的每一个发送的CO2信息,并且根据CO2信息来对释放阀420进行控制。系统控制器412包括运算电路、由CPU使用的工作存储器以及存储由CPU使用的控制程序和信息的记录介质。因此,系统控制器412构造成通过CPU执行控制程序来执行信息处理和信号处理,以对压缩机单元410的运转进行控制。
<空气调节器的运转状态>
空气调节器300的如上所述的预定运转状态包括热回收标准状态、非热回收标准状态、低通风状态、空气调节状态、低制冷状态、自由制冷状态以及制冷剂排空状态。
这些运转状态的细节将在下面参考附图7至13进行说明。在这些图中,细虚线表示相应的部件没有运转,箭头基本上表示主要气流的路径和方向。对气流的说明是在预定空间220基本上是气密的前提下作出的。应当注意的是,由于空气泄漏等,除了所描绘的气流之外,还可以存在在空气调节器300中流动的少量气流。
图7是示出空气调节器300的热回收标准状态的示意图。
如图7所示,热回收标准状态是允许第一穿过空气611、第二穿过空气612、通风进入空气613和通风排出空气614流动,防止排出旁路空气615(见图3)流动,允许第一风扇345和第二风扇346运转,并且允许制冷剂在第一热交换器341、第二副热交换器343和第二主热交换器342中流动的状态。也可以允许第三风扇347运转。当空气调节器300处于制热模式连接状态时、即当空气调节器300执行预定空间220的制热时,可以允许预热器348运转。
在该热回收标准状态下,空气调节器300可以在对通风排出空气614的温热和/或冷热的至少一部分进行回收来对通风进入空气613进行加热和/或冷却的同时,执行预定空间220的空气调节和通风。
图8是示出空气调节器300的非热回收标准状态的示意图。
如图8所示,非热回收标准状态是允许第一穿过空气611、第二穿过空气612、通风进入空气613和排出旁路空气615流动,允许第一风扇345和第二风扇346运转,并且允许制冷剂在第一热交换器341、第二副热交换器343和第二主热交换器342中流动的状态。也可以允许第三风扇347运转。当空气调节器300执行对预定空间220的制热时,可以允许预热器348运转。虽然通风排出空气614(见图3)流动,但是由于全热交换器344、第二副热交换器343和第二主热交换器342的摩擦阻力与通过打开排出旁路挡板354引起的摩擦阻力相比非常大,因此,流动较小。
在该非热回收标准状态下,空气调节器300可以在使排出旁路空气615流动的同时,执行预定空间220的空气调节和通风。也可以说,通风排出空气614的至少一部分被迂回,以便不穿过全热交换器344。
图9是示出空气调节器300的低通风状态的示意图。
如图9所示,低通风状态是允许通风排出空气614和通风进入空气613流动,防止第一穿过空气611、第二穿过空气612和排出旁路空气615流动,允许第一风扇345运转,并且防止制冷剂在第一热交换器341、第二副热交换器343和第二主热交换器342中流动的状态。也可以允许第三风扇347和预热器348运转。由于所需的通风性能较低,因此,可以停止第二风扇346。
在该低通风状态下,空气调节器300可以在对通风排出空气614的温热和/或冷热的至少一部分进行回收来对通风进入空气613进行加热和/或冷却的同时,执行预定空间220的通风。
图10是示出空气调节器300的空气调节状态的示意图。
如图10所示,空气调节状态是允许第一穿过空气611和第二穿过空气612流动,防止通风进入空气613、通风排出空气614和排出旁路空气615流动,允许第一风扇345和第二风扇346运转,并且允许制冷剂在第一热交换器341、第二副热交换器343和第二主热交换器342中流动的状态。优选的是,停止第三风扇347和电预热器348。
在该空气调节状态下,空气调节器300可以在不将外气吸入到预定空间220中的情况下,执行预定空间220的空气调节。在此,外部空气是指从外气入口323吸入到空气调节器300中的空气。
图11是示出空气调节器300的低制冷状态的示意图。
如图11所示,低制冷状态是允许通风进入空气613和通风排出空气614流动,防止第一穿过空气611、第二穿过空气612和排出旁路空气615流动,允许第一风扇345运转,并且允许制冷剂在第一热交换器341、第二副热交换器343和第二主热交换器342中流动的状态。也可以允许第三风扇347运转。由于所需的通风性能较低,因此,可以停止第二风扇346。
在该低制冷状态下,空气调节器300可以在使通风排出空气614流动的同时,执行预定空间220的通风。因此,可以在不使用第一穿过空气611和第二穿过空气612的情况下执行空气调节。
图12是示出空气调节器300的自由制冷状态的示意图。
如图12所示,自然制冷状态是防止第一穿过空气611和第二穿过空气612流动,允许通风进入空气613和排出旁路空气615流动,允许第一风扇345运转,并且防止制冷剂在第一热交换器341、第二副热交换器343和第二主热交换器342中流动的状态。也可以允许第三风扇347运转。由于所需的通风性能较低,因此,可以停止第二风扇346。如上所述,通风排出空气614(见图3)的流动较小。
在该自由制冷状态下,空气调节器300可以执行预定空间220的自由制冷和通风,同时使排出旁路空气615流动。
图13是示出空气调节器300的制冷剂排空状态的示意图。
如图13所示,制冷剂排空状态是允许通风进入空气613和排气用旁路空气615流动,防止第一穿过空气611和第二穿过空气612流动,允许第二风扇346、第三风扇347和第一风扇345运转,并且防止制冷剂在第一热交换器341、第二副热交换器343和第二主热交换器342中流动的状态。可以说,允许通风排出空气614的至少一部分流入排出旁路通道335中。如上所述,通风排出空气614(见图3)的流动较小。
在该制冷剂排空状态下,空气调节器300可以执行预定空间220的强制通风,同时使排出旁路空气615流动。
<运转状态的切换>
空气调节器300的单元控制器381构造成根据对空气调节器300的运转状态的指定和/或与预定空间220相关的条件来在如上所述的预定运转状态之间对空气调节器300的状态进行切换。这样的指定和/或条件可以是预定空间220的目标温度、预定空间220的实际温度、外部空气的温度以及预定空间220是否处于使用中等。用户可以经由诸如触摸面板的用户接口来进行对空气调节器300的运转状态的指定。
优选的是,单元控制器381对第一风扇345、第二风扇346、第三风扇347、空气流量调节器350和制冷剂调节器374进行控制,使得当CO2信息指示的二氧化碳水平高于或等于第一预定阈值时实现制冷剂排空状态(图13)。第一预定阈值可以是被怀疑二氧化碳制冷剂泄漏时的二氧化碳水平。
还优选的是,单元控制器381在二氧化碳水平已经保持高于或等于第一预定阈值达预定的时间量的条件下,将空气调节器300的状态切换到制冷剂排空状态(图13)。
优选的是,单元控制器381对第一风扇345、第二风扇346、第三风扇347、空气流量调节器350和制冷剂调节器374进行控制,使得当二氧化碳水平低于第一预定阈值且高于或等于第二预定阈值时实现低通风状态(图9)。第二预定阈值低于第一预定阈值。第二预定阈值可以是人体不期望的最小二氧化碳水平。
可以说单元控制器381构造成对至少标准状态、通风状态和空气调节状态进行切换(图10)。标准状态是允许第一穿过空气611、第二穿过空气612、通风进入空气613和通风排出空气614流动,允许第一风扇345和第二风扇346运转,并且允许制冷剂在第一热交换器341和第二主热交换器342中流动的状态。通风状态是防止第一穿过空气611和第二穿过空气612流动,允许通风进入空气613和通风排出空气614流动,允许第一风扇345运转,并且防止制冷剂在第一热交换器341和第二主热交换器342中流动的状态。
在这种情况下,如上所述的热回收标准状态(图7)和如上所述的非热回收标准状态(图8)包括在标准状态中,并且如上所述的低通风状态(图9)、自由制冷状态(图12)和制冷剂排空状态(图13)包括在通风状态中。
