CN115863638A - 一种高电压正极材料及包括该正极材料的锂离子电池 - Google Patents

一种高电压正极材料及包括该正极材料的锂离子电池 Download PDF

Info

Publication number
CN115863638A
CN115863638A CN202111116475.3A CN202111116475A CN115863638A CN 115863638 A CN115863638 A CN 115863638A CN 202111116475 A CN202111116475 A CN 202111116475A CN 115863638 A CN115863638 A CN 115863638A
Authority
CN
China
Prior art keywords
positive electrode
electrode active
active material
matrix material
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111116475.3A
Other languages
English (en)
Inventor
于丽秋
曾家江
李素丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Cosmx Battery Co Ltd
Original Assignee
Zhuhai Cosmx Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Cosmx Battery Co Ltd filed Critical Zhuhai Cosmx Battery Co Ltd
Priority to CN202111116475.3A priority Critical patent/CN115863638A/zh
Publication of CN115863638A publication Critical patent/CN115863638A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种高电压正极材料及包括该正极材料的锂离子电池,所述正极活性物质包括正极活性基体材料,所述正极活性基体材料表面有点状包覆物,所述点状包覆物与正极活性基体材料的接触总面积占正极活性基体材料的表面积的30%~100%。通过在正极活性基体材料表面形成具有所述接触总面积的点状包覆物,一方面可以改善正极活性基体材料在充放电过程中表层结构的相变化,另一方面所述点状包覆物能够起到隔绝电解液的作用,进而提升正极活性基体材料在高电压条件下的结构稳定性。

Description

一种高电压正极材料及包括该正极材料的锂离子电池
技术领域
本发明属于锂离子电池技术领域,具体涉及一种高电压正极材料及包括该正极材料的锂离子电池。
背景技术
随着手机、平板等消费电子产品日益轻薄化发展,锂离子电池的能量密度不断提升,钴酸锂作为高能量密度的主要正极活性物质,提高其上限工作电压和克容量被认为是有效提升锂离子电池的能量密度的途径,未来对于高电压钴酸锂材料的需求将是不断追求电压的提升,即≥4.53V电压将成为发展方向。但是,在高电压下,钴酸锂的脱锂量增加,导致表层结构相变等问题的出现,因此提升钴酸锂在高电压条件下的结构稳定性至关重要。
发明内容
通过研究发现,制约钴酸锂在高电压条件下应用的主要相变发生在4.55V(vs Li+/Li)处,即在此电压下,钴酸锂的O3相向H1-3相发生不可逆的相变,而H1-3相的钴酸锂的离子电导性和电子电导性较差,这会导致钴酸锂的容量加速衰减。目前常规的包覆改性手段主要以金属氧化物如Al2O3、MgO、TiO2、ZrO2等进行包覆,但是此类材料具有电子导电性差的缺陷,包覆效果往往不达预期。
为了改善现有钴酸锂表层结构相变等问题,本发明提供了一种高电压正极材料及包括该正极材料的锂离子电池。本发明在保证钴酸锂基体结构稳定性的基础上,通过有效的包覆设计,改善钴酸锂表层结构相变的问题。
本发明中,术语“高电压体系”是指全电芯的使用电压≥4.48V,如4.48V、4.5V、4.53V或4.55V等。
为实现上述目的,本发明采取的技术方案如下:
一种正极活性物质,所述正极活性物质包括正极活性基体材料,所述正极活性基体材料表面有点状包覆物,所述点状包覆物与正极活性基体材料的接触总面积占正极活性基体材料的表面积的30%~100%。
本发明中,所述接触总面积通过FIB-EDS/EPMA(聚焦离子束/电子探针显微镜)进行表征。
本发明中,通过在正极活性基体材料表面形成具有所述接触总面积的点状包覆物,一方面可以改善正极活性基体材料在充放电过程中表层结构的相变化,另一方面所述点状包覆物能够起到隔绝电解液的作用,进而提升正极活性基体材料在高电压条件下的结构稳定性。
根据本发明,所述点状包覆物中包括含有Ni元素和Mn元素的化合物。
根据本发明,在点状包覆物与正极活性基体材料接触的区域形成固溶体区域,该固溶体区域中包括固溶体相。
其中,所述含有Ni元素和Mn元素的化合物例如具有下述结构式:LiNipMn1-pO2,其中,1>p>0。
其中,所述正极活性物质还包括第二包覆层,所述第二包覆层包覆在点状包覆物和正极活性基体材料的表面。
其中,所述正极活性基体材料包括钴酸锂基体材料。
其中,形成所述第二包覆层的物质包括金属氧化物。
根据本发明,所述正极活性物质的XRD性能测试显示在2θ=37.3°±0.2°和2θ=45.1°±0.2°处有特征峰存在。
根据本发明,LiNipMn1-pO2(其中,1>p>0)与钴酸锂基体材料接触的区域形成固溶体相,该固溶体相的XRD性能测试显示在2θ=37.3°±0.2°和2θ=45.1°±0.2°处有特征峰存在。
根据本发明,p为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9。
根据本发明,所述含有Ni元素和Mn元素的化合物例如为LiNi0.5Mn0.5O2
根据本发明,所述正极活性物质的粒径D50为6~20μm,如6μm、8μm、10μm、15μm或16μm。
根据本发明,所述LiNipMn1-pO2(其中,1>p>0)的质量占正极活性物质总质量的0.03~5wt%,例如0.03wt%、0.04wt%、0.05wt%、0.06wt%、0.07wt%、0.08wt%、0.09wt%、0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1wt%、2wt%、3wt%、3.5wt%、4wt%、4.5wt%或5wt%。
根据本发明,所述钴酸锂基体材料选自LixMe1-yMyO2,其中,Me=Co1-a-bAlaZb,M为Al、Mg、Ti、Zr、Co、Ni、Mn、Y、La、Sr、W、Sc中的一种或多种,Z为Y、La、Mg、Ti、Zr、Ni、Mn、Ce中的一种或多种;0.95≤x≤1.05,0≤y≤0.1,0<a≤0.2,0<b≤0.1。
根据本发明,所述钴酸锂基体材料的制备原料中至少包括Me3O4,其为Al以及Z掺杂的钴的前驱体,其中,Me=Co1-a-bAlaZb,Z为Y、La、Mg、Ti、Zr、Ni、Mn、Nb中的一种或多种;0<a≤0.2,0<b≤0.1。
本发明还提供上述正极活性物质的制备方法,所述方法包括如下步骤:
a)准备含有Al掺杂的钴前驱体MeCO3和含Z氧化物作为钴酸锂基体材料的制备原料;准备NipMn1-p(OH)2作为点状包覆物的制备原料;
b)将步骤a)的NipMn1-p(OH)2、含有Al掺杂的钴前驱体MeCO3和含Z氧化物混合,进行第一次煅烧,形成NipMn1-pO2包覆的含有Al以及Z掺杂的Me3O4前驱体A,将前驱体A与锂盐、任选地含M氧化物混合,进行第二次煅烧,制备得到包覆点状包覆物的钴酸锂基体材料。
根据本发明,所述方法进一步包括以下步骤:
c)准备至少一种金属化合物作为第二包覆层的制备原料;
d)将步骤b)的包覆点状包覆物的钴酸锂基体材料与步骤c)的至少一种金属化合物混合,进行第三次煅烧,制备得到所述正极活性物质。
根据本发明,步骤a)中,所述含有Al的钴前驱体MeCO3是通过如下方法制备得到的:
1)将钴源、含Al元素的化合物和含Z元素的化合物配置成水溶液;
2)将上述水溶液、络合物和沉淀剂混合,反应,得到含有Al以及Z掺杂的钴的碳酸盐MeCO3
步骤1)中,
具体的,所述的钴源选自乙酸钴、草酸钴、硝酸钴、硫酸钴、氯化钴、氢氧化钴中的至少一种。
具体的,所述含Al元素的化合物选自含有Al元素的氧化物、氯化物、氢氧化物、碳酸盐、硫酸盐、硝酸盐、草酸盐、醋酸盐中的至少一种。
具体的,所述含Z元素的化合物选自含有Z元素的氧化物、氯化物、氢氧化物、碳酸盐、硫酸盐、硝酸盐、草酸盐、醋酸盐中的至少一种。
具体的,所述钴源、含Al元素的化合物和含Z元素的化合物的摩尔比为使得所述Co、Al、Z的摩尔比为1-a-b:a:b,其中0<a≤0.2,0<b≤0.1。
具体的,所述水溶液中,钴源的浓度为0.8-3.8mol/L。
步骤2)中,
具体的,所述络合剂选自氨水,所述氨水的浓度为20%~25%。
具体的,所述沉淀剂选自可溶性碱,所述可溶性碱选自Na2CO3、NH4HCO3、(NH4)2CO3等中的一种。
具体的,所述络合物和沉淀剂的质量比为2:1~1:1。
具体的,混合体系中,所述沉淀剂的浓度为0.8~3.8mol/L。
具体的,所述反应的温度为30~80℃,所述反应的时间为10~20小时。
具体的,所述水溶液、络合物溶液和沉淀剂溶液混合后会发生络合沉淀反应。
根据本发明,步骤b)中,将步骤a)的NipMn1-p(OH)2前驱体与步骤a)的含有Al以及Z掺杂的钴前驱体MeCO3通过物理混合的方式,形成点状包覆,所述物理混合时间为1~4h。
根据本发明,步骤b)中,所述第一次煅烧的温度为820~1000℃,所述第一次煅烧的时间为8~12小时。所述第一次煅烧是在空气气氛下进行的。
根据本发明,步骤b)中,所述含M元素的化合物选自M的氧化物、氯化物、氢氧化物、碳酸盐、硫酸盐、硝酸盐、草酸盐、醋酸盐中的至少一种。
根据本发明,步骤b)中,所述锂源选自氢氧化锂、硝酸锂、碳酸锂、草酸锂、醋酸锂、氧化锂、柠檬酸锂中的至少一种。
根据本发明,步骤b)中,所述锂源、含M元素的化合物、NipMn1-pO2包覆的Me3O4前驱体A的摩尔比为使得Li、Me、M的摩尔比为x:1-y:y,其中0.95≤x≤1.05,0≤y≤0.1。
根据本发明,步骤b)中,所述第二次煅烧的温度为900~1070℃,所述第二次煅烧的时间为8~12小时。所述第二次煅烧是在空气气氛下进行的。
根据本发明,步骤c)中,所述金属化合物选自金属氧化物、金属氟化物、金属硼酸盐化合物、金属磷酸盐化合物。
具体的,所述金属氟化物选自AlF3、Li3F、MgF中的一种或多种。
具体的,所述金属氧化物选自Al2O3、TiO2、ZrO2、MgO2中的一种或多种。
具体的,所述金属硼酸盐化合物选自AlBO3
具体的,所述金属磷酸盐化合物选自AlPO4、Li3PO4等中的一种或两种。
根据本发明,所述步骤d)包括如下步骤:
将步骤b)的包覆点状包覆物的钴酸锂基体材料与步骤c)的至少一种金属化合物经过物理混合后,进行第三次煅烧,制备得到所述正极活性物质。
具体的,所述物理混合的时间为2~4h;所述物理混合例如是搅拌、球磨、研磨中的至少一种;所述第三次煅烧的温度为800~1000℃,所述第三次煅烧的时间为6~9h,所述第三次煅烧是在空气气氛下进行的。
本发明还提供一种正极片,所述正极片包括上述的正极活性物质。
根据本发明,所述正极片还包括导电剂和粘结剂。
具体的,所述正极片中各组分的质量百分含量为:70~99wt%的正极活性物质、0.5~15wt%的导电剂、0.5~15wt%的粘结剂。
具体的,所述正极片中各组分的质量百分含量为:80~98wt%的正极活性物质、1~10wt%的导电剂、1~10wt%的粘结剂。
具体的,所述导电剂选自导电炭黑、乙炔黑、科琴黑、导电石墨、导电碳纤维、碳纳米管、金属粉、碳纤维中的至少一种。
具体的,所述粘结剂选自聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚丙烯酸锂(PAALi)中的至少一种。
本发明中,所述正极片首次充放电前,粉料状态的正极活性物质中的选自LixMe1- yMyO2的钴酸锂基体材料中x的范围为0.95~1.05,Li/(Me+M)的摩尔比为1~1.03;所述正极片首次充放电后,x的范围为0.65~0.95,Li/(Me+M)的摩尔比为0.65~0.98。这主要是由于在电池首次充放电的过程中,一部分的锂离子用于形成正负极表面的保护层,即CEI膜与SEI膜,造成不可逆的一部分Li+的损失,因此经过首次充放电后的正极片中正极活性物质中Li含量明显比首次充放电前的粉料状态的正极活性物质中Li含量低。
本发明还提供一种锂离子电池,所述锂离子电池包括上述的正极活性物质;或者,包括上述的正极片。
根据本发明,所述锂离子电池还包括负极片、隔膜和电解液。
具体的,所述电解液包括非水溶剂、导电锂盐、添加剂,所述添加剂包括腈类化合物、碳酸亚乙烯酯、1,3-丙烯磺酸内酯。
具体的,所述非水有机溶剂选自环状碳酸酯中的至少一种与线性碳酸酯和线性羧酸酯两者中的至少一种按任意比例混合的混合物。
具体的,所述的环状碳酸酯选自碳酸乙烯酯和碳酸丙烯酯中的至少一种,所述的线性碳酸酯选自碳酸二甲酯、碳酸二乙酯和碳酸甲乙酯中的至少一种,所述的线性羧酸酯选自丙酸乙酯、丙酸丙酯和乙酸丙酯中的至少一种。
具体的,所述的非水有机溶剂以总体积为100vol%为计,其中,所述环状碳酸酯的体积分数为20~40vol%,所述线性碳酸酯和/或线性羧酸酯的体积分数为60~80vol%。
具体的,所述导电锂盐选自六氟磷酸锂、双氟磺酰亚胺锂盐、双三氟甲烷磺酰亚胺锂中的至少一种。
具体的,所述腈类化合物选自己二腈、丁二腈、1,2-二(氰乙氧基)乙烷中的至少一种。
具体的,所述负极片包括负极活性物质、导电剂和粘结剂。
具体的,所述负极片中各组分的质量百分含量为:70~99wt%的负极活性物质、0.5~15wt%的导电剂、0.5~15wt%的粘结剂。
具体的,所述负极片中各组分的质量百分含量为:80~98wt%的负极活性物质、1~10wt%的导电剂、1~10wt%的粘结剂。
具体的,所述负极活性物质选自人造石墨、天然石墨、硬炭、中间相碳微球、钛酸锂、硅碳、氧化亚硅中的一种或几种的组合。
具体的,所使用的隔膜为聚丙烯为基材的材料,或在此基础上单面或双面涂覆陶瓷的涂胶隔膜。
本发明还提供上述正极活性物质的用途,其用于高电压体系的锂离子电池。
具体的,测试了所述正极活性物质组装的锂离子电池在≥4.53V(相对石墨负极)电压下的电化学性能。测试结果表明,所述正极活性物质的克容量发挥可以达到193mAh/g以上,同时具有优异的循环性能。
有益效果:
钴酸锂是一种具有层状结构的正极活性物质,其中的氧离子形成一层密堆积层,钴层和锂层交替分布在氧离子形成的密堆积层两侧;由于锂离子电池对高能量密度的追求,钴酸锂工作的充电截止电压不断提高,从4.2V,4.35V,发展到今天的4.45V以上。随着工作电压的提高,钴酸锂放电克容量也会随之提升,同时由于层状钴酸锂结构的不稳定(锂浓度的变化产生结构上的变化,从而引起应力导致微裂纹产生)和表面的不稳定(与电解液反应,引起钴的溶解),会引起局部晶格结构坍塌和不可逆的相变,这其中的不可逆相变包含了层状结构向尖晶石结构的转变,会导致钴酸锂容量的急剧衰减,进而导致电芯性能的恶化。因此,开发高电压快充钴酸锂关键是解决在高电压与深度脱锂态时,层状结构的钴酸锂经历的频繁相变过程以及在相变过程中产生的应力对材料的破坏;并且在深度脱锂态下,提升钴酸锂的结构稳定性,降低钴酸锂在高电压使用过程中产生的界面副反应、相变以及极化问题,提升其在高电压下使用的电化学性能。
本发明提供了一种高电压正极活性物质及其制备方法和用途,所述高电压正极活性物质具有点状包覆的特殊结构,具体的,通过在正极活性基体材料表面形成具有所述接触总面积的点状包覆物,一方面可以改善正极活性基体材料在充放电过程中表层结构的相变化,另一方面所述点状包覆物能够起到隔绝电解液的作用,进而提升正极活性基体材料在高电压条件下的结构稳定性。
另外,本发明提供了所述正极活性物质的制备方法,其中,所述高电压正极活性物质是在前驱体合成阶段,通过特殊工艺处理,在表面形成点状包覆物(如LiNipMn1-pO2点状包覆物),同时以含有Al以及Z掺杂的钴的前驱体Me3O4为原料,其中Al元素和Z元素均替代钴离子,保证层状结构在充放电过程中的稳定性,避免钴酸锂在充放电过程中层状六方晶系和尖晶石单斜晶系之间频繁的转变。进一步通过表面形成的常规包覆手段避免电解液与正极表面高浓度的四价钴离子的直接接触而引发分解反应并且造成钴离子在电解液中的溶出及释放气体,随着表层钴离子溶出量加大,颗粒表层局部结构会坍塌对安全性能带来隐患;还可以避免电解液与钴酸锂核结构内部少量水分反应产生的HF对正极活性物质的腐蚀。而本发明具有点状包覆的高电压正极活性物质本身即能在高电压体系下保持稳定的结构,同时通过使用常规的包覆物质,将钴酸锂基体与电解液隔离开来,可形成稳定的正极活性物质/电解液界面,推迟Co的氧化和溶出,从而稳定钴酸锂结构,抑制结构恶化坍塌,在高电压(如4.53V)体系下具有较高的克容量发挥和优异的循环稳定性能;
本发明通过在正极活性基体材料(如钴酸锂)的表面形成局部的固溶体区域,该固溶体区域可以形成固溶体新相(通过XRD测试显示在2θ=37.3°±0.2°和2θ=45.1°±0.2°处形成有区别于钴酸锂的特征峰存在,即代表有固溶体新相的生成),该固溶体新相的存在一方面可以改善正极活性基体材料(如钴酸锂)在充放电过程中表层结构的稳定性,另一方面可以作为包覆物质,起到隔绝电解液的作用,进一步提升正极活性基体材料(如钴酸锂)在高电压条件下的结构稳定性。
相对于现有技术,本发明的锂离子电池由于使用了本发明的高电压正极活性物质,能够4.53V等更高电压使用条件下具有良好的循环稳定性和较高的克容量发挥,可满足高端数码产品轻薄化的使用需求。
附图说明
图1为实施例1经FIB-EDS测试的数据图;
图2为实施例1与对比例1的正极活性物质的粉末XRD对比测试数据图。
具体实施方式
下文将结合具体实施例对本发明做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
实施例1
正极活性物质具有核壳结构,所述核壳结构包括核芯和壳层,所述壳层包括第一包覆层和第二包覆层,所述第一包覆层呈点状包覆在核芯的表面,所述第二包覆层包覆在第一包覆层和核芯的表面;其中,形成所述核芯的材料的化学式为Li1.03Co0.988Al0.01Mg0.002O2,形成所述第一包覆层的物质为LiNi0.5Mn0.5O2,形成所述第二包覆层的物质为TiO2,钴酸锂基体材料表面的点状包覆物质LiNi0.5Mn0.5O2占正极活性物质总质量的1%;
该正极活性物质的制备方法包括如下步骤:
(1)用去离子水溶解CoSO4、Al2(SO4)3,配置成摩尔比Co:Al=98.6:1的混合盐溶液,且混合盐溶液中的Co2+的浓度为1.25mol/L;选用浓氨水和蒸馏水按体积比1:10配置成络合剂溶液;选用1.2mol/L的碳酸钠溶液作为沉淀剂溶液;在反应釜中注入其溶剂1/3的沉淀剂溶液,在强力搅拌作用和惰性气体保护下,采用并流控制流量方式继续向反应釜中同时注入上述的混合盐溶液、络合剂溶液和沉淀剂溶液使其反应,并流控制流量的速度不超过200L/h,同时进行搅拌,搅拌速度不超过300rpm,并控制反应体系的pH值为8-12,反应过程中控制反应釜的温度在70-80℃;反应过程中实时监控反应体系中掺杂元素Al和Co的液相离子浓度;连续反应重复结晶4次后进行离心过滤,得到掺杂Al的CoCO3前驱体钴盐;
(2)按LiNi0.5Mn0.5O2与LiCoO2重量比1:100换算为Ni0.5Mn0.5(OH)2与步骤(1)得到的掺杂Al的CoCO3前驱体钴盐重量比称取对应的Ni0.5Mn0.5(OH)2,按摩尔比例Co:Mg=98.8:0.2称取氧化镁,与Ni0.5Mn0.5(OH)2和掺杂Al的CoCO3前驱体钴盐搅拌混合均匀,置于马弗炉中在900℃,烧结时间为8h,然后对烧结产物进行粉碎处理,得到Ni0.5Mn0.5O2包覆的Al-Mg掺杂Co3O4前驱体;
(3)按摩尔比例Li:Co=103:99.5称取碳酸锂,与步骤(2)的Ni0.5Mn0.5O2包覆的Al-Mg掺杂Co3O4前驱体搅拌混合均匀,置于马弗炉中在1030℃,烧结时间为12h,然后对烧结产物进行粉碎处理,得到LiNi0.5Mn0.5O2点状包覆的Al-Mg共掺杂的钴酸锂Li1.03Co0.988Al0.01Mg0.002O2,其D50为15.5μm;
(4)按摩尔比例Co:Ti=98.6:0.2称取二氧化钛与步骤(3)的LiNi0.5Mn0.5O2点状包覆的Al-Mg共掺杂的钴酸锂搅拌混合均匀,置于马弗炉中在950℃,烧结时间为12h,然后对烧结产物进行粉碎处理,得到LiNi0.5Mn0.5O2点状包覆的高电压钴酸锂正极活性物质。
实施例2
正极活性物质具有核壳结构,所述核壳结构包括核芯和壳层,所述壳层包括第一包覆层和第二包覆层,所述第一包覆层呈点状包覆在核芯的表面,所述第二包覆层包覆在第一包覆层和核芯的表面;其中,形成所述核芯的材料的化学式为Li1.03Co0.988Al0.01Mg0.002O2,形成所述第一包覆层的物质为LiNi0.5Mn0.5O2,形成所述第二包覆层的物质为TiO2,钴酸锂基体材料表面的点状包覆物质LiNi0.5Mn0.5O2占正极活性物质总质量的1.5%;
该正极活性物质的制备方法与实施例1相同,这里不再复述,不同之处仅在于按LiNi0.5Mn0.5O2与LiCoO2重量比1.5:100换算为Ni0.5Mn0.5(OH)2与步骤(1)得到的掺杂Al的CoCO3前驱体钴盐重量比称取对应的Ni0.5Mn0.5(OH)2
实施例3
正极活性物质具有核壳结构,所述核壳结构包括核芯和壳层,所述壳层包括第一包覆层和第二包覆层,所述第一包覆层呈点状包覆在核芯的表面,所述第二包覆层包覆在第一包覆层和核芯的表面;其中,形成所述核芯的材料的化学式为Li1.03Co0.988Al0.01Mg0.002O2,形成所述第一包覆层的物质为LiNi0.5Mn0.5O2,形成所述第二包覆层的物质为TiO2,钴酸锂基体材料表面的点状包覆物质LiNi0.5Mn0.5O2占正极活性物质总质量的2.0%;
该正极活性物质的制备方法与实施例1相同,这里不再复述,不同之处仅在于按LiNi0.5Mn0.5O2与LiCoO2重量比2.0:100换算为Ni0.5Mn0.5(OH)2与步骤(1)得到的掺杂Al的CoCO3前驱体钴盐重量比称取对应的Ni0.5Mn0.5(OH)2
实施例4
正极活性物质具有核壳结构,所述核壳结构包括核芯和壳层,所述壳层包括第一包覆层和第二包覆层,所述第一包覆层呈点状包覆在核芯的表面,所述第二包覆层包覆在第一包覆层和核芯的表面;其中,形成所述核芯的材料的化学式为Li1.03Co0.988Al0.01Mg0.002O2,形成所述第一包覆层的物质为LiNi0.5Mn0.5O2,形成所述第二包覆层的物质为TiO2,钴酸锂基体材料表面的点状包覆物质LiNi0.5Mn0.5O2占正极活性物质总质量的2.5%;
该正极活性物质的制备方法与实施例1相同,这里不再复述,不同之处仅在于按LiNi0.5Mn0.5O2与LiCoO2重量比2.5:100换算为Ni0.5Mn0.5(OH)2与步骤(1)得到的掺杂Al的CoCO3前驱体钴盐重量比称取对应的Ni0.5Mn0.5(OH)2
实施例5-12
实施例5-12中,正极活性物质的制备方法与实施例1相同,这里不再复述,不同之处仅在于按LiNi0.5Mn0.5O2与LiCoO2重量比按照表1中列出的分别换算为Ni0.5Mn0.5(OH)2与步骤(1)得到的掺杂Al的CoCO3前驱体钴盐重量比称取对应的Ni0.5Mn0.5(OH)2
表1:实施例5-12中的LiNi0.5Mn0.5O2与LiCoO2重量比
实施例 LiNi<sub>0.5</sub>Mn<sub>0.5</sub>O<sub>2</sub>与LiCoO<sub>2</sub>重量比
5 0.03:100
6 0.1:100
7 0.5:100
8 3.0:100
9 3.5:100
10 4.0:100
11 4.5:100
12 5:100
对比例1
正极活性物质具有核壳结构,所述核壳结构包括核芯和壳层,所述壳层包括包覆层,所述包覆层包覆在核芯的表面;其中,形成所述核芯的材料的化学式为Li1.03Co0.988Al0.01Mg0.002O2,形成所述包覆层的物质为TiO2
该正极活性物质的制备方法包括如下步骤:
(1)用去离子水溶解CoSO4、Al2(SO4)3,配置成摩尔比Co:Al=98.6:1的混合盐溶液,且混合盐溶液中的Co2+的浓度为1.25mol/L;选用浓氨水和蒸馏水按体积比1:10配置成络合剂溶液;选用1.2mol/L的碳酸钠溶液作为沉淀剂溶液;在反应釜中注入其溶剂1/3的沉淀剂溶液,在强力搅拌作用和惰性气体保护下,采用并流控制流量方式继续向反应釜中同时注入上述的混合盐溶液、络合剂溶液和沉淀剂溶液使其反应,并流控制流量的速度不超过200L/h,同时进行搅拌,搅拌速度不超过300rpm,并控制反应体系的pH值为8-12,反应过程中控制反应釜的温度在70-80℃;反应过程中实时监控反应体系中掺杂元素Al和Co的液相离子浓度;连续反应重复结晶4次后进行离心过滤,得到掺杂Al的前驱体钴盐;
(2)按摩尔比例Co:Mg=98.6:0.2称取氧化镁,与步骤(1)的掺杂Al的前驱体钴盐搅拌混合均匀,置于马弗炉中在900℃,烧结时间为8h,然后对烧结产物进行粉碎处理,得到颗粒分布均匀的Al、Mg共掺杂的Co3O4前驱体;
(3)按摩尔比例Li:Co=103:99.5称取碳酸锂,与步骤(2)的Al、Mg共掺杂的Co3O4前驱体搅拌混合均匀,置于马弗炉中在1030℃,烧结时间为12h,然后对烧结产物进行粉碎处理,得到Al-Mg共掺杂的钴酸锂Li1.03Co0.986Al0.01Mg0.002O2,其D50为15.5μm;
(4)按摩尔比例Co:Ti=98.4:0.2称取二氧化钛与步骤(3)得到的Al-Mg共掺杂的钴酸锂搅拌混合均匀,置于马弗炉中在950℃,烧结时间为12h,然后对烧结产物进行粉碎处理,得到D50为15.5μm的具有常规包覆钴酸锂正极活性物质Li1.03Co0.986Al0.01Mg0.002Ti0.002O2
对比例2
正极活性物质具有核壳结构,所述核壳结构包括核芯和壳层,所述壳层包括第一包覆层和第二包覆层,所述第一包覆层呈点状包覆在核芯的表面,所述第二包覆层包覆在第一包覆层和核芯的表面;其中,形成所述核芯的材料的化学式为Li1.03CoO2,形成所述第一包覆层的物质为LiNi0.5Mn0.5O2,形成所述第二包覆层的物质为TiO2,钴酸锂基体材料表面的点状包覆物质LiNi0.5Mn0.5O2占正极活性物质总质量的1%;
该正极活性物质的制备方法包括如下步骤:
(1)用去离子水溶解CoSO4,配置钴盐溶液,溶液中的Co2+的浓度为1.25mol/L;选用浓氨水和蒸馏水按体积比1:10配置成络合剂溶液;选用1.2mol/L的碳酸钠溶液作为沉淀剂溶液;在反应釜中注入其溶剂1/3的沉淀剂溶液,在强力搅拌作用和惰性气体保护下,采用并流控制流量方式继续向反应釜中同时注入上述的混合盐溶液、络合剂溶液和沉淀剂溶液使其反应,并流控制流量的速度不超过200L/h,同时进行搅拌,搅拌速度不超过300rpm,并控制反应体系的pH值为8-12,反应过程中控制反应釜的温度在70-80℃;反应过程中实时监控反应体系中Co的液相离子浓度;连续反应重复结晶4次后进行离心过滤,得到CoCO3前驱体钴盐;
(2)按LiNi0.5Mn0.5O2与LiCoO2重量比1:100换算为Ni0.5Mn0.5(OH)2与步骤(1)得到的CoCO3前驱体钴盐重量比称取对应的Ni0.5Mn0.5(OH)2,将Ni0.5Mn0.5(OH)2和CoCO3前驱体钴盐搅拌混合均匀,置于马弗炉中在900℃,烧结时间为8h,然后对烧结产物进行粉碎处理,得到Ni0.5Mn0.5O2包覆的Co3O4前驱体;
(3)按摩尔比例Li:Co=103:99.5称取碳酸锂,与步骤(2)的Ni0.5Mn0.5O2包覆的Co3O4前驱体搅拌混合均匀,置于马弗炉中在1030℃,烧结时间为12h,然后对烧结产物进行粉碎处理,得到LiNi0.5Mn0.5O2点状包覆的钴酸锂Li1.03CoO2,其D50为15.5μm;
(4)按摩尔比例Co:Ti=99.8:0.2称取二氧化钛与步骤(3)的LiNi0.5Mn0.5O2点状包覆的钴酸锂搅拌混合均匀,置于马弗炉中在950℃,烧结时间为12h,然后对烧结产物进行粉碎处理,得到LiNi0.5Mn0.5O2点状包覆的高电压钴酸锂正极活性物质。
实施例1-12以及对比例1-2提供的锂离子电池,包括正极片、负极片、间隔于正极片和负极片之间的隔膜,以及电解液,正极片包括正极集流体和分布在正极集流体上的正极活性物质层,正极活性物质层包括正极活性物质、粘结剂和导电剂,本发明的电池采用石墨负极的充电截止电压为4.53~4.55V。
实施例1-12和对比例1-2所述的锂离子电池制备方法如下:
将人造石墨、苯乙烯二烯橡胶(SBR)、及羧甲基纤维素钠、导电碳黑以94%:3%:2%:1%的重量比混合,将混合物分散于水中通过双行星混合后得到负极浆液。将该浆液涂覆于铜集流体上,接着进行辊压及干燥,得到负极片。
将实施例1-12和对比例1-2制备的钴酸锂正极活性物质与导电碳黑、PVDF按照96%:2%:2%的重量比混合,通过分散得到正极浆料。将该浆料涂布在铝箔集流体上,辊压制备得到正极片,然后将正极片、负极极片和隔膜组装成锂离子电池,并注入非水电解液。
其中,使用的非水电解液为本领域已知的常规电解液,溶剂含有碳酸乙烯酯(简写为EC)、碳酸二乙酯(简写为DEC)、碳酸丙烯酯(简写为PC)、氟代碳酸乙烯酯(简写为FEC)等。所使用的隔膜为本领域已知可购买到的商业化隔膜。
对实施例1-12和对比例1-2的锂离子电池进行如下测试,所得结果示于表2和表3中。
所使用的首次效率测试过程为:
在25℃下,以0.2C的充放电倍率恒流充电至4.53V,再以0.05C的充电倍率恒压充电至4.53V,然后以0.2C的放电倍率放电至3.0V,统计首次充电和放电容量,首次效率=(首次放电容量)/(首次充电容量)*100%。
所使用的克容量测试过程为:
在25℃下,以0.2C的充放电倍率恒流充电至4.53V,再以0.05C的充电倍率恒压充电至4.53V,然后以0.2C的放电倍率放电至3.0V,统计放电容量,克容量=(放电容量)/(正极活性物质重量)。
所使用的循环性能测试过程为:
对实施例1-12和对比例1-2的锂离子电池,在25℃下,以1C的充电倍率恒流充电至4.53V,再以0.05C的充电倍率恒压充电至4.53V,然后以1C的放电倍率放电至3.0V,反复500次这种充放电循环,测定第一次循环时的放电容量和第500次循环时的放电容量,求出循环后的容量保持率:循环后的容量保持率=(第500次循环时的放电容量)/(第一次循环时的放电容量)*100%。
表2:实施例1-12和对比例1-2的锂离子电池在4.53V体系下的性能数据
组别 首次效率 克容量mAh/g 500次循环后的容量保持率
实施例1 92.5% 191.2 88%
实施例2 92.0% 191.5 87%
实施例3 92.3% 192 89%
实施例4 92.5% 191.8 88%
实施例5 92.7% 191.3 80.5%
实施例6 92.5% 192 80%
实施例7 92.8% 191.1 81.5%
实施例8 92.6% 191.7 84%
实施例9 92.5% 192.1 88%
实施例10 92.2% 192 87%
实施例11 92.4% 191.9 88%
实施例12 92.8% 191.6 87.5%
对比例1 92.7% 191 65%
对比例2 92.8% 191.9 48%
表3:实施例1-12和对比例1-2的锂离子电池在4.55V体系下的性能数据
Figure BDA0003275695280000161
/>
Figure BDA0003275695280000171
Li含量测试
首次充放电前,所述正极极片中的选自LixMe1-yMyO2的钴酸锂基体材料中x为1,Li/(Me+M)为1;经过首次充放电后,x为0.65~0.95,Li/(Me+M)的摩尔比为0.65~0.98。具体的,对于实施例1,经过首次充放电后钴酸锂中的锂的摩尔质量为0.935mol,同时测试此状态下的Co含量,经过计算,得出此时的Li/Co的摩尔比为0.942。这主要是由于在电池首次充放电的过程中,一部分的锂离子用于形成正负极表面的保护层,即CEI膜与SEI膜,造成不可逆的一部分Li+的损失,因此经过首次充放电后的正极极片中选自LixMe1-yMyO2的钴酸锂材料中Li含量明显比首次充放电前的粉料状态的选自LixMe1-yMyO2的钴酸锂基体材料中Li含量低。
XRD性能测试:
X射线衍射(X-ray Diffraction,XRD)利用X射线透过样品时的衍射现象收集得到XRD谱图,通过谱图分析可以获知待测样品晶体形态相关信息。本发明采用XRD技术测试实施例1和对比例1,结果见图2。通过对比钴酸锂粉末的XRD以分析有特殊点状包覆对钴酸锂材料晶体结构的影响。使用的仪器为日本岛津公司的6100型X射线衍射仪,其X射线源为利用加速电子束轰击铜靶产生的特征X射线,波长为0.154056nm。XRD数据的采集角度为10-90°,扫描速度约为4°/min。通过对比实施例1和对比例1可以发现,经过LiNipMn1-pO2点状包覆的钴酸锂在2θ=37.3°±0.2°和2θ=45.1°±0.2°处形成有区别于钴酸锂的特征峰存在,表明经过点状包覆后的钴酸锂表面有形成固溶体新相生成。
所述点状包覆物与正极活性基体材料的接触总面积测试:
所述接触总面积通过FIB-EDS/EPMA进行表征,具体的,FIB与SEM连用处理测试样品,在高分辨率扫描电镜显微镜图像监控下利用FIB(聚焦离子束)切割所需观察的样品剖面位置,同时结合能谱扫描分析元素选定区域的元素成分。图1为实施例1的FIB-EDS/EPMA测试结果,通过切割位置和元素分布图可以看出,经过LiNipMn1-pO2点状包覆后表面形成的固溶体区域含有Ni、Mn元素,并且该点状包覆物与钴酸锂基体材料的接触面积占颗粒总面积的30%~100%。
通过对比表2和表3可以发现,从实施例1-12与对比例1-2的测试结果可以看出:采用本发明的LiNipMn1-pO2点状包覆高电压钴酸锂正极活性物质作为锂离子电池正极活性物质时,在4.53V及以上电压体系下有较高的克容量发挥,并且随着包覆量的增加,克容量无明显损失,电芯在高电压体系下的循环性能十分优异,经过循环500次后的容量保持率均至少为80%以上;未经过本发明的LiNipMn1-pO2点状包覆高电压钴酸锂正极活性物质,虽然同样有较高的克容量发挥,但是很难兼顾循环性能。
这主要是采用本发明的LiNipMn1-pO2点状包覆在颗粒的表面形成局部的固溶体区域,一方面为改善材料在充放电过程中表层结构的相变化,减少表层结构恶化开裂的风险,加上钴酸锂采用体相Al掺杂的Co3O4作为前驱体,Al元素在其中起到稳定钴酸锂本体结构的作用,抑制钴酸锂在循环过程中因为过度相变而造成的局部结构坍塌,与表层的点状固溶体包覆层起到协同作用,充分提升钴酸锂在高电压条件下的循环性能;另一方面在颗粒表层形成的固溶体化合物可以作为包覆物质,起到隔绝电解液的作用,在阻断材料与电解液直接接触的同时不会大幅度降低导电率,起到降低钴酸锂正极活性物质在高电压体系下与电解液界面副反应,同时进一步降低电化学极化,使材料的循环性能得到保证同时不会牺牲克容量,使其作为锂离子电池正极活性物质可以兼顾较高的能量密度和循环性能。
总之,本发明制备的高电压锂离子电池正极活性物质为正极活性物质的锂离子电池,高电压下可以使锂离子电池实现较高的能量密度同时兼顾优异的循环性能,能够满足人们对锂离离子电池薄型化的需求。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种正极活性物质,所述正极活性物质包括正极活性基体材料,其特征在于,所述正极活性基体材料表面有点状包覆物,所述点状包覆物与正极活性基体材料的接触总面积占正极活性基体材料的表面积的30%~100%。
2.根据权利要求1所述的正极活性物质,其特征在于,所述点状包覆物中包括含有Ni元素和Mn元素的化合物;
和/或,在点状包覆物与正极活性基体材料接触的区域形成固溶体区域,该固溶体区域中包括固溶体相。
3.根据权利要求2所述的正极活性物质,其特征在于,所述含有Ni元素和Mn元素的化合物具有下述结构式:LiNipMn1-pO2,其中,1>p>0。
4.根据权利要求1-3任一项所述的正极活性物质,其特征在于,所述正极活性物质还包括第二包覆层,所述第二包覆层包覆在点状包覆物和正极活性基体材料的表面。
5.根据权利要求1-4任一项所述的正极活性物质,其特征在于,所述正极活性基体材料包括钴酸锂基体材料;
和/或,形成所述第二包覆层的物质包括金属氧化物。
和/或,所述钴酸锂基体材料选自LixMe1-yMyO2,其中,Me=Co1-a-bAlaZb,M为Al、Mg、Ti、Zr、Co、Ni、Mn、Y、La、Sr、W、Sc中的一种或多种,Z为Y、La、Mg、Ti、Zr、Ni、Mn、Ce中的一种或多种;0.95≤x≤1.05,0≤y≤0.1,0<a≤0.2,0<b≤0.1;
和/或,所述钴酸锂基体材料的制备原料中至少包括Me3O4,其为Al以及Z掺杂的钴的前驱体,其中,Me=Co1-a-bAlaZb,Z为Y、La、Mg、Ti、Zr、Ni、Mn、Nb中的一种或多种;0<a≤0.2,0<b≤0.1。
6.根据权利要求1-5任一项所述的正极活性物质,其特征在于,所述正极活性物质的XRD性能测试显示在2θ=37.3°±0.2°和2θ=45.1°±0.2°处有特征峰存在;
和/或,LiNipMn1-pO2(其中,1>p>0)与钴酸锂基体材料接触的区域形成固溶体相,该固溶体相的XRD性能测试显示在2θ=37.3°±0.2°和2θ=45.1°±0.2°处有特征峰存在;
和/或,所述正极活性物质的粒径D50为6~20μm。
7.根据权利要求1-6任一项所述的正极活性物质,其特征在于,所述LiNipMn1-pO2(其中,1>p>0)的质量占正极活性物质总质量的0.03~5wt%。
8.一种正极片,所述正极片包括权利要求1-7任一项所述的正极活性物质。
9.根据权利要求8所述的正极片,其特征在于,所述正极片首次充放电前,粉料状态的正极活性物质中的选自LixMe1-yMyO2的钴酸锂基体材料中x的范围为0.95~1.05,Li/(Me+M)的摩尔比为1~1.03;或者,所述正极片首次充放电后,x的范围为0.65~0.95,Li/(Me+M)的摩尔比为0.65~0.98。
10.一种锂离子电池,所述锂离子电池包括权利要求1-7任一项所述的正极活性物质;或者,包括权利要求8或9所述的正极片。
CN202111116475.3A 2021-09-23 2021-09-23 一种高电压正极材料及包括该正极材料的锂离子电池 Pending CN115863638A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111116475.3A CN115863638A (zh) 2021-09-23 2021-09-23 一种高电压正极材料及包括该正极材料的锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111116475.3A CN115863638A (zh) 2021-09-23 2021-09-23 一种高电压正极材料及包括该正极材料的锂离子电池

Publications (1)

Publication Number Publication Date
CN115863638A true CN115863638A (zh) 2023-03-28

Family

ID=85652302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111116475.3A Pending CN115863638A (zh) 2021-09-23 2021-09-23 一种高电压正极材料及包括该正极材料的锂离子电池

Country Status (1)

Country Link
CN (1) CN115863638A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116768282A (zh) * 2023-08-15 2023-09-19 湖南长远锂科新能源有限公司 一种高温型高倍率钴酸锂及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116768282A (zh) * 2023-08-15 2023-09-19 湖南长远锂科新能源有限公司 一种高温型高倍率钴酸锂及其制备方法

Similar Documents

Publication Publication Date Title
JP6380608B2 (ja) リチウム複合化合物粒子粉末の製造方法、リチウム複合化合物粒子粉末を非水電解質二次電池に用いる方法
JP5879761B2 (ja) リチウム複合化合物粒子粉末及びその製造方法、並びに非水電解質二次電池
CN101855755B (zh) 非水电解液二次电池用Li-Ni类复合氧化物颗粒粉末及其制造方法,和非水电解质二次电池
KR101762980B1 (ko) 정극 활성 물질 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
CN110931738B (zh) 一种复相高压正极材料及其制备方法
JP5987401B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法および二次電池
CN105161693B (zh) 一种高循环锂电多元正极材料ncm及其制备方法
JP2006019229A (ja) リチウム二次電池用正極材およびその製造方法
CN110034274B (zh) 改性三元正极材料、其制备方法及锂离子电池
CN105449196B (zh) 复合正极活性物质及锂离子二次电池
CN111900359A (zh) 一种高电压钴酸锂正极活性物质及其制备方法和用途
CN111900361A (zh) 一种正极活性物质及其制备方法和在锂离子二次电池中的用途
CN114284470A (zh) 正极材料、其制备方法、包括其的正极和锂离子电池
CN115863638A (zh) 一种高电压正极材料及包括该正极材料的锂离子电池
CN110380037B (zh) 一种反应熔渗改性的锂离子电池正极材料及制备方法
JP2015115244A (ja) リチウム二次電池用正極、リチウム二次電池、バッテリーモジュール、及びバッテリーモジュールを搭載した自動車
JP2017043496A (ja) リチウム遷移金属複合酸化物及びその製造方法
CN115036451A (zh) 一种正极活性物质及包括该正极活性物质的锂离子电池
CN115036460A (zh) 一种正极活性物质及包括该正极活性物质的锂离子电池
CN115863551A (zh) 一种高电压正极材料及包括该正极材料的锂离子电池
CN117525386B (zh) 高镍正极材料及其制备方法和应用
CN116344827B (zh) 一种多元正极材料及其制备方法
CN115020639A (zh) 一种正极活性物质及包括该正极活性物质的锂离子电池
CN116247297A (zh) 一种电池
CN117832475A (zh) 一种用于钠离子二次电池的层状氧化物正极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination