JP2023007129A - 空気調和システム - Google Patents

空気調和システム Download PDF

Info

Publication number
JP2023007129A
JP2023007129A JP2021110175A JP2021110175A JP2023007129A JP 2023007129 A JP2023007129 A JP 2023007129A JP 2021110175 A JP2021110175 A JP 2021110175A JP 2021110175 A JP2021110175 A JP 2021110175A JP 2023007129 A JP2023007129 A JP 2023007129A
Authority
JP
Japan
Prior art keywords
refrigerant
air
pipe
heat exchanger
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021110175A
Other languages
English (en)
Inventor
喬也 中西
Takaya Nakanishi
雄太 福山
Yuta Fukuyama
慎也 松岡
Shinya Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2021110175A priority Critical patent/JP2023007129A/ja
Priority to EP22832693.0A priority patent/EP4365505A1/en
Priority to PCT/JP2022/022293 priority patent/WO2023276535A1/ja
Priority to CN202280046867.3A priority patent/CN117597555A/zh
Publication of JP2023007129A publication Critical patent/JP2023007129A/ja
Priority to US18/522,624 priority patent/US20240093903A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】空気調和システムの運転効率の低下を抑制する。【解決手段】空気調和システム100は、熱源側冷媒回路RC1を有する室外ユニット110と、利用側冷媒回路RC4を有する室内ユニット120と、熱源側冷媒回路RC1と利用側冷媒回路RC4とを接続する第1連絡管11及び第3連絡管13と、第1連絡管11から分岐した第1分岐配管14と第3連絡管13から分岐した第2分岐配管15とに接続された給気側補助熱交換器131を含む第1補助冷媒回路RC21と、給気側補助熱交換器131を通った外気OAを第1空間S11に供給する給気ファン137と、を有する外気処理部130Aと、第1分岐配管14に設けられた第1遮断弁161と、第2分岐配管15に設けられた第2遮断弁162と、を備え、第1遮断弁161及び第2遮断弁162の作動により、熱源側冷媒回路RC1と第1補助冷媒回路RC21との間の冷媒の流れが遮断される。【選択図】図2

Description

本開示は、空気調和システムに関する。
従来、熱源側ユニットと、複数の利用側ユニットと、補助熱交換器を有する給気用ユニットと、補助熱交換器を有する排気用ユニットとが配管で接続された空気調和システムであって、前記各ユニットを個別に運転及び停止することを可能とした空気調和システムが知られている(例えば、特許文献1参照)。
特開平3-20573号公報
従来の前記空気調和システムでは、利用側ユニット、給気用ユニット、及び排気用ユニットのうち何れかのユニットが停止している場合に、その停止しているユニットの冷媒回路に冷媒が溜まり込んでシステム全体の冷媒量が足りなくなる場合がある。前記空気調和システムでは、このような冷媒量の不足を防止するために、各ユニットへの冷媒量を制御する電動弁をユニットの停止時に全閉とせず、各ユニットの冷媒回路に冷媒を循環させている。このため、前記空気調和システムでは、停止している各ユニットの冷媒回路内で冷媒の蒸発、凝縮等が無駄に生じており、空気調和システムの運転効率の低下を招いている。
本開示は、空気調和システムの運転効率の低下を抑制することを目的とする。
(1)本開示の空気調和システムは、
圧縮機と第1熱交換器とを含む第1冷媒回路を有する第1ユニットと、
第1空間に配置され、第2熱交換器を含む第2冷媒回路を有する第2ユニットと、
前記第1冷媒回路と前記第2冷媒回路とを接続する液側配管及びガス側配管と、
前記液側配管から分岐した第1分岐管と前記ガス側配管から分岐した第2分岐配管とに接続された第1補助熱交換器を含む第1補助冷媒回路と、前記第1補助熱交換器を通った外気を前記第1空間に供給する給気ファンと、を有する外気処理部と、
前記第1分岐配管に設けられた第1遮断弁と、
前記第2分岐配管に設けられた第2遮断弁と、
を備え、
前記第1遮断弁及び前記第2遮断弁の作動により、前記第1冷媒回路と前記第1補助冷媒回路との間の冷媒の流れが遮断される。
以上のような構成では、第1遮断弁及び第2遮断弁によって、第1補助冷媒回路を第1冷媒回路から完全に切り離すことができる。このため、外気処理部が停止している状態で、第1補助冷媒回路内で冷媒の蒸発、凝縮等が生じるのを抑制することができる。これにより、空気調和システムの運転効率の低下を抑制することができる。
(2)好ましくは、外気温度を検出する温度センサと、
前記温度センサが検出した外気温度に基づいて前記給気ファンを動作させる制御部と、を備え、
前記第1空間が冷房中であって、前記外気温度が所定温度よりも低くなった場合、
前記制御部が、前記第1遮断弁及び前記第2遮断弁を閉止させるとともに、前記給気ファンを運転させる。
この構成によれば、第1空間の冷房中に外気温度が所定温度よりも低くなった場合に、第1補助熱交換器を通過する冷媒を遮断することにより、第1空間について給気ファンのみを運転して外気冷房運転を行うことができる。
(3)好ましくは、前記第1空間とは異なる第2空間に配置され、第3熱交換器を含む第3冷媒回路を有する第3ユニットをさらに備え、
前記第3冷媒回路が、前記液側配管及び前記ガス側配管によって、前記第1冷媒回路に接続されている。
この構成によれば、冷房時において、第1空間について給気ファンのみを運転して外気冷房運転を行うとともに、第2空間について第3ユニットの冷房運転を継続することができる。
(4)好ましくは、前記液側配管から分岐した第3分岐管と前記ガス側配管から分岐した第4分岐配管とに接続された第2補助熱交換器を含む第2補助冷媒回路と、前記第2補助熱交換器を通った前記第1空間の空気を外部に放出する排気ファンと、を有する排気処理部と、
前記第3分岐配管に設けられた第3遮断弁と、をさらに備え、
前記制御部が、
前記第1空間の冷房中に前記外気温度が所定温度よりも低くなった場合、前記第3遮断弁を開放させるとともに、前記排気ファンを運転させる。
この構成によれば、冷房時に、第1空間について外気冷房運転を行って、第2空間について冷房運転を行っている場合に、第2補助熱交換器で第1空間の排気から熱回収することができる。これにより、空気調和システムを効率良く運転することができる。
(5)好ましくは、前記第1補助冷媒回路、前記第2補助冷媒回路、前記給気ファン及び前記排気ファンを収容し、前記第1補助熱交換器を通過する空気が通る給気通路と、前記第2補助熱交換器を通過する空気が通る排気通路とが形成されたケーシングと、
前記第1補助熱交換器を通過する前の前記給気通路内の空気と、前記第2補助熱交換器を通過する前の前記排気通路内の空気との間で熱交換を行う熱交換部と、
をさらに備える。
この構成によれば、外気処理部及び排気処理部と熱交換部とを1つのケーシングに収容した形態とすることで、外気処理部及び排気処理部周りの配管構成を簡素にすることができる。これにより、第1冷媒回路と第1補助冷媒回路及び第2補助冷媒回路との接続作業が容易になる。
(6)好ましくは、前記冷媒が可燃性冷媒である。
この構成によれば、外気処理部及び排気処理部から冷媒が漏洩した場合に、各遮断弁を閉止することで、外気処理部及び排気処理部からの冷媒の漏洩量を抑制することができる。
本開示の第1の実施形態に係る空気調和システムの概略的な構成図である。 第1の実施形態に係る空気調和システムの冷媒回路図である。 第1の実施形態に係る熱回収ユニットの概略的な構成図である。 熱交換部の斜視図である。 図3のX-X線における概略的な断面説明図である。 図3のY-Y線における概略的な断面説明図である。 第1の実施形態に係る空気調和システムの制御ブロック図である。 本開示の第2の実施形態に係る空気調和システムの概略的な構成図である。 第2の実施形態に係る空気調和システムの冷媒回路図である。 第2の実施形態に係る熱回収ユニットの概略的な構成図である。 第2の実施形態に係る空気調和システムの制御ブロック図である。
以下、添付図面を参照しつつ、本開示の空気調和システムを詳細に説明する。なお、本開示はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
図1は、本開示の第1の実施形態に係る空気調和システムの全体構成である。図1に示す空気調和システム100は、本開示の空気調和システムの第1の実施形態であり、ビルや工場等に設置されて空調対象空間の空気調和を実現する。空気調和システム100は、空気調和機101と、冷媒流路切換装置140とを備えている。空気調和機101は、蒸気圧縮式の冷凍サイクル運転を行うことで空調対象空間を冷暖房する。本実施形態で示す空気調和機101は、冷媒としてR32を使用している。なお、R32は微燃焼性を有する冷媒である。
空気調和システム100は、建物Bの内部に形成された室内空間S1を空調対象空間としている。建物Bの内部には、複数の室内空間S1が設けられている。以下の説明では、第1の室内空間S1を第1空間S11と称し、第1空間S11とは別の第2の室内空間S1を第2空間S12と称し、建物Bの外部の空間を室外空間S2と称する。本開示における室外空間S2は屋外空間である。
空気調和機101は、熱源側ユニットとしての室外ユニット110と利用側ユニットとしての室内ユニット120及び第1熱回収ユニット130を有している。空気調和機101は、1台の室外ユニット110に対して2台以上の室内ユニット120と1台の第1熱回収ユニット130とが接続されている。室内ユニット120は、冷媒流路切換装置140を介して室外ユニット110に接続されている。空気調和機101は、冷媒流路切換装置140によって室内ユニット120毎に冷房運転及び暖房運転を自由に選択して、対象空間の空調を行うことができる。なお、本実施形態では、いわゆる冷暖フリーシステムの空気調和システム100を例示しているが、本開示の空気調和システムは、冷暖フリーシステムでなくてもよい。
空気調和システム100では、第1空間S11のために設けた室内ユニット120によって、当該第1空間S11の空調を行うと共に、第1熱回収ユニット130によって、第1空間S11の換気を行うことができる。空気調和システム100では、第2空間S12のために設けた室内ユニット120によって、第2空間S12の空調を行うことができる。室外ユニット110は、室外空間S2に設置されている。第1熱回収ユニット130は、建物Bの内部における室内空間S1の外部に設置されている。
[室外ユニットの構成]
図2は、空気調和システム100の冷媒回路図である。図1に示すように、室外ユニット110は、例えば建物Bの屋上やベランダ等の屋外や、地下等の室外空間S2に設置される。図2に示すように、室外ユニット110内には、各種の機器が配設され、これらの機器が冷媒配管を介して接続されることで、熱源側冷媒回路RC1が構成されている。熱源側冷媒回路RC1は、第1連絡管11、第2連絡管12及び第3連絡管13を介して、第1熱回収ユニット130内の補助冷媒回路RC2と、冷媒流路切換装置140内の中間冷媒回路RC3とに接続されている。
図2に示すように、熱源側冷媒回路RC1は、液側閉鎖弁21、ガス側第1閉鎖弁22、ガス側第2閉鎖弁23、アキュムレータ24、圧縮機25、第1流路切換弁26、第2流路切換弁27、第3流路切換弁28、室外熱交換器30、第1室外膨張弁34、及び第2室外膨張弁35を備えている。熱源側冷媒回路RC1は、これらの機器が複数の冷媒配管を介して接続されることにより構成されている。室外ユニット110内には、室外ファン33や制御部115(図7参照)等が配設されている。
液側閉鎖弁21、ガス側第1閉鎖弁22、及びガス側第2閉鎖弁23は、冷媒の充填やポンプダウン等の際に開閉される手動の弁である。液側閉鎖弁21の一端は、第1連絡管11に接続されている。液側閉鎖弁21の他端は、第1室外膨張弁34及び第2室外膨張弁35まで延びる冷媒配管に接続されている。ガス側第1閉鎖弁22の一端は、第2連絡管12に接続されている。ガス側第1閉鎖弁22の他端は、第2流路切換弁27まで延びる冷媒配管に接続されている。ガス側第2閉鎖弁23の一端は、第3連絡管13に接続されている。ガス側第2閉鎖弁23の他端は、アキュムレータ24まで延びる冷媒配管25cに接続されている。
アキュムレータ24は、圧縮機25に吸入される低圧冷媒を一時的に貯留し、ガス冷媒と液冷媒とを分離するための容器である。
圧縮機25は、圧縮機用モータを内蔵する密閉式の構造を有しており、例えばスクロール方式やロータリ方式などの容積式の圧縮機である。圧縮機25は、吸入配管25bから吸入した低圧冷媒を圧縮した後、吐出配管25aから吐出する。圧縮機25の内部には、冷凍機油が収容されている。この冷凍機油は、冷媒とともに冷媒回路内を循環することがある。本実施形態の室外ユニット110は、1台の圧縮機25を備えている。ただし、室外ユニット110は、並列に接続された2台以上の圧縮機25を備えていてもよい。
第1流路切換弁26、第2流路切換弁27、及び第3流路切換弁28は、四路切換弁である。第1流路切換弁26、第2流路切換弁27、及び第3流路切換弁28は、空気調和機101の運転状況に応じて冷媒の流れを切り換える。第1流路切換弁26、第2流路切換弁27、及び第3流路切換弁28の一の冷媒流入口には、吐出配管25a又は吐出配管25aから延びる分岐管が接続されている。第1流路切換弁26、第2流路切換弁27、及び第3流路切換弁28の一の冷媒流入口には、ガス側第2閉鎖弁23とアキュムレータ24とを接続する冷媒配管25cから延びる分岐管が接続されている。第1流路切換弁26、第2流路切換弁27、及び第3流路切換弁28は、運転時において、一の冷媒流路における冷媒の流れが遮断されるように構成されており、事実上、三方弁として機能している。
室外熱交換器30は、クロスフィン型式やマイクロチャネル型式の熱交換器である。室外熱交換器30は、第1熱交換部31と、第2熱交換部32とを含んでいる。第1熱交換部31は室外熱交換器30の上部に設けられており、第2熱交換部32は第1熱交換部31よりも下部に設けられている。
第1熱交換部31のガス側端は、第3流路切換弁28まで延びる冷媒配管に接続されている。第1熱交換部31の液側端は、第1室外膨張弁34まで延びる冷媒配管に接続されている。
第2熱交換部32のガス側端は、第1流路切換弁26まで延びる冷媒配管に接続されている。第2熱交換部32の液側端は、第2室外膨張弁35まで延びる冷媒配管に接続されている。
第1熱交換部31及び第2熱交換部32を通過する冷媒は、室外ファン33が生成する空気流と熱交換する。室外ファン33は、例えばプロペラファンであり、室外ファン用モータ(図示省略)により駆動される。室外ファン33は、室外ユニット110内に流入し室外熱交換器30を通過して室外ユニット110外へ流出する空気流を生成する。
第1室外膨張弁34及び第2室外膨張弁35は、例えば開度調整が可能な電動弁である。第1室外膨張弁34の一端は、第1熱交換部31から延びる冷媒配管に接続されている。第1室外膨張弁34の他端は、液側閉鎖弁21まで延びる冷媒配管に接続されている。
第2室外膨張弁35の一端は、第2熱交換部32から延びる冷媒配管に接続されている。第2室外膨張弁35の他端は、液側閉鎖弁21まで延びる冷媒配管に接続されている。第1室外膨張弁34及び第2室外膨張弁35は、運転状況に応じて開度が調整され、内部を通過する冷媒をその開度に応じて減圧する。
圧縮機25、室外ファン33、第1室外膨張弁34、第2室外膨張弁35、第1流路切換弁26、第2流路切換弁27、及び第3流路切換弁28は、制御部115(図7参照)により動作制御される。室外ユニット110の制御部115は、通信線を介して、室内ユニット120の室内制御部54(図7参照)及び冷媒流路切換装置140の制御部(図示せず)と信号の送受信を行う。
[室内ユニットの構成]
室内ユニット120は、天井埋込み型、天井吊下げ型、床置き型、又は壁掛け型である。本実施形態の空気調和システム100は、2台以上の室内ユニット120を備えている。
室内ユニット120内には、利用側冷媒回路RC4が設けられている。利用側冷媒回路RC4は、室内膨張弁51と、室内熱交換器52とを備えている。利用側冷媒回路RC4は、室内膨張弁51と室内熱交換器52とが冷媒配管によって接続されることで構成されている。
室内ユニット120には、室内ファン53及び室内制御部54(図7参照)が配設されている。室内膨張弁51は、開度調整が可能な電動弁である。室内膨張弁51の一端は、液管LPに接続されている。室内膨張弁51の他端は、室内熱交換器52まで延びる冷媒配管に接続されている。室内膨張弁51は、内部を通過する冷媒をその開度に応じて減圧する。
室内熱交換器52は、例えば、クロスフィン型式やマイクロチャネル型式の熱交換器である。室内熱交換器52の液側端は、室内膨張弁51から延びる冷媒配管に接続されている。室内熱交換器52のガス側端は、ガス管GPに接続されている。室内熱交換器52に流入した冷媒は、室内ファン53が生成する空気流と熱交換し、室内熱交換器52から排出される。
室内ファン53は、例えばクロスフローファンやシロッコファンである。室内ファン53は、室内ファン用モータ(図示省略)によって駆動される。室内ファン53は、室内空間から室内ユニット120内部に流入し、室内熱交換器52を通過してから室内空間へ流出する空気流を生成する。
室内膨張弁51及び室内ファン53は、室内ユニット120の室内制御部54(図7参照)によって動作制御される。室内制御部54には、室外ユニット110の制御部115及び図示しないリモートコントローラが接続される。室内制御部54は、リモートコントローラに入力された設定温度等の運転条件に基づいて室内ファン53や室内膨張弁51を駆動させる。
[冷媒流路切換装置の構成]
図1及び図2に示すように、冷媒流路切換装置140は、室外ユニット110と複数の室内ユニット120との間に設けられている。冷媒流路切換装置140は、ケーシング141を有している。冷媒流路切換装置140は、室外ユニット110及び各室内ユニット120へ流入する冷媒の流れを切り換える。図2に示すように、ケーシング141内には、複数のヘッダ管55,56,57,58と複数の切換ユニット70とが収容されている。
(ヘッダ管)
図2に示すように、複数のヘッダ管55,56,57,58は、第1ヘッダ管55と、第2ヘッダ管56と、第3ヘッダ管57と、第4ヘッダ管58とを含む。第1ヘッダ管55は、第1連絡管11に接続される。第2ヘッダ管56は、第2連絡管12に接続される。第3ヘッダ管57は、第3連絡管13に接続される。
(切換ユニット)
冷媒流路切換装置140は、複数の切換ユニット70を備えている。各切換ユニット70は、冷媒流路切換装置140の中間冷媒回路RC3を形成する。各切換ユニット70には、それぞれ1台の室内ユニット120が接続される。ただし、冷媒流路切換装置140のすべての切換ユニット70に室内ユニット120が接続される必要はなく、室内ユニット120が接続されていない切換ユニット70が冷媒流路切換装置140に存在していてもよい。
(中間冷媒回路について)
複数の切換ユニット70は、すべて同一の構造であり、各切換ユニット70の中間冷媒回路RC3は、それぞれ複数の弁EV1,EV2,EV3と、複数の冷媒配管と、を備えている。
切換ユニット70において、複数の弁EV1,EV2,EV3は、第1弁EV1と、第2弁EV2と、第3弁EV3とを含む。これらの弁EV1,EV2,EV3は、開度を調整可能な電動弁により構成されている。第2弁EV2及び第3弁EV3は、全閉状態、全開状態、及び開度調整状態のいずれかを取るように制御部(図示せず)によって動作制御される。第1弁EV1は、最小開度状態、全開状態、全閉状態、及び開度調整状態のいずれかの状態を取るように制御部(図示せず)によって動作制御される。
切換ユニット70は、第2ヘッダ管56と、第1弁EV1とを接続する第1冷媒管P1を備えている。第1冷媒管P1の途中には、フィルタF1が設けられている。切換ユニット70は、第2冷媒管P2を備えている。第2冷媒管P2の一端は、第1弁EV1に接続されている。切換ユニット70は、利用側ガス配管61を備えている。利用側ガス配管61の一端は、室内ユニット120のガス管GPに接続されている。利用側ガス配管61の他端は、第2弁EV2に接続されている。第2冷媒管P2の他端は、利用側ガス配管61に接続されている。利用側ガス配管61には、フィルタF2が設けられている。
切換ユニット70は、第3冷媒管P3を備えている。第3冷媒管P3の一端は、第2弁EV2に接続されている。第3冷媒管P3の他端は、第3ヘッダ管57に接続されている。第3冷媒管P3の途中には、フィルタF3が設けられている。
切換ユニット70は、利用側液配管62を備えている。利用側液配管62の一端は、室内ユニット120の液管LPに接続されている。利用側液配管62の他端は、過冷却熱交換器59に接続されている。過冷却熱交換器59の内部には、第1伝熱管59aと、第2伝熱管59bとが設けられている。過冷却熱交換器59は、第1伝熱管59aを流れる冷媒と第2伝熱管59bを流れる冷媒との間で熱交換を行う。利用側液配管62の他端は、第1伝熱管59aの一端に接続されている。
切換ユニット70は、第4冷媒管P4を備えている。第4冷媒管P4の一端は、第1伝熱管59aの他端に接続されている。第4冷媒管P4の他端は、第1ヘッダ管55に接続されている。
切換ユニット70は、第4冷媒管P4の途中から分岐する第5冷媒管P5を備えている。第5冷媒管P5の一端は、第3弁EV3の一端に接続されている。第5冷媒管P5の途中には、フィルタF4が設けられている。
切換ユニット70は、第6冷媒管P6及び第7冷媒管P7を備えている。第6冷媒管P6の一端は、第3弁EV3に接続されている。第6冷媒管P6の他端は、過冷却熱交換器59の第2伝熱管59bの一端に接続されている。第7冷媒管P7の一端は、過冷却熱交換器59の第2伝熱管59bに接続されている。第7冷媒管P7の他端は、第4ヘッダ管58に接続されている。第4ヘッダ管58は、接続管63を介して、第3ヘッダ管57に接続されている。
第4ヘッダ管58には、第1ヘッダ管55から第4冷媒管P4、第5冷媒管P5、第3弁EV3、第6冷媒管P6、過冷却熱交換器59、及び第7冷媒管P7を経て冷媒が流入する。さらに第4ヘッダ管58に流入した冷媒は、接続管63を通って第3ヘッダ管57に流入する。
[第1熱回収ユニットの構成]
第1熱回収ユニット130は、室内空間S1に冷却・加熱処理した空気(外気)を供給するとともに、室内空間S1より排出される空気(排気)から熱回収しつつ、室内空間S1を換気することができる装置であり、外気処理ユニットとも称される。第1熱回収ユニット130は、建物Bの内部における室内空間S1の外部に配置されている。第1熱回収ユニット130は、室内空間S1の天井裏の空間に配置されており、ダクトを通じて室内空間S1及び室外空間S2とつながっている。なお、本実施形態では、第1熱回収ユニット130を室内空間S1の天井裏の空間に配置した場合を例示しているが、本開示の第1熱回収ユニットは、天井吊下げ型、天井埋込み型、床置き型、又は壁掛け型であってもよく、天井裏以外の場所に配置してもよい。図2及び図3に示すように、第1熱回収ユニット130は、補助冷媒回路RC2を含む外気処理部130A及び排気処理部130Bを有している。外気処理部130Aは、給気側補助熱交換器131及び給気ファン137を有しており、給気側補助熱交換器131が、補助冷媒回路RC2の一部である第1補助冷媒回路RC21を構成している。排気処理部130Bは、排気側補助熱交換器132及び排気ファン138を有しており、排気側補助熱交換器132が、補助冷媒回路RC2の他部である第2補助冷媒回路RC22を構成している。
給気側補助熱交換器131及び排気側補助熱交換器132は、例えば、クロスフィン型式やマイクロチャネル型式の熱交換器である。給気側補助熱交換器131の液側端は、第1分岐配管14を介して第1連絡管11に接続されている。給気側補助熱交換器131のガス側端は、第2分岐配管15を介して第3連絡管13に接続され、又は、第2分岐配管15及び第5分岐配管18を介して第2連絡管12に接続されている。第1分岐配管14の中途部には、第1電動弁136aが設けられている。
第2分岐配管15には、第5分岐配管18の一端が接続されている。第5分岐配管18の他端は、第2連絡管12に接続されている。第2分岐配管15における第5分岐配管18の接続位置よりも第3連絡管13側の位置に第1切換弁165が配置されている。第5分岐配管18の中途部には、第2切換弁166が配置されている。
排気側補助熱交換器132の液側端は、第3分岐配管16を介して第1連絡管11に接続されている。排気側補助熱交換器132のガス側端は、第4分岐配管17を介して第3連絡管13に接続され、又は、第4分岐配管17及び第6分岐配管19を介して第2連絡管12に接続されている。第3分岐配管16の中途部には、第2電動弁136bが設けられている。
第4分岐配管17には、第6分岐配管19の一端が接続されている。第6分岐配管19の他端は、第2連絡管12に接続されている。第4分岐配管17における第6分岐配管19の接続位置よりも第3連絡管13側の位置に第3切換弁167が配置されている。第6分岐配管19の中途部には、第4切換弁168が配置されている。
第1電動弁136aは、給気側補助熱交換器131を通過する冷媒量を調節するための弁である。第2電動弁136bは、排気側補助熱交換器132を通過する冷媒量を調節するための弁である。第1電動弁136a及び第2電動弁136bは、開度調整が可能な電動弁である。
第1補助冷媒回路RC21は、第1分岐配管14を介して第1連絡管11に接続され、第2分岐配管15を介して第3連絡管13に接続され、第2分岐配管15及び第5分岐配管18を介して第2連絡管12に接続される。第2補助冷媒回路RC22は、第3分岐配管16を介して第1連絡管11に接続され、第4分岐配管17を介して第3連絡管13に接続され、第4分岐配管17及び第6分岐配管19を介して第2連絡管12に接続される。
(給気ファン及び排気ファン)
第1熱回収ユニット130内には、給気ファン137及び排気ファン138が配設されている。給気ファン137は、外気処理部130Aの一部を構成し、排気ファン138は、排気処理部130Bの一部を構成する。給気ファン137及び排気ファン138は、例えばシロッコファンである。給気ファン137は、給気ファン用モータ(図示省略)によって駆動される。給気ファン137は、室外空間S2(図1参照)から第1熱回収ユニット130内部に流入し、給気側補助熱交換器131を通過してから第1空間S11(図1参照)へ流出する空気流を生成する。排気ファン138は、排気ファン用モータ(図示省略)によって駆動される。排気ファン138は、第1空間S11(図1参照)から第1熱回収ユニット130内部に流入し、排気側補助熱交換器132を通過してから室外空間S2(図1参照)へ流出する空気流を生成する。
(給気通路及び排気通路)
図3に示すように、還気取入口157は、室内空間S1(図1参照)からの空気(還気)RAをケーシング150内に取り入れるために用いられる。還気取入口157は、図示しないダクト等を介して室内空間S1に繋がっている。排気吹出口155は、ケーシング150内に取り入れられた還気RAを、排気EAとして室外空間S2(図1参照)に排出するために用いられる。排気吹出口155は、図示しないダクト等を介して室外空間S2に繋がっている。外気取入口158は、室外空間S2からの空気(外気)OAをケーシング150内に取り入れるために用いられる。外気取入口158は、図示しないダクト等を介して室外空間S2に繋がっている。給気吹出口156は、ケーシング150内に取り入れられた外気OAを、給気SAとして室内空間S1に供給するために用いられる。給気吹出口156は、図示しないダクト等を介して室内空間S1に繋がっている。
(熱交換部)
図4は、熱交換部の斜視図である。図4に示すように、本実施形態における熱交換部134は、第1の空気流A1と、第2の空気流A2とがほぼ直交するように構成された直交型の全熱交換器である。この熱交換部134は、仕切板134aと、隔壁板134bとを有している。仕切板134aと隔壁板134bとは適宜の接着剤により交互に積層されている。熱交換部134は、全体としてほぼ四角柱形状に形成されている。
仕切板134aは、伝熱性及び透湿性を有し、平板状に形成されている。隔壁板134bは、ほぼ三角形状の断面が連続して形成された波板状に形成されている。隔壁板134bは、隣り合う2枚の仕切板134aの間に空気の通路を形成する。隔壁板134bは、仕切板134aと隔壁板134bとの積層方向(図4における上下方向)で1枚ごとに90度角度を変えて積層されている。これにより、1枚の仕切板134aを挟んでその両側に、第1の空気流A1を通すための給気側通路134dと第2の空気流A2を通すための排気側通路134cとが互いに直交して形成される。排気側通路134cを流れる空気と、給気側通路134dを流れる空気とは、伝熱性及び透湿性を有する仕切板134aを介して顕熱及び潜熱の交換(全熱交換)が行われるようになっている。空気調和システム100では、第1熱回収ユニット130によって、第1補助冷媒回路RC21を流れる冷媒で熱回収するとともに、熱交換部134によって、ケーシング150を流れる空気間(還気RAと外気OAとの間)でさらに熱回収することによって、空気調和機101の運転効率をさらによくすることができる。
図5は、図3のX-X線における概略的な断面説明図である。図6は、図3のY-Y線における概略的な断面説明図である。図3、図5及び図6に示すように、第1熱回収ユニット130は、ケーシング150を有している。ケーシング150の内部は、熱交換部134によって室内空間S1側と室外空間S2側との2つの領域に区画されている。図5に示すように、ケーシング150内には、熱交換部134よりも第1の空気流A1の上流側に上流側給気通路151aが形成され、熱交換部134よりも第1の空気流A1の下流側に下流側給気通路151bが形成されている。上流側給気通路151aと下流側給気通路151bとによって、室内空間S1と室外空間S2とを熱交換部134を経由して連通させる給気通路151が構成されている。
図6に示すように、ケーシング150内には、熱交換部134よりも第2の空気流A2の上流側に上流側排気通路152aが形成され、熱交換部134よりも第2の空気流A2の下流側に下流側排気通路152bが形成されている。上流側排気通路152aと下流側排気通路152bとによって、室内空間S1と室外空間S2とを熱交換部134を経由して連通させる排気通路152が構成される。
図5及び図6に示すように、下流側給気通路151bと上流側排気通路152aとの間には、区画壁153が設けられている。上流側給気通路151aと下流側排気通路152bとの間には、区画壁154が設けられている。
図5に示すように、下流側給気通路151bにおいて、給気吹出口156の近傍には給気ファン137及び給気側補助熱交換器131が配置されている。この給気ファン137が運転されることによって第1の空気流A1が生成され、室外空間S2の外気OAが給気通路151を通り、給気側補助熱交換器131によって熱交換されるとともに、給気SAとして室内空間S1に供給される。図2及び図3に示すように、給気側補助熱交換器131は、第1補助冷媒回路RC21を流れる冷媒と、給気通路151を通る空気(外気OA)の間で熱交換(熱回収)する。
図6に示すように、下流側排気通路152bにおいて、排気吹出口155の近傍には排気ファン138及び排気側補助熱交換器132が配置されている。この排気ファン138が運転されることによって第2の空気流A2が生成され、室内空間S1からの還気RAが排気通路152を通り、排気側補助熱交換器132によって熱交換されるとともに、排気EAとして室外空間S2に排出される。図2及び図3に示すように、排気側補助熱交換器132は、第2補助冷媒回路RC22を流れる冷媒と、排気通路152を通る空気(排気EA)の間で熱交換(熱回収)する。
以上に説明した通り、第1熱回収ユニット130は、第1補助冷媒回路RC21、第2補助冷媒回路RC22、給気ファン137及び排気ファン138を収容し、給気側補助熱交換器131を通過する空気が通る給気通路151と、排気側補助熱交換器132を通過する空気が通る排気通路152とが形成されたケーシング150と、給気側補助熱交換器131を通過する前の給気通路151内の空気と、排気側補助熱交換器132を通過する前の排気通路152内の空気との間で熱交換を行う熱交換部134と、を備えている。空気調和システム100では、第1熱回収ユニット130の外気処理部130A及び排気処理部130Bと熱交換部134とを1つのケーシング150に収容することで、外気処理部130A及び排気処理部130B周りの配管構成を簡素にすることができる。これにより、熱源側冷媒回路RC1と第1補助冷媒回路RC21及び第2補助冷媒回路RC22との接続作業が容易になる。なお、本実施形態では、外気処理部130Aと排気処理部130Bを有する第1熱回収ユニット130を例示したが、本開示の熱回収ユニットは、外気処理部130Aのみを備えるものであってもよい。本実施形態では、外気処理部130A及び排気処理部130Bが一つのケーシング150に収容された第1熱回収ユニット130を例示したが、本開示の熱回収ユニットは、外気処理部と排気処理部が分離しており、それぞれ異なる位置に設置可能であってもよい。
[制御部について]
図7は、空気調和システム100における制御ブロック図である。図7に示すように、空気調和システム100は、制御部115を備えている。制御部115は、空気調和機101及び冷媒流路切換装置140の動作を制御する装置であり、例えば、CPU等のプロセッサ、RAM、ROM等のメモリを備えたマイクロコンピュータにより構成される。制御部115は、LSI、ASIC、FPGA等を用いてハードウェアとして実現されるものであってもよい。制御部115は、メモリにインストールされたプログラムをプロセッサが実行することによって、所定の機能を発揮する。なお、制御部115は、空気調和機101の一部として当該空気調和機101と一体で設けてもよいし、空気調和機101とは別の装置として別体で設けてもよい。
本実施形態の制御部115は、室外ユニット110に設けられている。制御部115は、室外ユニット110に内蔵された圧縮機25、第1流路切換弁26、第2流路切換弁27、第3流路切換弁28、室外ファン33、第1室外膨張弁34、第2室外膨張弁35、及び温度センサ116が接続されている。制御部115は、室内ユニット120の室内制御部54を介して、室内膨張弁51、及び室内ファン53が接続されている。制御部115は、第1熱回収ユニット130の第1及び第2電動弁136a,136b、給気ファン137、及び排気ファン138が接続されている。なお、制御部115は、第1熱回収ユニット130の制御部(図示せず)を介して、補助熱交換器用切換弁133、電動弁136、給気ファン137、及び排気ファン138に接続されていてもよい。制御部115は、冷媒流路切換装置140(切換ユニット70)の制御部(図示せず)を介して、第1弁EV1、第2弁EV2、及び第3弁EV3が接続されている。制御部115は、第1~第4の各遮断弁161~164、第1切換弁165及び第2切換弁166が接続されている。制御部115は、温度センサ116及び冷媒センサ180が接続されている。制御部115は、空気調和システム100の運転状況に応じて、接続されている上記各部の動作を制御する。
[遮断弁について]
図1及び図2に示すように、空気調和システム100は、4個の遮断弁161~164を有している。第1~第4の各遮断弁161~164は電動弁であり、第1遮断弁161が第1分岐配管14に配置され、第2遮断弁162が第2分岐配管15に配置され、第3遮断弁163が第3分岐配管16に配置され、第4遮断弁164が第4分岐配管17に配置されている。
空気調和システム100では、冷媒センサ180(図7参照)が、第1熱回収ユニット130から漏洩した冷媒を検知することができる位置に配置されている。冷媒センサ180が冷媒を検知した場合、制御部115はすべての遮断弁161~164を作動させる。空気調和システム100では、すべての遮断弁161~164が作動した場合、第1熱回収ユニット130の補助冷媒回路RC2(第1補助冷媒回路RC21及び第2補助冷媒回路RC22)が、その他の各冷媒回路RC1,RC3,RC4から完全に切り離される。このため、空気調和システム100では、仮に第1熱回収ユニット130から燃焼性を有する冷媒(本実施形態ではR32)が漏洩したとしても、その時点で補助冷媒回路RC2内に貯留されている冷媒量を越えて、当該第1熱回収ユニット130から冷媒が漏洩するのを抑制することができる。なお、冷媒センサ180は、給気通路151及び排気通路152のそれぞれに設けてもよい。この構成では、給気通路151の冷媒センサ180が冷媒を検知した場合、給気通路151側の遮断弁161,162のみを遮断し、排気通路152の冷媒センサ180が冷媒を検知した場合、排気通路152側の遮断弁163,164のみを遮断してもよい。
[空気調和システムの運転]
以下、空気調和システム100によって、稼働している室内ユニット120のすべてが冷房を行う場合(以下、「全冷房運転」ともいう)、稼働している室内ユニット120のすべてが暖房を行う場合(以下、「全暖房運転」ともいう)、稼働している室内ユニット120の一部が冷房、他が暖房を行う場合(以下、「冷暖房混合運転」ともいう)、及び、第1熱回収ユニット130を用いて外気冷房を行う場合(以下、「外気冷房運転」ともいう)について、図2を参照して説明する。
(全冷房運転)
全冷房運転では、制御部115によって、以下のように各弁が調整される。切換ユニット70の第1弁EV1は全閉とされ、第2弁EV2は全開とされ、第3弁EV3は開度調整され、室内膨張弁51は開度調整され、第1及び第2室外膨張弁34,35は全開とされる。各遮断弁161~164は全開とされ、第1電動弁136a及び第2電動弁136bは開度調整される。室外ユニット110の第1流路切換弁26は、圧縮機25の吐出配管25aと第2熱交換部32のガス側端とを接続するように切り換えられる。第2流路切換弁27は、吐出配管25aと第2連絡管12とを接続するように切り換えられる。第3流路切換弁28は、吐出配管25aと第1熱交換部31のガス側端とを接続するように切り換えられる。なお、本開示の空気調和システム100において、第2連絡管12には常時高圧のガス冷媒が流れていてもよいため、第2流路切換弁27は省略してもよい。第2流路切換弁27を設けた場合、第2連絡管12に繋がる第1弁EV1が最小開度となっていて第2連絡管12に高圧のガス冷媒を流す必要がないときに第2流路切換弁27を切り換えることで、第1弁EV1と第2流路切換弁27との間に冷媒が溜まり込むのを防止することができる。
停止中の室内ユニット120においては、制御部115によって、全冷房運転、全暖房運転、及び冷暖房混合運転のいずれを行う場合においても、室内膨張弁51が全閉とされ、この室内ユニット120に対応する第1弁EV1は最小開度とされ、第2弁EV2及び第3弁EV3は全閉とされる。
圧縮機25が駆動すると、圧縮機25により圧縮された高圧のガス冷媒は、吐出配管25a、第1流路切換弁26及び第3流路切換弁28等を経て、室外熱交換器30に流入し、凝縮する。室外熱交換器30において凝縮した冷媒は、第1及び第2室外膨張弁34,35、液側閉鎖弁21等を通過して第1連絡管11に流入する。
第1連絡管11に流入した冷媒は、冷媒流路切換装置140の第1ヘッダ管55を流れ、各切換ユニット70の第4冷媒管P4へ流入する。第4冷媒管P4へ流入した冷媒は、過冷却熱交換器59の第1伝熱管59aに流入し、さらに利用側液配管62を経て室内ユニット120に流入する。
第4冷媒管P4へ流入した冷媒は、第5冷媒管P5にも分岐して流れ、第3弁EV3の開度に応じて減圧され、過冷却熱交換器59の第2伝熱管59bに流入する。この過冷却熱交換器59において、第1伝熱管59aを流れる冷媒と第2伝熱管59bを流れる冷媒との間で熱交換され、第1伝熱管59aを流れる冷媒が過冷却されて室内ユニット120に流入する。
過冷却熱交換器59の第2伝熱管59bを流れる冷媒は、第7冷媒管P7から第4ヘッダ管58に流入し、接続管63を経て第3ヘッダ管57に流入する。室内ユニット120に流入した冷媒は、室内膨張弁51により減圧された後に室内熱交換器52において蒸発する。
室内ユニット120において、室内熱交換器52で蒸発した冷媒は、ガス管GPから利用側ガス配管61に流入し、主に第2弁EV2を通過して第3ヘッダ管57に流入する。第3ヘッダ管57に流入した冷媒は、第3連絡管13及びガス側第2閉鎖弁23を経て、アキュムレータ24に流入し、圧縮機25へ吸入される。
(全冷房運転時の第1熱回収ユニットによる処理について)
図2を参照しつつ、全冷房運転時の第1熱回収ユニット130による処理について説明する。空気調和システム100が冷房運転中である場合、第1切換弁165を開とし、第2切換弁166を閉とする。これにより、給気側補助熱交換器131には、第1連絡管11及び第1分岐配管14から液冷媒が供給され、当該液冷媒が給気側補助熱交換器131に流入する。前記液冷媒は、給気側補助熱交換器131において空気(外気OA)と熱交換して蒸発されて低圧のガス冷媒となる。このガス冷媒は、第2分岐配管15から第3連絡管13に流入する。第1熱回収ユニット130は、このようにして、冷房運転時において、外気OAを冷却して、第1空間S11に対して給気SAを供給する。
空気調和システム100が冷房運転中である場合、第3切換弁167を閉とし、第4切換弁168を開とする。これにより、第1熱回収ユニット130の排気側補助熱交換器132には、第2連絡管12、第6分岐配管19及び第4分岐配管17から高圧のガス冷媒が供給され、当該ガス冷媒が排気側補助熱交換器132に流入する。前記ガス冷媒は、排気側補助熱交換器132において空気(排気EA)と熱交換して凝縮されて液冷媒となる。この液冷媒は、第3分岐配管16から第1連絡管11に流入する。第1熱回収ユニット130は、このようにして、冷房運転時において、還気RAから熱回収しつつ、室外空間S2に排気EAを放出する。なお、第2流路切換弁27を介して第2連絡管12に流れる高圧のガス冷媒は、第1弁EV1を全閉としているため、室内ユニット120には流れない。
(全暖房運転について)
全暖房運転では、制御部115によって、以下のように各弁が調整される。切換ユニット70の第1弁EV1は全開とされ、第2弁EV2は全閉とされ、第3弁EV3は全閉とされ、室内膨張弁51は全開とされ、第1及び第2室外膨張弁34,35は開度調整される。各遮断弁161~164は全開とされ、第1電動弁136a及び第2電動弁136bは開度調整される。室外ユニット110の第1流路切換弁26は、冷媒配管25cと第2熱交換部32のガス側端とを接続するように切り換えられる。第2流路切換弁27は、吐出配管25aと第2連絡管12とを接続するように切り換えられる。第3流路切換弁28は、冷媒配管25cと第1熱交換部31のガス側端とを接続するように切り換えられる。
圧縮機25が駆動すると、圧縮機25により圧縮された高圧のガス冷媒は、吐出配管25a及び第2流路切換弁27等を経て、第2連絡管12に流入する。第2連絡管12に流入した冷媒は、冷媒流路切換装置140の第2ヘッダ管56、切換ユニット70の第1冷媒管P1を経て第1弁EV1を通過し、利用側ガス配管61から室内ユニット120のガス管GPに流入する。
ガス管GPに流入した冷媒は、室内ユニット120の室内熱交換器52に流入して凝縮する。凝縮した冷媒は、室内膨張弁51を通過して液管LPを流れ、切換ユニット70の利用側液配管62に流入する。利用側液配管62に流入した冷媒は、過冷却熱交換器59、第4冷媒管P4を経て、第1ヘッダ管55に流入する。
第1ヘッダ管55に流入した冷媒は、第1連絡管11を流れ室外ユニット110に流入し、第1及び第2室外膨張弁34,35において減圧される。減圧された冷媒は、室外熱交換器30を通過する際に蒸発し、第1流路切換弁26及び第3流路切換弁28等を経て、アキュムレータ24に流入し、圧縮機25に吸入される。
(全暖房運転時の第1熱回収ユニットによる処理について)
図2を参照しつつ、全暖房運転時の第1熱回収ユニット130による処理について説明する。空気調和システム100が暖房運転中である場合、第1切換弁165を閉、第2切換弁166を開、第3切換弁167を開、及び第4切換弁168を閉とする。これにより、給気側補助熱交換器131には、第2連絡管12、第5分岐配管18、及び第2分岐配管15から高圧のガス冷媒が供給され、当該ガス冷媒が給気側補助熱交換器131に流入する。前記ガス冷媒は、給気側補助熱交換器131において空気(外気OA)と熱交換して凝縮されて液冷媒となる。この液冷媒は、第1分岐配管14から第1連絡管11に流入する。第1熱回収ユニット130は、このようにして、暖房運転時において、外気OAを加熱して、第1空間S11に対して給気SAを供給する。
第1熱回収ユニット130の排気側補助熱交換器132には、第1連絡管11、第3分岐配管16から液冷媒が供給され、当該液冷媒が排気側補助熱交換器132に流入する。前記液冷媒は、排気側補助熱交換器132において空気(排気EA)と熱交換して蒸発されてガス冷媒となる。このガス冷媒は、第4分岐配管17から第3連絡管13に流入する。第1熱回収ユニット130は、このようにして、暖房運転時において、還気RAから熱回収しつつ、室外空間S2に排気EAを放出する。
(冷暖混合運転について)
冷暖混合運転では、制御部115によって、以下のように各弁が調整される。稼働している室内ユニット120のうち、冷房運転を行う室内ユニット120(以下、「冷房側室内ユニット120」ともいう)に対応する切換ユニット70(以下、「冷房側切換ユニット70」ともいう)において、第1弁EV1は最小開度とされ、第2弁EV2は全開とされ、第3弁EV3は開度調整され、冷房側室内ユニット120の室内膨張弁51は開度調整される。各遮断弁161~164は全開とされ、第1電動弁136a及び第2電動弁136bは開度調整される。室外ユニット110の第1流路切換弁26は、冷媒配管25cと第2熱交換部32のガス側端とを接続するように切り換えられる。第2流路切換弁27は、吐出配管25aと第2連絡管12とを接続するように切り換えられる。第3流路切換弁28は、吐出配管25aと第1熱交換部31のガス側端とを接続するように切り換えられる。
稼働している室内ユニット120のうち、暖房運転を行う室内ユニット120(以下、「暖房側室内ユニット120」ともいう)に対応する切換ユニット70(以下、「暖房側切換ユニット70」ともいう)において、第1弁EV1は全開とされ、第2弁EV2は全閉とされ、第3弁EV3は全閉とされ、暖房側室内ユニット120の室内膨張弁51は全開とされ、第1室外膨張弁34及び第2室外膨張弁35は開度調整される。本実施形態では、第1空間S11の室内ユニット120(冷房側室内ユニット120)を冷房運転し、第2空間S12の室内ユニット120(暖房側室内ユニット120)を暖房運転している。この場合、第1空間S11用として設けられている第1熱回収ユニット130では、給気側補助熱交換器131が、第1空間S11の冷房側室内ユニット120に合わせて蒸発器として機能し、排気側補助熱交換器132は、凝縮器として機能する。
圧縮機25が駆動すると、圧縮機25により圧縮された高圧のガス冷媒の一部は、吐出配管25a及び第2流路切換弁27を経て、第2連絡管12に流入する。圧縮機25により圧縮された高圧のガス冷媒の他の一部は、吐出配管25a及び第3流路切換弁28を経て室外熱交換器30の第1熱交換部31において凝縮され、第1室外膨張弁34を経て一部が第1連絡管11に流入し、残りが第2室外膨張弁35に流入する。第1熱交換部31において凝縮された冷媒は、第2室外膨張弁35を経て第2熱交換部32において蒸発し、第1流路切換弁26を経て圧縮機25に吸入される。冷暖混合運転において、第2熱交換部32の使い方は、室内ユニット120及び第1熱回収ユニット130における冷媒の凝縮量及び蒸発量のバランスに応じて変更する。冷暖混合運転においては、室内ユニット120及び第1熱回収ユニット130における冷媒の凝縮量及び蒸発量のバランスに応じて、第1熱交換部31及び第2熱交換部32の両方が凝縮器又は蒸発器として機能してもよい。
第2連絡管12に流入した冷媒は、冷媒流路切換装置140の第2ヘッダ管56に流入し、暖房側切換ユニット70の第1冷媒管P1、第1弁EV1、利用側ガス配管61を流れて、ガス管GPに流入する。
ガス管GPに流入した冷媒は、暖房側室内ユニット120の室内熱交換器52において凝縮する。凝縮した冷媒は、液管LPから暖房側切換ユニット70の利用側液配管62に流入し、過冷却熱交換器59、第4冷媒管P4を流れて第1ヘッダ管55に流入する。
室外ユニット110から第1連絡管11に流入した冷媒も第1ヘッダ管55に流入する。第1ヘッダ管55に流入した冷媒は、冷房側切換ユニット70の第4冷媒管P4、過冷却熱交換器59、利用側液配管62、液管LPを経て冷房側室内ユニット120に流入する。このとき過冷却熱交換器59を通過した冷媒は、第4冷媒管P4から分岐して第5冷媒管P5を流れ第3弁EV3で減圧された冷媒によって過冷却される。
冷房側室内ユニット120に流入した冷媒は、室内膨張弁51において減圧され、室内熱交換器52において蒸発し、室内を冷房する。蒸発した冷媒は、ガス管GPを流れて、冷房側切換ユニット70の利用側ガス配管61に流入し、第2弁EV2を経て第3冷媒管P3及び第3ヘッダ管57に流入し、第3連絡管13を流れてアキュムレータ24に流入し、圧縮機25に吸入される。
第1熱回収ユニット130は、給気側補助熱交換器131が、第1空間S11の冷房側室内ユニット120に合わせて蒸発器として機能し、外気OAを冷却して、第1空間S11に給気SAを供給する。第1熱回収ユニット130は、排気側補助熱交換器132が凝縮器として機能し、還気RAから熱回収してガス冷媒を蒸発させ、昇温した還気RAを排気EAとして室外空間S2に放出する。
(外気冷房運転について)
空気調和システム100では、室外ユニット110に温度センサ116(図7参照)を設けている。温度センサ116は、室外空間S2の空気の温度(外気温度T)を計測している。なお、温度センサ116の設置位置は、室外ユニット110以外の室外空間S2であってもよい。制御部115は、外気温度Tが所定の設定温度TSよりも低くなった場合、室内空間S1について外気冷房運転をすることができると判断する。設定温度TSは、制御部115に予め記憶されている。なお、設定温度TSは、制御部115を操作することによって変更することが可能である。
ここでは、第2空間S12において室内ユニット120の冷房運転を継続していて、第1空間S11について第1熱回収ユニット130を外気冷房運転する場合を、図2を参照しつつ説明する。空気調和システム100では、制御部115が、外気冷房運転をすることができると判断した場合、以下のように各部の動作を切り換える。
具体的には、空気調和システム100では、第1空間S11の冷房中に外気温度Tが設定温度TSよりも低くなった場合に、制御部115が、室内ユニット120を停止させると共に、第1熱回収ユニット130による換気を継続させる。さらに、制御部115が、第1遮断弁161及び第2遮断弁162を閉止させるとともに、給気ファン137を運転させる。これにより、第1空間S11の空調モードが、通常の冷房運転から外気冷房運転に切り替えられる。
空気調和システム100では、外気冷房運転中に、給気側補助熱交換器131を通過する冷媒を遮断する。このため、空気調和システム100では、外気冷房運転中は、給気側補助熱交換器131による熱交換を伴わずに、給気ファン137のみを運転させることができ、これにより、空気調和システム100を効率良く運転することができる。なお、本実施形態では、空気調和システム100において、外気温度Tの計測値に基づいて、自動的に外気冷房運転を行う場合を例示したが、本開示の空気調和システムは、ユーザの指示に基づいて、手動で外気冷房運転に切り替える構成であってもよい。
さらに、空気調和システム100では、外気冷房運転中に、制御部115が、第3遮断弁163及び第4遮断弁164を「開」に維持して、排気側補助熱交換器132への冷媒の供給を継続する。
第1熱回収ユニット130の排気側補助熱交換器132には、第2連絡管12及び第4分岐配管17から高圧のガス冷媒が供給され、当該ガス冷媒が排気側補助熱交換器132に流入する。前記ガス冷媒は、排気側補助熱交換器132において空気(排気EA)と熱交換して凝縮されて液冷媒となる。この液冷媒は、第3分岐配管16から第1連絡管11に流入する。第1熱回収ユニット130は、このようにして、外気冷房運転時において、還気RAからの熱回収を継続することができる。
空気調和システム100では、第1空間S11について外気冷房運転を行うとともに、さらに排気側補助熱交換器132によって第1空間S11の排気EAからの熱回収を行うことができる。これにより、空気調和システム100をさらに効率良く運転することができる。なお、第1熱回収ユニット130から漏洩する冷媒量を抑制するためには、第4遮断弁164を設けることが好ましいが、外気冷房時における排気処理部130Bによる熱回収を実現するための構成としては、第4遮断弁164を省略してもよい。なお、本実施形態では、冷媒として微燃焼性を有するR32を使用した空気調和システム100を例示したが、本開示の空気調和システムは、可燃性を有さない冷媒を使用してもよい。
空気調和システム100では、第1空間S11とは異なる第2空間S12に配置された室内ユニット120をさらに備えている。第2空間S12を空調している室内ユニット120の利用側冷媒回路RC4は、第1連絡管11及び第3連絡管13によって、熱源側冷媒回路RC1に個別に接続されている。このため、空気調和システム100では、冷房中において、第1空間S11では第1熱回収ユニット130による外気冷房運転を行うとともに、第2空間S12では当該第2空間S12のための室内ユニット120の冷房運転を継続することができる。
[第2の実施形態に係る空気調和システム]
図8は、本開示の第2の実施形態に係る空気調和システムの全体構成を示す概略図である。図9は、第2の実施形態に係る空気調和システムの冷媒回路図である。図10は、第2の実施形態に係る熱回収ユニットの概略的な構成を示す図である。図8に示すように、本開示の第2の実施形態である空気調和システム200は、空気調和機102と、冷媒流路切換装置140とを備えている。空気調和システム200は、空気調和機101の代わりに空気調和機102を備えている点で、第1の実施形態に係る空気調和システム100と異なっている。なお、図8~図11では、図1~図7で説明した構成と同じ構成については同じ符号を付しており、以下の説明では、その同じ符号を付した構成についての説明は、特に説明する場合を除き省略する。
[空気調和機102の構成]
図8及び図9に示すように、空気調和機102は、室外ユニット110と室内ユニット120及び第2熱回収ユニット170を有している。空気調和機102は、1台の室外ユニット110に対して2台以上の室内ユニット120と1台の第2熱回収ユニット170とが接続されている。空気調和機102は、冷媒流路切換装置140によって室内ユニット120毎に冷房運転及び暖房運転を自由に選択して、対象空間の空調を行うことができる。空気調和機102は、第1熱回収ユニット130の代わりに第2熱回収ユニット170を備えている点で、第1の実施形態に係る空気調和機101と異なっている。
[第2熱回収ユニットの構成]
第2熱回収ユニット170は、室内空間S1の換気を行うことができる装置であり、建物Bの内部における室内空間S1の外部に配置されている。第2熱回収ユニット170は、室内空間S1の天井裏の空間に配置されており、ダクトを通じて室内空間S1及び室外空間S2とつながっている。なお、本実施形態では、第2熱回収ユニット170を室内空間S1の天井裏の空間に配置した場合を例示しているが、本開示の第2熱回収ユニットは、天井吊下げ型、天井埋込み型、床置き型、又は壁掛け型であってもよく、天井裏以外の場所に配置してもよい。図10に示すように、第2熱回収ユニット170は、給気側補助熱交換器131と、排気側補助熱交換器132と、補助熱交換器用切換弁133と、熱交換部134とを備えている。第2熱回収ユニット170は、外気処理部170Aと排気処理部170Bとを含んでいる。外気処理部170Aは、給気側補助熱交換器131を有しており、排気処理部170Bは、排気側補助熱交換器132を有している。第2熱回収ユニット170内には、第3補助冷媒回路RC5が設けられている。第3補助冷媒回路RC5は、給気側補助熱交換器131、排気側補助熱交換器132、及び補助熱交換器用切換弁133が補助冷媒配管135によって接続されることで構成されている。補助冷媒配管135は、第1補助冷媒管135a、第2補助冷媒管135b、第3補助冷媒管135c、第4補助冷媒管135d、及び第5補助冷媒管135eを含んでいる。
給気側補助熱交換器131の一側端は、補助熱交換器用切換弁133から延びる第3補助冷媒管135cに接続されている。給気側補助熱交換器131の他側端は、第2補助冷媒管135bの一端に接続されている。第2補助冷媒管135bの他端は、排気側補助熱交換器132の一側端に接続されている。第2補助冷媒管135bの中途部には、電動弁139が設けられている。電動弁139は、開度調整が可能な電動弁である。排気側補助熱交換器132の他側端は、補助熱交換器用切換弁133から延びる第1補助冷媒管135aに接続されている。
補助熱交換器用切換弁133は、4個のポートを有する四方切換弁であり、各ポートに第1補助冷媒管135a、第2補助冷媒管135b、第4補助冷媒管135d、及び第5補助冷媒管135eが接続されている。
図9及び図10に示すように、第4補助冷媒管135dは、第7分岐配管191に接続されており、第5補助冷媒管135eは、第8分岐配管192に接続されている。補助熱交換器用切換弁133は、第1補助冷媒管135a、第2補助冷媒管135b、第4補助冷媒管135d、及び第5補助冷媒管135eの間の冷媒の流れを切り換える。
第3補助冷媒回路RC5は、第7分岐配管191を介して高圧ガス側の第2連絡管12に接続されるとともに、第8分岐配管192を介して低圧ガス側の第3連絡管13に接続される。
(制御部の構成)
図11は、空気調和システム200の制御ブロック図である。図11に示すように、空気調和システム200において、制御部115は、室外ユニット110に内蔵された圧縮機25、第1流路切換弁26、第2流路切換弁27、第3流路切換弁28、室外ファン33、第1室外膨張弁34、及び第2室外膨張弁35が接続されている。制御部115は、室内ユニット120の室内制御部54を介して、室内膨張弁51、及び室内ファン53が接続されている。制御部115は、第2熱回収ユニット170の補助熱交換器用切換弁133、電動弁139、給気ファン137、及び排気ファン138が接続されている。制御部115は、冷媒流路切換装置140(切換ユニット70)の図示しない制御部を介して第1弁EV1、第2弁EV2、及び第3弁EV3が接続されている。制御部115は、第5遮断弁193、及び第6遮断弁194が接続されている。制御部115は、温度センサ116及び冷媒センサ180が接続されている。制御部115は、空気調和システム200の運転状況に応じて、接続されている上記各部の動作を制御する。なお、空気調和システム200では、第2熱回収ユニット170に制御部(図示せず)を設けてもよく、制御部115が、第2熱回収ユニット170の制御部(図示せず)を介して、補助熱交換器用切換弁133、電動弁139、給気ファン137、及び排気ファン138に接続されていてもよい。
(外気冷房運転について)
空気調和システム200では、外気冷房運転を行う場合、室内ユニット120を停止すると共に、第2熱回収ユニット170による換気を継続する。具体的には、空気調和システム200では、第1空間S11が室内ユニット120によって冷房中である場合に、温度センサ116が検出した外気温度Tが設定温度TSよりも低くなった場合、制御部115が、第5遮断弁193及び第6遮断弁194を閉止させるとともに、給気ファン137を運転させる。空気調和システム200では、これにより、第1空間S11の空調を、通常の冷房運転から外気冷房運転に切り替えることができる。
以上に説明したように、空気調和システム200では、外気冷房運転中に給気側補助熱交換器131を通過する冷媒を遮断する。このため、空気調和システム200では、外気冷房運転中は、給気側補助熱交換器131による熱交換を伴わずに、給気ファン137のみを運転させることができ、これにより、空気調和システム200を効率良く運転することができる。
空気調和システム200では、第1空間S11とは異なる第2空間S12に配置された室内ユニット120をさらに備えている。第2空間S12を空調している室内ユニット120の利用側冷媒回路RC4は、第1連絡管11及び第3連絡管13によって、熱源側冷媒回路RC1に個別に接続されている。このため、空気調和システム200では、冷房中において、第1空間S11では第2熱回収ユニット170による外気冷房運転を行うとともに、第2空間S12では当該第2空間S12のための室内ユニット120の冷房運転を継続することができる。
(第2熱回収ユニットへの冷媒の溜まり込みについて)
図9を参照しつつ、空気調和システム200が停止しているが、第2熱回収ユニット170の各ファン137、138が運転しているときの第2熱回収ユニット170の状態について説明する。冷房運転が行われる時期に、第2空間S12について室内ユニット120を冷房運転する必要がなく、第1空間S11について第2熱回収ユニット170による外気冷房運転をする場合、各空間S11,S12の室内ユニット120は停止しているが、第2熱回収ユニット170の各ファン137、138は運転している。この場合は、第5遮断弁193及び第6遮断弁194を閉じることにより、第2熱回収ユニット170への冷媒の溜まり込みを防ぐことができる。
(冷媒漏洩時の遮断弁の動作について)
空気調和システム200では、冷媒センサ180(図11参照)が、第2熱回収ユニット170から漏洩した冷媒を検知することができる位置に配置されている。冷媒センサ180が冷媒を検知した場合に、制御部115は第5遮断弁193及び第6遮断弁194を作動させる。空気調和システム200では、第5遮断弁193及び第6遮断弁194が作動した場合、第2熱回収ユニット170の第3補助冷媒回路RC5が、空気調和システム200におけるその他の各冷媒回路RC1,RC3,RC4から完全に切り離される。このため、空気調和システム200では、仮に第2熱回収ユニット170から燃焼性を有する冷媒(本実施形態ではR32)が漏洩したとしても、その時点で第3補助冷媒回路RC5内に貯留されている冷媒量を越えて、当該第2熱回収ユニット170から冷媒が漏洩するのを抑制することができる。
[その他の変形例]
以上に説明した各空気調和システム100,200は、冷暖フリータイプの空気調和機101,102を用いて構成されているが、本開示の空気調和システムは、冷暖フリータイプ以外の空気調和機を用いてもよく、冷暖切換タイプのヒートポンプ式空気調和機を用いて構成されていてもよい。
[実施形態の作用効果]
上述した第1の実施形態における空気調和システム100は、圧縮機25と室外熱交換器30とを含む熱源側冷媒回路RC1を有する室外ユニット110と、第1空間S11に配置され、室内熱交換器52を含む利用側冷媒回路RC4を有する室内ユニット120と、熱源側冷媒回路RC1と利用側冷媒回路RC4とを接続する液側の第1連絡管11及びガス側の第3連絡管13と、第1連絡管11から分岐した第1分岐配管14と、第3連絡管13から分岐した第2分岐配管15と、に接続された給気側補助熱交換器131を含む第1補助冷媒回路RC21と、給気側補助熱交換器131を通った外気OAを第1空間S11に供給する給気ファン137と、を有する外気処理部130Aと、第1分岐配管14に設けられた第1遮断弁161と、第2分岐配管15に設けられた第2遮断弁162と、を備えている。空気調和システム100は、第1遮断弁161及び第2遮断弁162の作動により、熱源側冷媒回路RC1と第1補助冷媒回路RC21との間の冷媒の流れが遮断される。
以上のような構成では、第1遮断弁161及び第2遮断弁162によって、第1補助冷媒回路RC21を熱源側冷媒回路RC1から完全に切り離すことができる。このため、外気処理部130Aが停止している状態で、第1補助冷媒回路RC21内で冷媒の蒸発、凝縮等が生じるのを抑制することができ、これにより、空気調和システム100の運転効率の低下を抑制することができる。
上述した第1の実施形態における空気調和システム100は、外気温度を検出する温度センサ116と、温度センサ116が検出した外気温度に基づいて給気ファン137を動作させる制御部115と、を備えている。
空気調和システム100は、第1空間S11が冷房中であって、外気温度が所定の設定温度よりも低くなった場合、制御部115が、第1遮断弁161及び第2遮断弁162を閉止させるとともに、給気ファン137を運転させる。
この構成によれば、第1空間S11の冷房中に外気温度が所定温度よりも低くなった場合に、給気側補助熱交換器131を通過する冷媒を遮断することにより、第1空間S11について、給気ファン137のみを運転し、外気冷房することができる。
上述した第1の実施形態における空気調和システム100は、第1空間S11とは異なる第2空間S12に配置され、室内熱交換器52を含む利用側冷媒回路RC4を有する室内ユニット120をさらに備え、利用側冷媒回路RC4が、第1連絡管11及び第3連絡管13によって、熱源側冷媒回路RC1に接続されている。
この構成によれば、冷房時において、給気ファン137が設けられた第1空間S11では、外気処理部130A、170Aの給気ファン137のみによる外気冷房運転を行うとともに、第2空間S12では、室内ユニット120の冷房運転を継続することができる。
上述した第1の実施形態における空気調和システム100は、第1連絡管11から分岐した第3分岐配管16と、第3連絡管13から分岐した第4分岐配管17に接続された排気側補助熱交換器132を含む第2補助冷媒回路RC22と、排気側補助熱交換器132を通った第1空間S11の空気を外部に放出する排気ファン138と、を有する排気処理部130Bと、第3分岐配管16に設けられた第3遮断弁163と、をさらに備えている。空気調和システム100では、制御部115が、第1空間S11の冷房中に外気温度が所定温度よりも低くなった場合、第3遮断弁163を開放させるとともに、排気ファン138を運転させる。
この構成によれば、冷房時に、第1空間S11について外気冷房を行って、第2空間S12について冷房運転を行っている場合に、排気側補助熱交換器132で第1空間S11の排気からの熱回収を行うことにより、空気調和システム100を効率良く運転することができる。
上述した第1の実施形態における空気調和システム100は、第1補助冷媒回路RC21、第2補助冷媒回路RC22、給気ファン137及び排気ファン138を収容し、給気側補助熱交換器131を通過する空気が通る給気通路151と、排気側補助熱交換器132を通過する空気が通る排気通路152とが形成されたケーシング150と、給気側補助熱交換器131を通過する前の給気通路151内の空気と、排気側補助熱交換器132を通過する前の排気通路152内の空気との間で熱交換を行う熱交換部134と、をさらに備える。
この構成によれば、外気処理部130A及び排気処理部130Bと熱交換部134とを1つのケーシング150に収容した形態とすることで、第1熱回収ユニット130周りの配管構成を簡素にすることができ、これにより、熱源側冷媒回路RC1と第1補助冷媒回路RC21及び第2補助冷媒回路RC22との接続作業が容易になる。
上述した第1の実施形態における空気調和システム100は、使用している冷媒が可燃性冷媒(冷媒R32)である。
この構成によれば、熱回収ユニットから冷媒が漏洩した場合に、第1~第4の各遮断弁161~164を閉止することで、第1熱回収ユニット130からの冷媒の漏洩量を抑制することができる。
11 :第1連絡管
13 :第3連絡管
14 :第1分岐配管
15 :第2分岐配管
16 :第3分岐配管
17 :第4分岐配管
25 :圧縮機
30 :室外熱交換器(第1熱交換器)
52 :室内熱交換器(第2熱交換器、第3熱交換器)
100 :空気調和システム(第1の実施形態)
110 :室外ユニット(第1ユニット)
115 :制御部
116 :温度センサ
120 :室内ユニット(第2ユニット、第3ユニット)
130A:外気処理部
130B:排気処理部
131 :給気側補助熱交換器(第1補助熱交換器)
132 :排気側補助熱交換器(第2補助熱交換器)
134 :熱交換部
137 :給気ファン
138 :排気ファン
150 :ケーシング
151 :給気通路
152 :排気通路
161 :第1遮断弁
162 :第2遮断弁
163 :第3遮断弁
RC1 :熱源側冷媒回路(第1冷媒回路)
RC21:給気側補助冷媒回路(第1補助冷媒回路)
RC22:排気側補助冷媒回路(第2補助冷媒回路)
RC4 :利用側冷媒回路(第2冷媒回路、第3冷媒回路)
S11 :第1空間
S12 :第2空間
T :外気温度
TS :設定温度(所定温度)

Claims (6)

  1. 圧縮機(25)と第1熱交換器(30)とを含む第1冷媒回路(RC1)を有する第1ユニット(110)と、
    第1空間(S11)に配置され、第2熱交換器(52)を含む第2冷媒回路(RC4)を有する第2ユニット(120)と、
    前記第1冷媒回路(RC1)と前記第2冷媒回路(RC4)とを接続する液側配管(11)及びガス側配管(13)と、
    前記液側配管(11)から分岐した第1分岐配管(14)と前記ガス側配管(13)から分岐した第2分岐配管(15)とに接続された第1補助熱交換器(131)を含む第1補助冷媒回路(RC21)と、前記第1補助熱交換器(131)を通った外気を前記第1空間(S11)に供給する給気ファン(137)と、を有する外気処理部(130A)と、
    前記第1分岐配管(14)に設けられた第1遮断弁(161)と、
    前記第2分岐配管(15)に設けられた第2遮断弁(162)と、
    を備え、
    前記第1遮断弁(161)及び前記第2遮断弁(162)の作動により、前記第1冷媒回路(RC1)と前記第1補助冷媒回路(RC21)との間の冷媒の流れが遮断される、空気調和システム(100)。
  2. 外気温度を検出する温度センサ(116)と、
    前記温度センサ(116)が検出した外気温度に基づいて前記給気ファン(137)を動作させる制御部(115)と、を備え、
    前記第1空間(S11)が冷房中であって、前記外気温度(T)が所定温度(TS)よりも低くなった場合、
    前記制御部(115)が、前記第1遮断弁(161)及び前記第2遮断弁(162)を閉止させるとともに、前記給気ファン(137)を運転させる、請求項1に記載の空気調和システム(100)。
  3. 前記第1空間(S11)とは異なる第2空間(S12)に配置され、第3熱交換器(52)を含む第3冷媒回路(RC4)を有する第3ユニット(120)をさらに備え、
    前記第3冷媒回路(RC4)が、前記液側配管(11)及び前記ガス側配管(13)によって、前記第1冷媒回路(RC1)に接続されている、請求項1に記載の空気調和システム(100)。
  4. 前記液側配管(11)から分岐した第3分岐配管(16)と前記ガス側配管(13)から分岐した第4分岐配管(17)に接続された第2補助熱交換器(132)を含む第2補助冷媒回路(RC22)と、前記第2補助熱交換器(132)を通った前記第1空間(S11)の空気を外部に放出する排気ファン(138)と、を有する排気処理部(130B)と、
    前記第3分岐配管(16)に設けられた第3遮断弁(163)と、をさらに備え、
    前記制御部(115)が、
    前記第1空間(S11)の冷房中に前記外気温度が所定温度よりも低くなった場合、前記第3遮断弁(163)を開放させるとともに、前記排気ファン(138)を運転させる、請求項1から請求項3のいずれか1項に記載の空気調和システム(100)。
  5. 前記第1補助冷媒回路(RC21)、前記第2補助冷媒回路(RC22)、前記給気ファン(137)及び前記排気ファン(138)を収容し、前記第1補助熱交換器(131)を通過する空気が通る給気通路(151)と、前記第2補助熱交換器(132)を通過する空気が通る排気通路(152)とが形成されたケーシング(150)と、
    前記第1補助熱交換器(131)を通過する前の前記給気通路(151)内の空気と、前記第2補助熱交換器(132)を通過する前の前記排気通路(152)内の空気との間で熱交換を行う熱交換部(134)と、
    をさらに備える、請求項1から請求項4のいずれか1項に記載の空気調和システム(100)。
  6. 前記冷媒が可燃性冷媒である、請求項1から請求項5のいずれか1項に記載の空気調和システム(100)。
JP2021110175A 2021-07-01 2021-07-01 空気調和システム Pending JP2023007129A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021110175A JP2023007129A (ja) 2021-07-01 2021-07-01 空気調和システム
EP22832693.0A EP4365505A1 (en) 2021-07-01 2022-06-01 Air conditioning system
PCT/JP2022/022293 WO2023276535A1 (ja) 2021-07-01 2022-06-01 空気調和システム
CN202280046867.3A CN117597555A (zh) 2021-07-01 2022-06-01 空调系统
US18/522,624 US20240093903A1 (en) 2021-07-01 2023-11-29 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021110175A JP2023007129A (ja) 2021-07-01 2021-07-01 空気調和システム

Publications (1)

Publication Number Publication Date
JP2023007129A true JP2023007129A (ja) 2023-01-18

Family

ID=84691257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021110175A Pending JP2023007129A (ja) 2021-07-01 2021-07-01 空気調和システム

Country Status (5)

Country Link
US (1) US20240093903A1 (ja)
EP (1) EP4365505A1 (ja)
JP (1) JP2023007129A (ja)
CN (1) CN117597555A (ja)
WO (1) WO2023276535A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320573A (ja) 1989-06-19 1991-01-29 Sanyo Electric Co Ltd 空気調和装置
JP2005049059A (ja) * 2003-07-31 2005-02-24 Daikin Ind Ltd 空気調和システム
WO2018011994A1 (ja) * 2016-07-15 2018-01-18 三菱電機株式会社 空気調和装置
JP6735933B2 (ja) * 2017-10-27 2020-08-05 三菱電機株式会社 ヒートポンプシステム

Also Published As

Publication number Publication date
US20240093903A1 (en) 2024-03-21
CN117597555A (zh) 2024-02-23
EP4365505A1 (en) 2024-05-08
WO2023276535A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
CN107429934B (zh) 利用侧空调装置以及包括该利用侧空调装置的空调装置
US9115931B2 (en) Air-conditioning apparatus
US9435549B2 (en) Air-conditioning apparatus with relay unit
WO2011064827A1 (ja) 空気調和装置
US20150369498A1 (en) Air-conditioning apparatus
WO2013008365A1 (ja) 空気調和装置
WO2014132433A1 (ja) 空気調和装置
WO2011064830A1 (ja) 空気調和装置
US9335072B2 (en) Air-conditioning apparatus
WO2020226091A1 (ja) 空調システム
WO2011099059A1 (ja) 空気調和装置
JP2018025337A (ja) 空調機
WO2023276535A1 (ja) 空気調和システム
JP2020183829A (ja) 空調システム及び補助ファン
WO2023276584A1 (ja) 空気調和システム
JP2023007076A (ja) 空気調和システム
GB2555298A (en) Air conditioning device
WO2023026639A1 (ja) 空気調和システム
WO2023026638A1 (ja) 室外機、室内機、及び空気調和システム
WO2023126992A1 (ja) 外気調和装置
WO2024166278A1 (ja) 空気調和装置
JP7445140B2 (ja) 空気調和機、空気調和機の設置方法、及び、室外機
WO2023058438A1 (ja) 熱源ユニット、および空気調和装置
WO2023058439A1 (ja) 熱源ユニット、および空気調和装置
WO2023007803A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240523