也可以说,单元控制器381构造成在上述通风状态下,对至少防止排出旁路空气615流动且允许第一风扇345运转的通常通风状态与制冷剂排空状态进行切换(图13)。在这种情况下,如上所述的低通风状态(图9)可以包括在正常通风状态中。
优选的是,当空气调节器300处于制冷模式连接状态时,即当空气调节器300执行预定空间220的制冷且制冷负载相对较低时,单元控制器381选择非热回收标准状态(图8)和低制冷状态(图11)。
优选的是,单元控制器381在空气调节器300执行预定空间220的制冷且外部空气的温度比预定空间220中的内部空气的温度低得多的条件下,5选择自由制冷状态(图12)。
当已经检测到全热交换器344发生了故障或预测为由于冻结、堵塞等引起故障时,单元控制器381可以选择排出旁路挡板354被打开的运转状
态,例如非热回收标准状态(图8)、低制冷状态(图9)以及制冷剂排空0状态(图13)。可以通过使用配置在全热交换器344中或附近的温度传感器和/或压力传感器来检测这种情况。
优选的是,当二氧化碳水平高于或等于第一预定阈值或第三预定阈值时,单元控制器381输出指示二氧化碳制冷剂泄漏的可能性的警报信息。5第三预定阈值可以高于或低于第一预定阈值。警报信息可以是声音、语音消息、光、图像、振动、发送到外部信息处理装置的电信号等形式。
单元控制器381还构造成当二氧化碳水平高于或等于第一预定阈值或第四预定阈值时,对释放阀420(见图4)进行控制,以便将热泵回路中的0制冷剂排放到预定空间220的外部230。第四预定阈值可以高于或低于第一预定阈值。该控制可以由压缩机单元410的系统控制器412(见图6)执行。
作为制冷剂的二氧化碳(CO2)的临界温度相对较低(31℃)。当空气调节器的室外热交换器在高的室外温度下用作冷凝器时,室外热交换器5中的制冷剂变成“跨临界”。这意味着制冷剂无法冷凝成液体而保持于气态,
并且将使得室外热交换器中排出的热量比发生冷凝时(如在“亚临界”状态中)小得多。其结果是,使用二氧化碳制冷剂的系统倾向于具有比使用诸如R410A或其他HFC的其他制冷剂的类似系统更低的效率。在这一点上,利用空气调节器300,由于第二热交换器342、343与比外部空气冷的通风排出空气614进行热交换,因此,即使使用二氧化碳制冷剂,也可以提高热交换效率。因此,根据本实施方式的空气调节器300是合适的。
优选的是,空气调节器300构造成切换其运转状态,使得经过第二热交换器(第二主热交换器342和/或第二副热交换器343)的空气的温度处于在第二热交换器中流动的二氧化碳制冷剂的超临界温度以下。
例如,在空气调节器300处于空气调节状态(见图10)期间,单元控制器381构造成获取经过第二热交换器的空气的温度,并且优选的是,获取外部空气的温度和预定空间220中的空气的温度。如果获取的温度高于或等于在第二热交换器中流动的二氧化碳制冷剂的超临界温度,则单元控制器381对空气流量调节器350进行控制以将运转状态从空气调节状态切换到热回收标准状态(见图7)。碳的超临界温度的值可以预先存储在单元控制器381的存储器中。
<气压平衡的控制>
另外,单元控制器381可以构造成对空气流量调节器350进行控制,使得空气调节器30中的气压平衡维持于预定平衡。优选的是,预定空间220中的气压维持成高于或等于外部230的气压,以便防止外部空气经由门、窗等进入预定空间220中。
图14是用于说明空气调节器300及其周围的压力平衡的示意图。
在此,对第一压力P1至第六压力P6进行限定,以用于说明上述气压平衡。第一压力P1是预定空间220中、例如在供气出口322的右下游侧的空气压力的值。第二压力P2是第一主空气通道331中、例如在第一热交换器341的右上游侧的空气压力的值。第三压力P3是排出通风通道334中、例如在全热交换器344的右上游侧的空气压力的值。第四压力P4是供给通风通道333中、例如在全热交换器344的右上游侧的空气压力的值。第五压力P5是第二主空气通道332中、例如在第二主热交换器342的右上游侧的空气压力的值。第六压力P6是外部230中、例如在外气入口323的右上游侧的空气压力的值。
空气调节器300构造成维持使第一压力P1高于第二压力P2至第六压力P6中的任一个,使第四压力P4和第六压力P6高于第二压力P2、第三压力P3和第五压力P5中的任一个,并且使第二压力P2和第三压力P3高于第五压力P5的气压平衡。
单元控制器381可以对第一风扇345、第二风扇346和第三风扇347中的每一个的旋转速度以及第一主挡板351、第二主挡板352、第二副挡板353和排出旁路挡板354中的每一个的旋转角度进行控制,以便实现上述气压平衡。为此,空气调节器300可以具有多个气压传感器。
<空气调节器的运转>
图15是示出由空气调节器300执行的处理的流程图。这些处理由单元控制器381执行(见图6)。
在步骤S1100中,单元控制器381从房间CO2传感器510获取指示预定空间220中的二氧化碳水平L的CO2信息。单元控制器381可以向房间CO2传感器510发送请求,然后接收CO2信息作为应答和/或被动地接收由房间CO2传感器510定期发送的CO2信息。
在步骤S1200中,单元控制器381对二氧化碳水平L是否高于或等于第一预定阈值Th1进行判断。如果二氧化碳水平L低于第一阈值Th1(S1200:否),则单元控制器381前进到步骤S1300。如果二氧化碳水平L高于或等于第一阈值Th1(S1200:是),则单元控制器381前进到稍后说明的步骤S1600。
在步骤S1300中,单元控制器381对是否已经指定了运转状态进行判断。可以指定如上所述的运转状态中的一个。根据如上所述的条件,该指定可以通过用户操作、另一装置或单元控制器381自身来进行。如果已经指定了运转状态(S1300:是),则单元控制器381前进到步骤S1400。如果没有指定任何运转状态(S1300:否),则单元控制器381前进到稍后说明的步骤S1500。
在步骤S1400中,单元控制器381将空气调节器300设定为指定的运转状态。更具体地,单元控制器381对第一风扇345、第二风扇346、第三风扇347、空气流量调节器350和制冷剂调节器374进行控制,使得实现指定的运转状态。
在步骤S1500中,单元控制器381对是否已经指定了由单元控制器381实现的运转的终止进行判断。该指定可以由用户操作、另一装置或单元控制器381自身来进行。如果没有指定运转的终止(S1500:否),则单元控制器381返回到步骤S1100。如果已经指定了运转的终止(S1500:是),则单元控制器381前进到稍后说明的步骤S1900。
在步骤S1600中、即当二氧化碳水平L高于或等于第一阈值Th1时,单元控制器381将空气调节器300设定为制冷剂排空状态。更具体地,单元控制器381对第一风扇345、第二风扇346、第三风扇347、空气流量调节器350和制冷剂调节器374进行控制,以便实现制冷剂排空状态。
在步骤S1700中,单元控制器381输出警报信息。
在步骤S1800中,单元控制器381对是否已经指定了制冷剂排空状态下的运转的终止进行判断。该指定可以由用户操作、另一装置或单元控制器381自身来进行。如果没有指定运转的终止(S1800:否),则单元控制器381重复步骤S1800中的判断。如果已经指定了运转的终止(S1800:是),则单元控制器381前进到步骤S1900。
在步骤S1900中,单元控制器381终止其运转。
<有利效果>
如上所述,根据本实施方式的空气调节器300具有排出通风通道334,上述排出通风通道334构造成允许通风排出空气614穿过第二热交换器342、343。通过利用通风排出空气614,使穿过第二热交换器342、343的空气的温度与在第二热交换器342、343中流动的制冷剂的温度之间的差增大。因此,可以利用简单的结构来提高空气调节器300的性能。
另外,根据本实施方式的空气调节器300具有单元381,上述单元381构造成获取指示待由空气调节器300进行空气调节和/或通风的预定空间220中的二氧化碳水平的CO2信息,并且根据该CO2信息对至少第一风扇345和第二风扇346进行控制。由此,即使在例如发生二氧化碳制冷剂的泄漏时,也能够防止在待由空气调节器进行空气调节和/或通风的空间中二氧化碳水平变高。
<变形>
以上说明的根据本实施方式的空气调节器300和空气调节系统100的构造可以进行变型。下面将提到这种变型的一些示例。变型示例中的每一个可以与其他变型示例中的一个或多个组合。
<空气路径的变形>
除了如上所述的一个或多个通道之外或者作为其替代,空气调节器300还可以具有构造成允许空气在其中流动的一个或多个通道。
例如,空气调节器300可以构造成防止通风排出空气614更主动地穿过全热交换器344和第二热交换器这两者。
图16是示出空气调节器300的第一变形的示意性构造的示意图。除了以下说明的特征之外,作为空气调节器300的第一变形的空气调节器300a可以具有与空气调节器300基本上相同的特征。
作为排出旁路挡板354(见图3)的替代,空气调节器300a具有作为电动机挡板且由单元控制器381控制的排出切换挡板355(排出挡板)。排出切换挡板355配置在内孔315与形成在RA分隔件311和EA分隔件314之间的如上所述的空间之间。排出切换挡板355是空气流量调节器350(见图6)的一部分。
如图16中的虚线箭头所示,排出切换挡板355构造成在第一角度与第二角度之间旋转。第一角度是内孔315相对于回气入口321被排出切换挡板355关闭、同时如上所述的空间相对于回气入口321被打开的角度。第二角度是内孔315相对于回气入口321被打开、同时如上所述的空间相对于回气入口321被排出切换挡板355关闭的角度。因此,排出切换挡板355构造成对供通风排出空气614在全热交换器344的第二空气路径与内孔315之间主要流动的空气路径进行切换。换言之,排出切换挡板355构造成对通风排出空气614是否经过第二热交换器342、343进行切换。
例如,在制冷运转期间,单元控制器381构造成获取外部空气的温度,并且对是否满足外部空气的温度高于或等于预定阈值的预定条件进行判断。如果满足上述条件,则单元控制器381对排出切换挡板355进行控制以关闭内孔315。由此,通风排出空气614经过全热交换器344和第二主热交换器342。同时,如果未满足上述条件,则单元控制器381对排出切换挡板355进行控制以打开内孔315。由此,防止通风排出空气614经过全热交换器344和第二主热交换器342。该状态与以上参考图12说明的自由制冷状态基本上相同。
空气调节器300还可以构造成允许通风排出空气614穿过第二热交换器,并且防止通风排出空气614穿过全热交换器344。
图17是示出空气调节器300的第二变形的示意性构造的示意图。除了以下说明的特征之外,作为空气调节器300的第二变形的空气调节器300b可以具有与空气调节器300基本上相同的特征。
空气调节器300b具有半旁路通道336。半旁路通道336形成为与全热交换器344的第二空气路径基本上平行。半旁路通道336可以由EA分隔件314和全热交换器344的外表面在其间形成。半旁路通道336构造成允许空气在其中从回气入口321朝向排气出口324流动,而不穿过全热交换器344。
优选的是,半旁路通道336的一端位于排出旁路通道335从排出通风通道334分支的点与全热交换器344的第二空气路径之间。还优选的是,半旁路通道336的另一端位于全热交换器344的第二空气路径与第二副热交换器343之间。由此,半旁路通道336允许通风排出空气614穿过第二副热交换器343和第二主热交换器342,而不穿过全热交换器。
空气调节器300b具有作为电动机挡板且由单元控制器381控制的第一切换挡板(排出挡板)356。第一切换挡板356配置在半旁路通道336从排出通风通道334分支的点处。第一切换挡板356是空气流量调节器350(见图6)的一部分。
如图17中的虚线箭头所示,第一切换挡板356构造成在第一角度与第二角度之间旋转。第一角度是半旁路通道336相对于回气入口321被第一切换挡板356关闭并且全热交换器344的第二空气路径相对于回气入口321被打开的角度。第二角度是半旁路通道336相对于回气入口321被打开并且全热交换器344的第二空气路径相对于回气入口321被第一切换挡板356关闭的角度。因此,第一切换挡板356构造成对供排出空气614在全热交换器344的第二空气路径与半旁路通道336之间主要流动的空气路径进行切换。
例如,在制冷运转期间,单元控制器381获取在第二主热交换器342中流动的制冷剂的温度,并且对所获取的温度是否高于或等于预定阈值进行判断。如果获取的温度高于或等于预定阈值,则单元控制器381对第一切换挡板356进行控制以关闭全热交换器344的第二空气路径。由此,通风排出空气614经过半旁路通道336和第二主热交换器342。同时,如果获取的温度低于预定阈值,则单元控制器381对第一切换挡板356进行控制以关闭半旁路通道336。由此,通风排出空气614经过全热交换器344和第二主热交换器342。因此,可以根据需要有效地降低在第二副热交换器343和第二主热交换器342中流动的制冷剂的温度。
单元控制器381还可以构造成当已经检测到全热交换器344发生了故障或者预测为由于冻结、堵塞等引起故障时,对第一切换挡板356进行控制以关闭全热交换器344的第二空气路径。
替代地,空气调节器300可以构造成允许通风排出空气614穿过全热交换器344,并且防止通风排出空气614穿过第二热交换器。
图18是示出空气调节器300的第二变形的示意性构造的示意图。除了以下说明的特征之外,作为空气调节器300的第三变形的空气调节器300c可以具有与空气调节器300基本上相同的特征。
空气调节器300c具有半旁路孔337。利用该构造,可以省略第二副热交换器343。半旁路孔337形成在第二主热交换器342与EA分隔件314之间。因此,第二主空气通道332的沿着第二主热交换器342的横截面被分成至少由第二主热交换器342填充的一个区域和未由第二热交换器填充的另一区域(即,半旁路孔337)。半旁路孔337构造成允许空气在其中从全热交换器344的第二空气路径朝向排气出口324流动,而不穿过第二主热交换器342。
空气调节器300c具有作为电动机挡板且由单元控制器381控制的第二切换挡板(排出挡板)357。第二切换挡板357配置在第二主热交换器342与半旁路孔337之间。第二切换挡板357是空气流量调节器350(见图6)的一部分。
如图18中的虚线箭头所示,第二切换挡板357构造成在第一角度与第二角度之间旋转。第一角度是半旁路孔337相对于全热交换器344的第二空气路径被第二切换挡板357关闭并且第二主热交换器342相对于全热交换器344的第二空气路径被打开的角度。第二角度是半旁路孔337相对于全热交换器344的第二空气路径被打开并且第二主热交换器342相对于全热交换器344的第二空气路径被第二切换挡板357关闭的角度。因此,第二切换挡板357构造成对供通风排出空气614在第二主热交换器342与半旁路孔337之间主要流动的空气路径进行切换。换言之,第二切换挡板357构造成对已经穿过了全热交换器344的通风排出空气614是否经过第二主热交换器342进行切换。
例如,在制冷运转期间,单元控制器381构造成获取外部空气的温度,并且对外部空气的温度是否高于或等于预定阈值进行判断。如果外部空气的温度高于或等于预定阈值,则单元控制器381对第二切换挡板357进行控制以关闭半旁路孔337。由此,通风排出空气614经过第二主热交换器342。同时,如果外部空气的温度低于预定阈值,则单元控制器381对第二切换挡板357进行控制以打开半旁路孔337。由此,防止通风排出空气614经过第二主热交换器342。
作为空气调节器300的另一变形,回气入口321、供气出口322、外气入口323和排气出口324的位置关系(即,第一主空气通道331、第二主空气通道332、供给通风通道333、排出通风通道334和排出旁路通道335的布置)可以从以上说明的位置关系进行修改。
图19是示出空气调节器300的第四变形的示意性构造的示意图。除了以下说明的特征之外,作为空气调节器300的第四变形的空气调节器300d可以具有与空气调节器300基本上相同的特征。
在空气调节器300d中,回气入口321和外气入口323布置在壳体301的同一个第一面302上,并且供气出口322和排气出口324布置在同一个第二面303上。换言之,第一主空气通道331和第二主空气通道332布置成基本上平行,同时构造成使得从回气入口321到供气出口322的方向与从外气入口323到排气出口324的方向基本上相同。
在这种构造中,优选的是,如图19所示,第一热交换器341和第二主热交换器342布置成使得第一热交换器341的空气穿过方向和第二主热交换器342的空气穿过方向相对于彼此倾斜。还优选的是,第一热交换器341和第二主热交换器342布置成将全热交换器344夹在其间。
作为空气调节器300的又一变形,供给通风通道333和排出通风通道334可以布置成基本上平行,并且构造成使得从外气入口323到供气出口322的方向与从回气入口321到排气出口324的方向基本上相反。
还可以使从外气入口323到供气出口322的方向与从回气入口321到排气出口324的方向基本上相同。
第二主热交换器342和排出通风通道334的位置关系不限于以上说明的位置关系。例如,第二主热交换器342可以布置成允许第二穿过空气612穿过其中,并且布置成防止通风排出空气614穿过其中。
图20是示出空气调节器300的第五变形的示意性构造的示意图。除了以下说明的特征之外,作为空气调节器300的第五变形的空气调节器300e可以具有与空气调节器300基本上相同的特征。
在空气调节器300e中,第二主热交换器342和第二副热交换器343形成板状形状。排出通风通道334具有分隔板358。分隔板358将空气被吸入到第二主热交换器342和第二副热交换器343的空间分隔成主空间和副空间。主空间是空气被吸入到第二主热交换器342的空间。副空间是空气被吸入到第二副热交换器343的空间。
在这种构造中,分隔板358在第二主热交换器342和第二副热交换器343的上游侧将第二主空气通道332和排出通风通道334分隔,以防止通风排出空气614穿过第二主热交换器342。
<单元布置的变形>
作为空气调节器300的又一变形,空气调节器300的一部分可以与空气调节器300的其余部分分隔。例如,包括第一主空气通道331和第一热交换器341的室内单元和包括第二主空气通道332和第二主热交换器342的室外单元可以分开地布置。
图21是示出空气调节器300的第六变形的示意性构造的示意图。除了下面说明的特征之外,作为空气调节器300的第六变形的空气调节器300f可以具有与空气调节器300基本上相同的特征。
在空气调节器300f中,第一主空气通道331、第二主空气通道332和全热交换器344彼此分开。这些通道通过多个管道连接。因此,通过这些管道形成供给通风通道333的一部分和排出通风通道的一部分。压缩机单元410可以如图21所示布置在后壁空间270中。
作为又一选择,例如,单元控制器381可以配置在压缩机单元410中并且与系统控制器412集成(见图6)。在这种情况下,该集成的控制器构造成与第一风扇345、第二风扇346、第三风扇347、空气流量调节器350、制冷剂调节器374和/或释放阀420通信,以通过有线通信和/或无线通信来控制它们。
在任何情况下,优选的是,控制器构造成在制冷模式连接状态与制热模式连接状态之间对空气调节器300中的至少一个的状态进行控制,以允许空气调节器300中的至少一个处于制冷模式连接状态和制热模式连接状态中的一个,而空气调节器300中的另一个处于制冷模式连接状态和制热模式连接状态中的另一个。
<系统布置的变形>
作为空气调节器300的又一变形,制冷剂回路可以在空气调节器300之间和/或在第一热交换器341与第二主热交换器342之间分隔。例如,可以采用四管系统来代替如图5所示的双管系统。
图22是示出空气调节系统100的变形的示意性构造的示意图。除了以下说明的特征以外,作为空气调节系统100的变形的空气调节系统100g可以具有与空气调节系统100基本上相同的特征。
在空气调节系统100g中,每个空气调节器300g不具有将第一热交换器341和第二热交换器342、343直接地连接的液体制冷剂配管360以及四通阀373(见图4和图5)。替代地,空气调节系统100g具有位于空气调节器300g外部的液体制冷剂配管360g以及作为压缩机单元410g中的切换机构的四通阀373g。换言之,液体制冷剂配管360g和四通阀373g配置在制冷剂压缩机系统400e中。由于四通阀373不安装在空气调节器300g上,因此,可以使空气调节器300g免受四通阀373引起的噪声的影响。
此外,代替高压气体制冷剂端口371和低压气体制冷剂端口372(见图4和图5),每个空气调节器300g具有第一气体制冷剂端口375、第二气体制冷剂端口376、第一液体制冷剂端口377和第二液体制冷剂端口378。
第一气体制冷剂端口375和第一液体制冷剂端口377在其相反侧上与第一热交换器341连接。第二气体制冷剂端口376和第二液体制冷剂端口378在其相反侧上与第二热交换器342、343连接。
液体制冷剂配管360g的一端朝向空气调节器300g的第一热交换器341分支并与该第一热交换器341连接。更具体地,液体制冷剂配管360g的一端与空气调节器300g的第一液体制冷剂端口377中的每一个连接。液体制冷剂配管360g的另一侧朝向空气调节器300g的第二热交换器342分支并与该第二热交换器342连接。更具体地,液体制冷剂配管360g的另一端与空气调节器300g的第二液体制冷剂端口378中的每一个连接。因此,空气调节器300g的第一热交换器341、液体制冷剂配管360g以及相同的空气调节器300g的第二热交换器342依次串联地连接。
在液体制冷剂配管360g中,配置有至少一个膨胀阀。优选的是,第一膨胀阀361配置在每个空气调节器300g的第一液体制冷剂端口377与第一热交换器341之间,并且第二膨胀阀362配置在每个空气调节器300g的第二液体制冷剂端口378与第二热交换器342、343之间。但是,也可以代替第一膨胀阀361以及第二膨胀阀362,在供在所有空气调节器300g中的每一个中循环的制冷剂穿过的部分中仅配置一个膨胀阀。
空气调节系统100g还具有第一气体制冷剂配管451g和第二气体制冷剂配管452g。第一气体制冷剂配管451g朝向空气调节器300g的第一热交换器341分支并与该第一热交换器341连接。更具体地,第一气体制冷剂配管451g与空气调节器300g的第一气体制冷剂端口375中的每一个连接。第二气体制冷剂配管452g朝向空气调节器300g的第二热交换器342、343分支并与该第二热交换器342、343连接。更具体地,第二气体制冷剂配管452g与空气调节器300g的第二气体制冷剂端口376中的每一个连接。优选的是,释放阀420设置到液体制冷剂配管360g(图22中未示出)。
高压气体制冷剂配管430和低压气体制冷剂配管440布置在压缩机单元410g中。四通阀373g与高压气体制冷剂配管430、低压气体制冷剂配管440、第一气体制冷剂配管451g和第二气体制冷剂配管452g中的每一个连接。四通阀373g构造成在制冷模式连接状态与制热模式连接状态之间对空气调节器300的状态进行切换。四通阀373g的运转由系统控制器412控制(见图6)。
液体制冷剂配管360g的至少一部分可以布置在压缩机单元410g中。在这种情况下,优选的是,接收器363配置在该部分中。另外,优选的是,压缩机单元410g还具有副制冷热交换器414。
副制冷热交换器414与液体制冷剂配管流体地连接。副制冷热交换器414构造成对在液体制冷剂配管中流动的制冷剂进行制冷。更具体地,副制冷热交换器414具有从液体制冷剂配管360g分支并与低压气体制冷剂配管440合并的旁路配管。旁路配管沿着制冷剂从液体制冷剂配管360g到低压气体制冷剂配管440的流动方向依次具有膨胀阀和制冷剂热交换器。制冷剂热交换器使在液体制冷剂配管360g中流动的制冷剂与在膨胀阀之后的旁路配管中流动的制冷剂之间进行热交换。
制冷剂的温度在穿过该膨胀阀时降低。因此,在制冷剂热交换器处对在液体制冷剂配管360g中流动的制冷剂进行制冷。另外,在液体制冷剂配管360g中流动的制冷剂的一部分朝向制冷剂压缩机411的吸入侧分支,因此不会流入空气调节器300g中。因此,该构造使得可以提高用作蒸发器的第一热交换器341或第二热交换器342、343中的热交换效率和/或减小蒸发器中的制冷剂的质量流量并同时维持蒸发器中的热交换效率。
在以上说明的空气调节系统100的任何构造中,压缩机单元410可以具有多个制冷剂压缩机411。在这种情况下,高压气体制冷剂配管430和低压气体制冷剂配管440中的每一个可以朝向制冷剂压缩机411分支并与该制冷剂压缩机411连接。在这种情况下,多个制冷剂压缩机411由多个空气调节器300共享。
压缩机单元410、高压气体制冷剂配管430和低压气体制冷剂配管440的部件可以与壳体301或另一壳体内的一个或多个空气调节器300集成。
<其他变形>
不必说,空气调节器300的应用不限于以上说明的应用。例如,空气调节器300可以安装在包括多个待空气调节和/或通风的空间的组合中。
在上述空气调节系统中使用的制冷剂不限于二氧化碳制冷剂。例如,R410A、R134a、R32或任何其他制冷剂可以用于空气调节系统100中。
空气调节器300、压缩机单元410和空气调节系统100的其他部件中的每一个的数量和/或布置不限于以上说明的数量和/或布置。例如,可以针对同一空间布置多个空气调节器300。空气调节器300可以配置在待空气调节和/或通风的空间中的天花板中,或是暴露状态下配置在外部。
当然,空气调节器300的每个部件的数量和/或布置不限于上面说明的数量和/或布置。例如,第一热交换器341和第二主热交换器342可以布置成使得其空气穿过方向分别与第一主空气通道331和第二主空气通道332的延伸方向基本上对应。
显然,空气调节器300的一个或多个部件和空气通道可以省略或由具有基本上相同功能的其他部件代替。例如,可以省略全热交换器344、第二副热交换器343、第三风扇347、电预热器348和/或内孔315(以及排出旁路挡板354)。在空气调节器300中产生必要气流的一个或多个动力源,诸如空气风扇,设置在空气调节器300外部的情况下,可以省略第一风扇345、第二风扇346和/或第三风扇347。四通阀373可以分别由具有从第一配管分支的第一对配管、从第二配管分支的第二对配管和配置在分支出的四个配管中的四个阀的机构来代替。
可以添加在以上说明中没有特别指定的部件。例如,作为配置在排出通风通道334中的排出挡板,可以布置作为电动机挡板且与排出旁路挡板354不同的排出主挡板。排出主挡板可以布置在回气入口321与全热交换器344之间,并且构造成对穿过全热交换器344的通风排出空气614的至少一部分的流动进行调节。
由空气调节器300执行的运转不限于以上说明的运转。例如,空气调节器300可以构造成仅执行如上所述的运转状态的一部分。用于对运转状态进行切换的条件也不限于以上说明的条件。
尽管仅选择了选定的实施方式对本发明进行了说明,但本领域技术人员根据本公开清楚可见的是,在本文中,能够在不脱离随附权利要求书限定的本发明的范围内进行各种改变和修改。例如,除非另外特别说明,否则可根据需要和/或期望改变各种部件的尺寸、形状、位置或取向,只要这些改变大致不影响其预期功能即可。除非另外特别说明,否则所示直接连接或彼此接触的部件可以具有配置在它们之间的中间结构,只要这些变化不实质影响其预期功能即可。除非另外特别说明,否则一个元件的功能可由两个元件来执行,反之亦然。一个实施方式的结构和功能可在另一个实施方式中采用。所有优点不需要同时出现在特定实施方式中。因而,所提供的根据本发明实施方式的前述描述仅用于说明。
[附图标记列表]
100、100g:空气调节系统
200:建筑
210:机器空间
220:预定空间
230:外部
240:内壁
241:RA吸入格栅
242:SA排放格栅
243:检修门
250:外壁
251:OA吸入格栅
252:EA排放格栅
261:天花板
262:地板
270:后壁空间
300、300a、300b、300c、300d、300e、300f、300g:空气调节器
301:壳体
302:第一面
303:第二面
304:第三面
305:第四面
311:RA分隔件
312:SA分隔件
313:OA分隔件
314:EA分隔件
315:内孔
316:第一分隔件单元
317:第二分隔件单元
321:回气入口
322:供气出口
323:外气入口
324:排气出口
331:第一主空气通道
332:第二主空气通道
333:供给通风通道
334:排出通风通道
335:排出旁路通道
336:半旁路通道
337:半旁路孔
341:第一热交换器
342:第二主热交换器(第二热交换器)
343:第二副热交换器(第二热交换器)
344:全热交换器
345:第一风扇
346:第二风扇
347:第三风扇
348:电预热器
350:空气流量调节器
351:第一主挡板
352:第二主挡板
353:第二副挡板
354:排出旁路挡板(排出挡板)
355:排出切换挡板(排出挡板)
356:第一切换挡板(排出挡板)
357:第二切换挡板(排出挡板)
358:分隔板
360、360g:液体制冷剂配管
361:第一膨胀阀
362:第二膨胀阀
363:接收器
370:配管连接机构
371:高压气体制冷剂端口
372:低压气体制冷剂端口
373、373g:四通阀(切换机构)
374:制冷剂调节器
375:第一气体制冷剂端口
376:第二气体制冷剂端口
377:第一液体制冷剂端口378:第二液体制冷剂端口381:单元控制器(控制器)
400、400g:制冷剂压缩机系统410、410g:压缩机单元411:制冷剂压缩机
412:系统控制器(控制器)
413:系统存储器
414:副制冷热交换器
420:释放阀
430:高压气体制冷剂配管
440:低压气体制冷剂配管
451g:第一气体制冷剂配管
452g:第二气体制冷剂配管
510:房间CO2传感器
511:机器空间CO2传感器
611:第一穿过空气
612:第二穿过空气
613:通风进入空气
614:通风排出空气
615:排出旁路空气。
[引用列表]
[专利文献]
[专利文献1]EP0091643A2。

Claims (33)

1.一种空气调节系统(100g),包括:
高压气体制冷剂配管(430),所述高压气体制冷剂配管与制冷剂压缩机(411)的排放侧连接;
低压气体制冷剂配管(440),所述低压气体制冷剂配管与所述制冷剂压缩机(411)的吸入侧连接;以及
多个空气调节器(300g),
多个所述空气调节器(300g)中的每一个包括:
回气入口(321)和供气出口(322),所述回气入口和所述供气出口中的每一个均与预定空间连通;
第一热交换器(341),所述第一热交换器构造成使在所述第一热交换器中流动的制冷剂与穿过所述第一热交换器的空气之间进行热交换;
外气入口(323)和排气出口(324),所述外气入口和所述排气出口中的每一个均与所述预定空间的外部连通;
第二热交换器(342),所述第二热交换器构造成使在所述第二热交换器中流动的制冷剂与穿过所述第二热交换器的空气之间进行热交换;
供给通风通道(333),所述供给通风通道构造成允许通风进入空气(613)在所述供给通风通道中流动而穿过所述第一热交换器(341),所述通风进入空气是已经通过所述外气入口(323)吸入并将要通过所述供气出口(322)排放的空气;
排出通风通道(334),所述排出通风通道构造成允许通风排出空气(614)在所述排出通风通道中流动而穿过所述第二热交换器(342),所述通风排出空气是已经通过所述回气入口(321)吸入并将要通过所述排气出口(324)排放的空气;
配管连接机构(370),所述配管连接机构经由所述高压气体制冷剂配管(430)和所述低压气体制冷剂配管(440),将所述第一热交换器(341)和所述第二热交换器(342)中的每一个与所述制冷剂压缩机(411)连接,使得所述第一热交换器(341)、所述第二热交换器(342、343)和所述制冷剂压缩机(411)形成热泵回路;
壳体(301),所述壳体对所述供给通风通道(333)和所述排出通风通道(334)进行容纳;以及
压缩机单元(410),
所述压缩机单元(410)包括:
所述制冷剂压缩机(411);以及
切换机构(373),所述切换机构构造成在制冷模式连接状态与制热模式连接状态之间对所述空气调节器(300g)的状态进行切换,
制冷模式连接状态是所述第一热交换器(341)与所述低压气体制冷剂配管(440)连接且所述第二热交换器(342)与所述高压气体制冷剂配管(430)连接的状态,
制热模式连接状态是所述第一热交换器(341)与所述高压气体制冷剂配管(430)连接且所述第二热交换器(342)与所述低压气体制冷剂配管(440)连接的状态,
其中,
所述高压气体制冷剂配管(430)和所述低压气体制冷剂配管(440)中的每一个与所述制冷剂压缩机(411)和每个所述空气调节器(300g)这两者连接,
所述空气调节器(300g)的所述第一热交换器(341)与所述高压气体制冷剂配管(430)和所述低压气体制冷剂配管(440)中的一者连接,
所述空气调节器(300g)的所述第二热交换器(342)与所述高压气体制冷剂配管(430)和所述低压气体制冷剂配管(440)中的另一者连接,
其特征在于,
所述空气调节系统还包括液体制冷剂配管(360g),
所述液体制冷剂配管的一端朝向所述空气调节器(300g)的所述第一热交换器(341)分支并与该第一热交换器(341)连接,另一端朝向所述空气调节器(300g)的所述第二热交换器(342)分支并与该第二热交换器(342)连接,所述液体制冷剂配管的至少一部分配置在所述压缩机单元(410)内,并且
所述压缩机单元(410)还包括副制冷热交换器(414),
所述副制冷热交换器与所述液体制冷剂配管(360g)流体地连接,并且构造成对在所述液体制冷剂配管(360g)中流动的制冷剂进行制冷。
2.如权利要求1所述的空气调节系统,其特征在于,
所述空气调节器还包括:
第一主空气通道,所述第一主空气通道构造成允许空气在所述第一主空气通道中朝向所述供气出口流动;以及
第二主空气通道,所述第二主空气通道构造成允许空气在所述第二主空气通道中朝向所述排气出口流动,
所述排出通风通道构造成允许空气在所述排出通风通道中从所述回气入口朝向所述排气出口流动,
所述排出通风通道构造成允许通风排出空气穿过所述第二热交换器。
3.如权利要求2所述的空气调节系统,其特征在于,
所述第二主空气通道构造成基本上仅允许所述通风排出空气穿过所述第二热交换器。
4.如权利要求2所述的空气调节系统,其特征在于,
所述第二主空气通道构造成允许空气在所述第二主空气通道中从所述外气入口朝向所述排气出口流动。
5.如权利要求1所述的空气调节系统,其特征在于,
所述排出通风通道构造成允许第二穿过空气在所述第二穿过空气穿过所述第二热交换器之前与所述通风排出空气混合,
所述第二穿过空气是已经通过所述外气入口吸入并将要通过所述排气出口排放的空气。
6.如权利要求1所述的空气调节系统,其特征在于,
所述供给通风通道构造成允许第一穿过空气在所述第一穿过空气穿过所述第一热交换器之前与通风进入空气混合,
所述第一穿过空气是已经通过所述回气入口吸入并将要通过所述供气出口排放的空气,
所述通风进入空气是已经通过所述外气入口吸入并将要通过所述供气出口排放的空气。
7.如权利要求1所述的空气调节系统,其特征在于,
所述空气调节器还包括:
全热交换器,所述全热交换器形成所述供给通风通道的至少一部分和所述排出通风通道的至少一部分,以便在所述通风进入空气与所述通风排出空气之间进行热交换。
8.如权利要求2所述的空气调节系统,其特征在于,
所述空气调节器还包括:
空气流量调节器,所述空气流量调节器构造成对至少第一穿过空气、第二穿过空气和所述通风排出空气中的每一个的流量进行调节,
所述第一穿过空气是已经通过所述回气入口吸入并将要通过所述供气出口排放的空气,
所述第二穿过空气是已经通过所述外气入口吸入并将要通过所述排气出口排放的空气。
9.如权利要求8所述的空气调节系统,其特征在于,
所述空气流量调节器包括:
第一主挡板,所述第一主挡板配置在所述第一主空气通道中;
第二主挡板,所述第二主挡板配置在所述第二主空气通道中;以及
排出挡板,所述排出挡板配置在所述排出通风通道中。
10.如权利要求2所述的空气调节系统,其特征在于,
所述第一热交换器布置成使得所述第一热交换器的空气穿过方向相对于所述第一主空气通道的延伸方向倾斜;并且
所述第二热交换器布置成使得所述第二热交换器的空气穿过方向相对于所述第二主空气通道的延伸方向倾斜。
11.如权利要求2至10中任一项所述的空气调节系统,其特征在于,
所述第一主空气通道和所述第二主空气通道布置成基本上平行,并且构造成使得从所述回气入口到所述供气出口的方向与从所述外气入口到所述排气出口的方向基本上相反。
12.如权利要求2至10中任一项所述的空气调节系统,其特征在于,
所述第一主空气通道和所述第二主空气通道布置成基本上平行,并且构造成使得从所述回气入口到所述供气出口的方向与从所述外气入口到所述排气出口的方向基本上相同。
13.如权利要求1至10中任一项所述的空气调节系统,其特征在于,
所述供给通风通道和所述排出通风通道布置成基本上平行,并且构造成使得从所述外气入口到所述供气出口的方向与从所述回气入口到所述排气出口的方向基本上相反。
14.如权利要求1至10中任一项所述的空气调节系统,其特征在于,
所述供给通风通道和所述排出通风通道布置成基本上平行,并且构造成使得从所述外气入口到所述供气出口的方向与从所述回气入口到所述排气出口的方向基本上相同。
15.如权利要求1至10中任一项所述的空气调节系统,其特征在于,
所述第一热交换器和所述第二热交换器中的每一个构造成使二氧化碳制冷剂在其中流动。
16.如权利要求15所述的空气调节系统,其特征在于,
所述空气调节器还包括:
空气流量调节器,所述空气流量调节器构造成对至少第一穿过空气、第二穿过空气和所述通风排出空气中的每一个的流量进行调节,
所述第一穿过空气是已经通过所述回气入口吸入并将要通过所述供气出口排放的空气,
所述第二穿过空气是已经通过所述外气入口吸入并将要通过所述排气出口排放的空气,
所述空气流量调节器构造成对所述第二穿过空气和所述通风排出空气的流量进行调节,使得经过所述第二热交换器的空气的温度处于在所述第二热交换器中流动的所述二氧化碳制冷剂的超临界温度以下。
17.如权利要求1至10中任一项所述的空气调节系统,其特征在于,
所述第一热交换器和所述第二热交换器中的每一个构造成使二氧化碳制冷剂在其中流动,并且
所述空气流量调节器构造成对所述通风排出空气的流量进行调节,使得经过所述第二热交换器的空气的温度处于在所述第二热交换器中流动的所述二氧化碳制冷剂的超临界温度以下。
18.如权利要求8所述的空气调节系统,其特征在于,
所述空气流量调节器构造成对所述通风排出空气是否经过所述第二热交换器进行切换。
19.如权利要求18所述的空气调节系统,其特征在于,
所述空气调节器还包括:
控制器,所述控制器构造成对是否满足从所述外气入口吸入所述空气调节器的空气的温度高于或等于预定阈值的预定条件进行判断,
其中,
所述空气流量调节器构造成对所述第二穿过空气和所述通风排出空气的流动进行调节,使得如果满足所述预定条件,则使所述通风排出空气经过所述第二热交换器,而如果未满足所述预定条件,则防止所述通风排出空气经过所述第二热交换器。
20.如权利要求7所述的空气调节系统,其特征在于,
所述空气调节器还包括:
空气流量调节器,所述空气流量调节器构造成对至少第一穿过空气、第二穿过空气和所述通风排出空气中的每一个的流量进行调节,
所述第一穿过空气是已经通过所述回气入口吸入并将要通过所述供气出口排放的空气,
所述第二穿过空气是已经通过所述外气入口吸入并将要通过所述排气出口排放的空气,
所述空气流量调节器构造成对已经穿过所述全热交换器的所述通风排出空气是否经过所述第二热交换器进行切换。
21.如权利要求1所述的空气调节系统,其特征在于,
所述第二热交换器包括:
第二主热交换器,所述第二主热交换器构造成使在所述第二主热交换器中流动的制冷剂与穿过所述第二主热交换器的空气之间进行热交换;以及
第二副热交换器,所述第二副热交换器配置在所述排出通风通道中,以使在所述第二副热交换器中流动的制冷剂与穿过所述第二副热交换器的空气之间进行热交换。
22.如权利要求21所述的空气调节系统,其特征在于,
所述第二副热交换器构造成当所述第二热交换器用作冷凝器时使已经流过所述第二主热交换器的制冷剂在所述第二副热交换器中流动。
23.如权利要求1至10中任一项所述的空气调节系统,其特征在于,
所述第二热交换器包括:
第二主热交换器,所述第二主热交换器构造成使在所述第二主热交换器中流动的制冷剂与穿过所述第二主热交换器的空气之间进行热交换;以及
第二副热交换器,所述第二副热交换器配置在所述排出通风通道中,以使在所述第二副热交换器中流动的制冷剂与穿过所述第二副热交换器的空气之间进行热交换。
24.如权利要求23所述的空气调节系统,其特征在于,
所述第二副热交换器构造成当所述第二热交换器用作冷凝器时使已经流过所述第二主热交换器的制冷剂在所述第二副热交换器中流动。
25.如权利要求23所述的空气调节系统,其特征在于,
所述第二副热交换器构造成允许所述通风排出空气穿过所述第二副热交换器,并且防止所述第二穿过空气穿过所述第二副热交换器。
26.如权利要求23所述的空气调节系统,其特征在于,
所述第二副热交换器和所述第二主热交换器沿着所述通风排出空气的气流方向依次串联地布置。
27.如权利要求21、22、24至26中任一项所述的空气调节系统,其特征在于,
所述空气调节器还包括:
全热交换器,所述全热交换器形成所述供给通风通道的至少一部分和所述排出通风通道的至少一部分,以便在所述通风进入空气与所述通风排出空气之间进行热交换,
所述全热交换器、所述第二副热交换器以及所述第二主热交换器沿着所述通风排出空气的气流方向依次串联地布置。
28.如权利要求23所述的空气调节系统,其特征在于,
所述第二主热交换器布置成允许所述第二穿过空气穿过所述第二主热交换器,并且防止所述通风排出空气穿过所述第二主热交换器。
29.如权利要求28所述的空气调节系统,其特征在于,
所述第二主热交换器和所述第二副热交换器形成板状形状;并且
所述排出通风通道具有分隔板,所述分隔板将空气被吸入到所述第二主热交换器和所述第二副热交换器的空间分隔成空气被吸入到所述第二主热交换器的主空间和空气被吸入到所述第二副热交换器的副空间。
30.如权利要求23所述的空气调节系统,其特征在于,
所述第二副热交换器构造成与第二穿过空气的至少一部分接触,
所述第二穿过空气是已经通过所述外气入口吸入并将要通过所述排气出口排放的空气。
31.如权利要求23所述的空气调节系统,其特征在于,
所述空气调节器还包括:
全热交换器,所述全热交换器形成所述供给通风通道的至少一部分和所述排出通风通道的至少一部分,以便在所述通风进入空气与所述通风排出空气之间进行热交换,
所述第二副热交换器在从所述回气入口到所述排气出口的方向上配置在所述全热交换器的下游侧。
32.如权利要求1至10中任一项所述的空气调节系统,其特征在于,
所述空气调节器还包括:
全热交换器,所述全热交换器形成所述供给通风通道的至少一部分和所述排出通风通道的至少一部分,以便在所述通风进入空气与所述通风排出空气之间进行热交换,
电预热器,所述电预热器在所述外气入口与所述全热交换器之间配置在所述供给通风通道中。
33.如权利要求2所述的空气调节系统,其特征在于,
所述空气调节器还包括:
壳体,所述壳体对至少所述第一主空气通道、所述第二主空气通道和所述排出通风通道进行容纳;
第一风扇,所述第一风扇构造成将所述壳体中的空气吸向所述供气出口;以及
第二风扇,所述第二风扇构造成将所述壳体中的空气吸向所述排气出口。
CN202211723638.9A 2018-12-07 2019-12-05 空气调节系统 Pending CN115950003A (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
EP18211139.3 2018-12-07
EP18211149.2 2018-12-07
EP18211153.4A EP3663657B1 (en) 2018-12-07 2018-12-07 Air-conditioner and air-conditioning system
EP18211149.2A EP3663656B1 (en) 2018-12-07 2018-12-07 Air-conditioner
EP18211153.4 2018-12-07
EP18211139.3A EP3663658B1 (en) 2018-12-07 2018-12-07 Air-conditioner
PCT/JP2019/047566 WO2020116551A1 (en) 2018-12-07 2019-12-05 Air-conditioner
CN201980077350.9A CN113167484B (zh) 2018-12-07 2019-12-05 空气调节器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201980077350.9A Division CN113167484B (zh) 2018-12-07 2019-12-05 空气调节器

Publications (1)

Publication Number Publication Date
CN115950003A true CN115950003A (zh) 2023-04-11

Family

ID=68887442

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202211730722.3A Pending CN115773536A (zh) 2018-12-07 2019-12-05 空气调节系统
CN201980077350.9A Active CN113167484B (zh) 2018-12-07 2019-12-05 空气调节器
CN202211723638.9A Pending CN115950003A (zh) 2018-12-07 2019-12-05 空气调节系统

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN202211730722.3A Pending CN115773536A (zh) 2018-12-07 2019-12-05 空气调节系统
CN201980077350.9A Active CN113167484B (zh) 2018-12-07 2019-12-05 空气调节器

Country Status (4)

Country Link
US (2) US20220018571A1 (zh)
JP (1) JP7258143B2 (zh)
CN (3) CN115773536A (zh)
WO (1) WO2020116551A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6753486B1 (ja) * 2019-05-10 2020-09-09 ダイキン工業株式会社 空気調和システム
US20220397291A1 (en) * 2021-06-11 2022-12-15 Emerson Climate Technologies, Inc. Climate-Control System With Sensible And Latent Cooling
CA3145720A1 (en) * 2022-01-14 2022-03-28 Hybrid Energies Alternative Technologies Inc. Integrated heat pump system

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173322A (ja) 1982-04-05 1983-10-12 Matsushita Electric Ind Co Ltd 空気調和機
US4655278A (en) * 1985-09-27 1987-04-07 Cambridge Manufacturing Climate Control Products Inc. Heat recirculation apparatus and method
JP3475553B2 (ja) * 1995-02-28 2003-12-08 ダイキン工業株式会社 熱交換換気装置
US6038879A (en) * 1995-08-08 2000-03-21 Yvon Turcotte Combined air exchange and air conditioning unit
JP2002174448A (ja) * 2000-12-08 2002-06-21 Denso Corp 空調装置
JP4312039B2 (ja) * 2003-12-05 2009-08-12 昭和電工株式会社 超臨界冷媒の冷凍サイクルを有する車両用空調関連技術
JP2005315516A (ja) * 2004-04-28 2005-11-10 Daikin Ind Ltd 空気調和システム
JP2006234180A (ja) * 2005-02-04 2006-09-07 Daikin Ind Ltd 空気調和装置
KR100651879B1 (ko) * 2005-08-16 2006-12-01 엘지전자 주식회사 환기시스템
JP4816251B2 (ja) * 2006-05-26 2011-11-16 マックス株式会社 空調装置及び建物
CN101460790A (zh) * 2006-06-01 2009-06-17 开利公司 调节受控膨胀阀的系统与方法
JP5311734B2 (ja) * 2006-11-01 2013-10-09 三洋電機株式会社 空気調和装置
JP5055965B2 (ja) * 2006-11-13 2012-10-24 ダイキン工業株式会社 空気調和装置
JP5076745B2 (ja) * 2007-08-31 2012-11-21 パナソニック株式会社 換気空調装置
CN102112814B (zh) * 2008-10-29 2014-11-12 三菱电机株式会社 空调装置
JP5591329B2 (ja) * 2010-06-11 2014-09-17 三菱電機株式会社 換気空調装置及びその制御方法
US8584479B2 (en) * 2010-08-05 2013-11-19 Sanyo Electric Co., Ltd. Air conditioner having a desiccant rotor with moisture adsorbing area
JP5764734B2 (ja) * 2010-11-30 2015-08-19 パナソニックIpマネジメント株式会社 冷凍装置
CA2769346A1 (en) * 2011-02-28 2012-08-28 Carrier Corporation Packaged hvac system for indoor installation
JP5609764B2 (ja) * 2011-05-11 2014-10-22 トヨタ自動車株式会社 車両用空調装置
EP2821727B1 (de) * 2013-07-05 2016-03-16 Stiebel Eltron GmbH & Co. KG Verfahren zum Betrieb eines Lüftungsheizgerätes und Lüftungsheizgerät
JP6305525B2 (ja) * 2014-05-14 2018-04-04 三菱電機株式会社 空気調和システム
GB2528642A (en) * 2014-07-06 2016-02-03 Pierce Developments Holdings Ltd Apparatus
ITUB20152983A1 (it) * 2015-08-07 2017-02-07 De Longhi Appliances Srl Condizionatore portatile perfezionato
JP6675057B2 (ja) * 2015-09-25 2020-04-01 パナソニックIpマネジメント株式会社 熱交換形換気装置
US10364744B2 (en) * 2016-06-08 2019-07-30 Rolls-Royce Corporation Deep heat recovery gas turbine engine
DE102017003355A1 (de) * 2017-04-06 2018-10-11 Stiebel Eltron Gmbh & Co. Kg Wärmepumpenanlage
US9989271B1 (en) * 2017-08-14 2018-06-05 Calvin Becker Air conditioning with thermal storage

Also Published As

Publication number Publication date
WO2020116551A1 (en) 2020-06-11
JP7258143B2 (ja) 2023-04-14
CN115773536A (zh) 2023-03-10
JP2022515015A (ja) 2022-02-17
CN113167484A (zh) 2021-07-23
CN113167484B (zh) 2022-12-20
US20220018571A1 (en) 2022-01-20
US20240068701A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
CN113167484B (zh) 空气调节器
JP2021042918A (ja) 空気調和システム
WO2002077535A1 (fr) Climatiseur et procede d&#39;installation de ce climatiseur
EP3663657B1 (en) Air-conditioner and air-conditioning system
EP3663655B1 (en) Air-conditioner
EP3663673B1 (en) Air-conditioner and air-conditioning system
KR200401628Y1 (ko) 환기에어컨
EP3663656B1 (en) Air-conditioner
EP3663675B1 (en) Air-conditioning system
EP3663658B1 (en) Air-conditioner
JP2014163530A (ja) 空気調和装置
WO2020226091A1 (ja) 空調システム
CN210951943U (zh) 空调系统
JP4749120B2 (ja) 一体型空気調和装置
CN215765417U (zh) 空调室内机
WO2023276511A1 (ja) 換気装置
CN217785317U (zh) 室内空调机
WO2023166558A1 (ja) 空気調和装置
WO2021140564A1 (ja) 空気調和機
CN118043602A (zh) 换气装置以及空调系统
JP2023050660A (ja) 換気システム
CN118119798A (zh) 换气装置
JP2023007129A (ja) 空気調和システム
KR20040099723A (ko) 멀티형 공기조화기
JPH10176845A (ja) 空気調和機

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination