CN1156584C - 模板捕获与归一化亚微升反应的方法和装置 - Google Patents
模板捕获与归一化亚微升反应的方法和装置 Download PDFInfo
- Publication number
- CN1156584C CN1156584C CNB008128707A CN00812870A CN1156584C CN 1156584 C CN1156584 C CN 1156584C CN B008128707 A CNB008128707 A CN B008128707A CN 00812870 A CN00812870 A CN 00812870A CN 1156584 C CN1156584 C CN 1156584C
- Authority
- CN
- China
- Prior art keywords
- nucleic acid
- kapillary
- reaction
- dna
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00279—Features relating to reactor vessels
- B01J2219/00281—Individual reactor vessels
- B01J2219/00286—Reactor vessels with top and bottom openings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00351—Means for dispensing and evacuation of reagents
- B01J2219/00364—Pipettes
- B01J2219/00367—Pipettes capillary
- B01J2219/00369—Pipettes capillary in multiple or parallel arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00497—Features relating to the solid phase supports
- B01J2219/00511—Walls of reactor vessels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00585—Parallel processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/0068—Means for controlling the apparatus of the process
- B01J2219/00686—Automatic
- B01J2219/00691—Automatic using robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/0068—Means for controlling the apparatus of the process
- B01J2219/00702—Processes involving means for analysing and characterising the products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/00722—Nucleotides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0832—Geometry, shape and general structure cylindrical, tube shaped
- B01L2300/0838—Capillaries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
- B01L2300/1838—Means for temperature control using fluid heat transfer medium
- B01L2300/1844—Means for temperature control using fluid heat transfer medium using fans
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0409—Moving fluids with specific forces or mechanical means specific forces centrifugal forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0487—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5025—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
- C40B40/04—Libraries containing only organic compounds
- C40B40/06—Libraries containing nucleotides or polynucleotides, or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B60/00—Apparatus specially adapted for use in combinatorial chemistry or with libraries
- C40B60/14—Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/809—Incubators or racks or holders for culture plates or containers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/11—Automated chemical analysis
- Y10T436/113332—Automated chemical analysis with conveyance of sample along a test line in a container or rack
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/14—Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
- Y10T436/142222—Hetero-O [e.g., ascorbic acid, etc.]
- Y10T436/143333—Saccharide [e.g., DNA, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/2575—Volumetric liquid transfer
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Clinical Laboratory Science (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Devices For Use In Laboratory Experiments (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Sampling And Sample Adjustment (AREA)
- Electrostatic Separation (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
提供了使用核酸准备纳规模反应的方法。核酸被可饱和而可逆地捕获在反应室、通常为毛细管的内部表面上。除去过量核酸,在毛细管内直接进行反应。或者,将可饱和结合的核酸洗脱,分配计量的核酸,用于随后在独立的反应室内的反应。还提供了用于进行本发明方法的装置和设计用来有利地利用该方法进行高通量核酸测序反应的系统。
Description
发明领域
本发明属于生物工程领域,涉及准备和进行小规模反应的方法和装置,特别是使用核酸模板的小规模循环反应与等温反应。
发明背景
由联邦政府提供资金支持的人类基因组计划的最初目的是在2005年以前按十倍覆盖度完成人基因组序列。由于步伐有戏剧性加快,最近已经提出了部分草稿。
不过,在人类基因组计划完成之后,对迅速、廉价的DNA测序的需求将戏剧性地增长而不是减少。
例如,非人类生物基因组的测序逐渐受到关注,包括细菌、植物和动物。更重要的是,急速增长的分子病理学与药物基因组学(pharmacogenomics)领域将需要对个别患者进行多基因测序。分子病理学涉及通过鉴别特定基因的突变诊断人类疾病,经常是一种预后制剂。药物基因组学涉及了解存在于所有人群中的等位差异如何影响个体对药物的治疗反应和对副作用的敏感性。随着对个别患者基因测序的需求的增长,对测序能力的要求也将如此。需求将从仅存在于得到充裕资金支持的学术研究中心与基因组公司中的大型、集中式、高通量的DNA测序设施转移为能够安装在多数医院与诊所的小型、不太复杂、中等通量的基因测序系统。市场上对这种测序技术的转移将鼓励减少试剂成本并且使样本加工步骤尽可能简单与连贯。
在二十世纪七十年代后期,Sanger等人开发了用于DNA序列分析的酶链终止方法,该方法生产DNA片段的嵌套集合,它们在遍及序列各处的每个核苷酸上具有普通的起始点和随机的终止点。LloydSmith、Lee Hood和其他人修正了Sanger的方法,在测序反应中使用四种荧光标记物,能够进行单谱带分离。这导致第一代自动DNA测序仪的诞生,它们使用聚丙烯酰胺平板凝胶进行分离。最近,荧光能量-转移染剂已经用于制备染剂组合,它们使信号增强2至10倍,并且简化光学构造。
自动荧光毛细管阵列电泳(CAE)DNA测序仪似乎是代替平板凝胶的一致性技术。毛细管凝胶电泳加速测序产物的分离,具有戏剧性减少样本体积需要的潜力。96通道式毛细管电泳仪MegaBACETM在商业上可从Molecular Dynamics(Sunnyvale,CA)获得,采用激光诱导荧光(LIF)聚焦荧光扫描仪,在90分钟内每支毛细管检测平均约625个碱基,循环时间为两小时。聚焦空间滤波导致信噪比更高,因为在用光电倍增管(PMT)进行信号检测之前消除了来自周围材料的多余反射和荧光。因此,每条测序谱带可以获得亚原子摩尔(subattomole)水平的敏感度。聚焦成像对采用毛细管电泳的微片分析系统来说也是特别重要的,其中玻璃或塑料微片的背景荧光可以大大高于熔融石英毛细管的。毛细管阵列电泳系统将满足基因组学界最初对DNA分析的很多通量需求。不过,这种小体积样本制备方法仍然显著妨碍了提高通量和降低成本。
尽管荧光DNA测序仪提高了DNA序列获取的通量,不过它们也把通量的瓶颈从序列获取转移回到样本制备上。响应于此,已经开发了用于制备测序模板和转座子促进的DNA测序的快速方法,同磁珠捕获方法一样取消了离心。已经筛选了嗜热性Archae DNA聚合酶,并进行了遗传工程加工,以提高逼真度,确保高温下的稳定性,延长长度,改变对二脱氧核苷酸和荧光类似物的亲合性。这些改进已经降低试剂成本,简化样本制备,提高数据精度,增加可读长度。
测序学界还已经开发了更高通量的方法,用于制备DNA模板、聚合酶链反应(PCR)反应和DNA测序反应。利用96与384孔微量滴定板、多通道移液器和实验室机器人工作站,样本制备已经逐渐多样化和自动化。一般来说,这些工作站模拟技术人员所进行的操作,具有最小的工作体积,约一微升,即使独立式多通道移液器用于操作更小体积也是如此。
关于在毛细管系统上进行DNA鸟枪式测序的典型原尺寸样本制备方法开始于溶解噬菌体噬斑或细菌集落,以分离亚克隆的DNA。在有些情况下,可能需要PCR扩增亚克隆的DNA插入片段,使其在样本中的浓度呈指数增加。接着,加入外切核酸酶I(ExoI)和北极虾碱性磷酸酶(SAP),进行酶清除反应,以除去干扰循环测序的引物和过量dNTP。ExoI用于降解单链引物为dNMP,但不消化双链产物。SAP转化dNTP为dNP,将dNTP浓度从用于PCR反应的200μM减少至用于荧光测序的小于0.1μM。反应是在37℃下进行的,然后加热至65℃,不可逆地使ExoI和SAP变性。
因为PCR扩增能够生产过量的循环测序用模板DNA,所以可以在循环测序之前将ExoI/SAP处理过的PCR样本稀释五倍。这减少污染物的浓度至导致较少干扰毛细管电泳分析的范围内。加入循环测序试剂,通常为具有荧光标记染剂的引物或终止子,使反应进行热循环,驱动所标记片段的线性扩增。最后,循环后,对样本进行后期加工,通常为乙醇沉淀或旋转过滤,重新悬浮在甲酰胺、另一种变性剂或水中,将样本电动注射至毛细管电泳系统中。
这种工作流程导致MegaBACETM系统性能的戏剧性提高,相似的工作流程目前似乎也是选择其他毛细管电泳系统的方法。采用来自人基因组随机亚克隆体或表达序列标记(EST)的单一噬斑与集落的真实样本,这种以线性聚丙烯酰胺为分离基质的工作流程已将200个碱基对以上的样本的成功率从约60%提高至85-90%,已将平均可读长度从约400提高至大于600个碱基。此外,还已证实这种方法是相当稳健的。
尽管上述样本制备方法已经大大增加了通量,不过试剂成本仍占测序成本的大部分。毛细管电泳仅需要亚原子摩尔的样本,但是目前样本是按皮摩尔范围制备的。减少反应体积将因此降低DNA测序成本,仍可提供足够的分析材料。不过,反应体积的实质性减少仅在这样的情形中才能实现,即能够开发令人满意的方法,用于操作样本和试剂并使它们反应。理想的是,这样一种方法将是自动化的,一次生产多份样本。而且,这样一种方法整合为一种模块将是可取的,能够与另外的组分衔接,例如毛细管电泳与检测器,用于分离和分析。
已经设计了若干种装置,以帮助实现样本制备的自动化。例如,美国专利No.5,720,923描述了这样一种系统,其中小循环反应发生在直径小至1mm的试管内。随后使试管受到由热传导部件所产生的热循环,以进行所需反应。在单一试管内可以加工多份样本,即抽取少量样本,各自被不与样本混合的液体分离在试管内。借助泵使流体沿试管移动。这些特征结合在这样一种系统中,它自动地清洁试管,移动含有带样本小孔的样本托盘,使试管与样本托盘中的小孔接触。
美国专利No.5,785,926公开了用于传送少量样本的系统。在这种系统中,至少一支毛细管用于传送少量样本。与计算机控制马达连接的精确线性传动装置充当气压活塞,用试管等分和分散液体。用光传感器监测样本量,它检测毛细管节段内液体的存在。系统包括含有待沉积液体的流体站和用于定位传送毛细管的定位装置。
美国专利No.5,897,842公开了利用热循环自动化样本制备的系统。在这种系统中,将反应混合物用泵注入毛细管。试管的一端用来自联合泵的压力密封,另一端用压在试管上的阻挡层密封。泵也起到在试管内移动流体的作用。一旦两端被密封,使试管受到热循环。在这种系统中,机器人转移装置移动样本制备站和热循环站之间的试管,在样本制备站中泵将反应混合物组分加载到试管中。
在上面所讨论的系统中,有必要首先将样本、例如测序用DNA模板与试剂混合在一起,然后将混合物引入反应室内。这种中间混合步骤不可避免地需要额外的试剂与样本加工步骤,导致浪费。例如,如果独立的微量吸移管用于将样本和试剂分散在混合室内,少量样本和试剂将残留在各吸移管内,反应混合物将残留在混合室内。在高通量的系统中,这种浪费和提供新的或适当清洁的吸移管与混合室的成本迅速增长。对分散含有低浓度反应组分的相对大体积液体的需求经常加剧浪费的程度,这种需求是补偿分散小体积高浓度液体的不精确性的策略。通常,在形成反应混合物之后,仅有少部分是分析所需的,其余弃去。
因而,存在对这样一种手段的需求,借助该手段,能够向反应室内引入所要分析的生物样本,无需首先将样本与进行反应所必要的试剂混合。
美国专利No.5,846,727公开了亲合性捕获方法,其中模板DNA被固定在玻璃毛细管内部,该试管充当热循环用反应室。首先准备毛细管,将生物素分子固定在毛细管的内表面,然后用与生物素紧密结合的抗生物素蛋白或链霉抗生物素蛋白装柱。所要测序的模板DNA通过PCR与生物素部分共价连接,然后暴露于毛细管内部的抗生物素蛋白。这导致模板通过生物素-抗生物素蛋白-生物素键而固定在毛细管壁上。洗去未结合的模板后,加入测序试剂,使毛细管内容物受到热循环,激活测序反应。如此说来,没有必要在加载毛细管之前混合模板DNA与测序试剂。
不过,刚刚描述过的方法需要生物素通过PCR与模板DNA连接,迫使甚至在测序反应之前建立和进行反应。这种必要的预备步骤增加了与获取序列数据有关的时间和成本。此外,DNA的固定实际上是不可逆的,因为生物素-抗生物素蛋白键是如此之强,只有使抗生物素蛋白变性的试剂才能断裂它,这种处理也将使反应中的所有其他蛋白质组分变性。其结果是,模板DNA必须保持与毛细管内表面结合。因为DNA在溶液中不是游离的,反应组分扩散至内壁需要额外的时间,在那里它们才能与DNA相互作用。此外,当需要回收毛细管时,有必要经由抗生物素蛋白的变性除去模板DNA,洗涤,然后重新在毛细管内装入抗生物素蛋白,所有这些增加了时间和试剂成本。
因而,本领域继续存在对这类方法的需求,即向反应室内引入分子,无需最初的样本-试剂混合步骤,无需将亲合性捕获部分附加于样本中的所有分子,其中的模板固定是可逆的。按这种方法,试剂成本将最小化,加工速度将最大化。
毛细管阵列电泳系统和毛细管电泳微片分析系统能够检测亚原子摩尔的DNA测序反应产物。与平板凝胶相比,这种异乎寻常的敏感性是以忍受在测序反应中与模板DNA理想值的偏差为代价的。例如,如果测序反应中的模板DNA过少,那么荧光标记的引物延长产物收率过差。这导致用激光扫描反应产物时的信号强度减弱。这妨碍了分析来自适当进行的光谱分离的色谱的软件应用,导致比平均序列可读长度更短;将不得不重复反应或者将丢失序列信息。
由于毛细管过载,过多的模板DNA还导致太多的问题。尽管荧光标记的反应产物有适当收率,不过如果模板过量,它在电动注射期间与测序产物竞争进入毛细管。大型模板DNA分子的存在能够导致毛细管电流的整体减少或突然下降,这可以有多种表现方式。过载能够导致信号强度减弱,色谱中可译荧光强度峰出现晚,反应产物的分辨率差,这是因为荧光发射是宽泛和扩散的。所有这些影响引起可读长度缩短,测序数据质量下降。
过载的问题通常这样解决,稀释测序反应物,或者小心地滴定向测序反应中引入的模板DNA量。尽管这两种解决方案在原理上都是简单的,不过前者需要重复进行反应分析,后者在高通量系统中利用常规手段难以实现。这些手段包括检测与样本中DNA结合的荧光染剂数量并与标准浓度曲线比较,或者测量在260nm波长下的紫外光吸收度,它能够转化为DNA浓度的绝对量度。因而,本领域继续存在对这类方法的需求,即滴定利用高通量毛细管电泳系统分析的测序反应用模板DNA的数量,其中最小化成本和最大化速度是决定性的。
另外存在对这样一种自动化系统的需求,它能够以高平行方式进行小规模热循环反应。该系统应当允许循环反应的快速准备,试剂的消耗最小。减少反应所需试剂的量与减少反应所需时间结合,将大大减少循环反应准备的整体成本。
发明概述
因此,本发明的一个目的是提供新颖的用于向反应室内引入少量核酸的方法,例如待测序的模板DNA,该方法不必预先混合核酸与试剂生成反应混合物。
本发明的进一步目的是提供可用于向反应室内引入少量核酸的方法,该方法无需使用与核酸或反应室连接的亲合性捕获部分。
本发明的进一步目的是提供向反应室内引入少量核酸的方法,该方法无需使核酸与反应室壁不可逆地结合。
本发明的另一个目的是提供可用于得到预定近似量的反应用核酸的方法,例如待测序的模板DNA,该方法无需测定从中抽取DNA的溶液中的核酸浓度。本发明的特定目的是提供滴定用于测序反应的模板DNA量的方法,所述反应是利用高通量毛细管阵列电泳系统进行分析的,其中最小化成本和最大化速度是决定性的。
本发明的进一步目的是提供一种自动化系统,它能够以非常平行的方式进行小规模热循环反应。
按照本发明,提供了一种方法,按照该方法,直接而可逆地将预定和可再现量的核酸从具有广泛核酸浓度差异的溶液中捕获到反应室表面上,在那里直接进行亚微升反应,或者计量洗脱至第二室内备用。按照发明的其他方面,提供了可用于进行本发明方法的装置和系统。
本发明在部分程度上基于核酸与某些材料表面的可饱和而可逆结合的新用途。这种可再现、可饱和而可逆的结合用于控制向随后的反应释放核酸模板的质量,无需先行测定从中捕获核酸的溶液中的核酸浓度。在特定的实施方式中,毛细管的内表面用于进行核酸捕获,允许核酸模板被直接捕获在室内,在那里进行随后的反应。
因而,在第一方面,本发明提供向酶反应引入预定大约质量的核酸的方法,包含:从过量的核酸中将预定大约质量的核酸饱和地直接捕获到进行所述酶反应的室的内表面上,然后除去过量核酸。
本发明的方法特别可用于亚微升的DNA测序反应。因而,在另一方面,本发明提供进行DNA测序反应的方法,包含:直接在底物上固定模板DNA,然后使模板DNA与进行DNA测序反应的反应混合物接触。在有关方面中,本发明进一步提供用上述方法进行的DNA测序反应的产物,和得自DNA测序反应产物的DNA序列。
在另一方面,本发明提供在溶液中检验模板DNA序列的方法,其中该溶液已经或者需要接触作为空间可寻址阵列一部分的第一种底物,该方法包含:直接在第二种底物上固定模板DNA,其中所述模板DNA是这样被固定的:使第二种底物与模板DNA的溶液接触足以使DNA变为固定化的时间,然后使所述模板DNA与进行所述DNA测序反应的反应混合物接触,其中要与所述第一种和第二种底物接触的模板DNA溶液的组成是本质上相同的。
本发明进一步提供有利地采用本发明的毛细管类实施方式进行高通量反应的系统。在这方面发明的一种实施方式中,该系统使用一种毛细管盒,它包含一些平行排列的毛细管节段。试管节段延伸穿过底物,一般是按均匀间距定位的。毛细管盒既可以用于计量试剂,也可以作为进行反应的反应室。
本发明的系统可用于准备测序反应,不过也可以用于非常平行地准备细胞溶解、质粒提取、聚合酶链反应、连接酶链反应、滚环扩增反应、为发现药物或化合物活性筛选化合物文库、蛋白质消化/测序、ELISA、放射免疫测定和其他化学或生物化学反应或测定。
附图的简要说明
鉴于下列详细说明并结合附图,本发明的上述与其他目的和优点将显而易见,其中近似的特征始终指近似的部分,其中:
图1是用于制备循环测序反应产物的完整系统略图,该系统能够有利地利用本发明的方法;
图2是阐述循环反应生产步骤的流程图,利用本发明的方法能够有利地改进第一步;
图3A是用在本发明高通量实施方式中的毛细管盒的透视图;
图3B是图3A毛细管盒的透视图,插在本发明方法的高通量系统中的毛细管盒夹持器内;
图3C是能够有利地利用本发明方法的挠性毛细管盒;
图3D阐述图3C的毛细管盒,它弯成曲形,以便毛细管末端是曲形;
图3E是含有通道的微片装置,功能上等价于根据本发明的毛细管,用于样本准备,包括核酸的直接、可逆固定;
图4A阐述用于本发明的分配头,用于从图3毛细管盒中分配液体;
图4B显示图4A排气分配头的内部横截面;
图4C显示分配头封闭的图4A分配头;
图5A阐述能够用于从图3A毛细管盒中分配流体的离心机顶视图;
图5B阐述夹持摆动式微量反应板桶的图5A转子臂的横断面,其中含有插在微量滴定板内的毛细管盒;
图6显示基于空气的热循环装置略图,其中图3B所示毛细管盒和夹持器插在温度循环装置内,用于进行平行反应,该反应能够有利地利用本发明的模板捕获和归一化方法;
图7A显示具有完整毛细管盒密封膜的基于空气的热循环器内部横断面,它能够有利地为本发明的模板捕获方法所利用;
图7B显示图7A的基于空气的热循环器的透视细节,盖子升起以阐述有毛细管盒插入其中的室;
图7C显示盒室的横断面,其中毛细管盒插在图7A热循环器的内室内;
图8A是可用于本发明方法的高通量性能的毛细管盒洗涤站正视图;
图8B是图8A毛细管盒洗涤站的侧视图,洗涤歧管下降,洗涤罐上升;
图8C是图8A与8B毛细管洗涤站的进一步视图,洗涤歧管上升,洗涤罐下降;
图8D是洗涤歧管的内横断面;
图8E是洗涤站的管道设备略图;
图8F是洗涤罐的顶部透视图;
图9显示关于实施例1测序分析的成功百分比对可读长度窗的直方图;
图10是实施例2反应产物的电泳图;
图11显示关于实施例3测序分析的成功百分比对可读长度窗的直方图;
图12A显示按全体积制备的电泳分离PCR产物的扫描凝胶图象;
图12B显示按纳规模(nanoscale)体积(500nL)制备的电泳分离PCR产物的扫描凝胶图象;
图13是测序混合物分析的电泳图,该混合物是这样制备的,按500nL体积进行PCR,按全体积进行清除反应,然后按500nL进行循环测序反应;
图14是关于产物的等温反应信号强度对比图,这些产物是在试管、毛细管和利用表面结合的毛细管内制备的;
图15是解释准备毛细管的工艺的流程图,其中可逆地直接地固定核酸;
图16阐述本发明方法的一个实施方式;
图17A显示在测序之前测序PCR产物与反应混合物混合的结果;图17B显示首先混合PCR模板与硫氰酸钠、在毛细管内表面上结合DNA、用80%乙醇洗涤DNA、然后测序的结果;
图18代表按照模板捕获原始记录的保留的DNA质量;
图19显示可读长度对起始DNA质量的图,比较通过预混合DNA与测序试剂所制备的样本(▲)和通过模板捕获所制备的样本(●);
图20显示所述起始量(○)M13mp18的模板结合、1.5%琼脂糖凝胶电泳、SYBR绿染剂染色和Fluorimager仪成像之后的PCR反应产物;
图21代表增加模板浓度所得相对信号强度;
图22代表增加模板浓度所得相对信号强度,显示峰高度随着模板浓度增加而增加;
图23A和23B显示具有甘油储备液的纳规模直接循环测序所得561碱基的Phred 20得分的痕迹;
图24是来自四个纳规模单一碱基延长反应的MegaBACETM痕迹,没有模板捕获,证明痕迹2的杂合性。
发明的详细说明
为了可以充分理解本文所述发明,陈述下列详细说明。
本发明在部分程度上基于核酸被某些材料可饱和而可逆结合的新用途,以控制向随后的反应释放核酸模板的质量,无需先行测定从中捕获核酸的溶液中的核酸浓度。在特定的实施方式中,毛细管的内表面用于进行核酸捕获,允许核酸模板被直接捕获在室内,在那里进行随后的反应。
本发明的优点
本文所述发明特别涉及用于进行DNA测序反应的用途,尤其在采用毛细管电泳的高通量样本加工系统中,本发明的方法和装置特别有利于此。不过,技术人员将清楚、下文也将详细描述的是,本发明可以用在进行多种类型生物化学与化学反应的过程中,这些反应使用DNA以及RNA作为底物。
正如下文所详细公开的,本发明提供用于直接在反应室、例如玻璃毛细管或其功能等价物的内表面上可逆固定核酸的方法。固定和其他加工步骤之后,核酸容易为化学、生物化学或酶反应所利用,这些反应是在毛细管内部进行的。或者,可以从毛细管中洗脱和排出核酸,目的是分配控制量的核酸备用。
为了利用非常灵敏的毛细管电泳系统成功地分析DNA测序反应,例如MegaBACETM系统(Molecular Dynamics,Sunnyvale,CA),重要的是在反应中使用一致的预定量的模板DNA,以便模板的量即不过低也不过高。通过采用具有一致DNA结合能力的毛细管,有可能“归一化”所有反应中的模板DNA用量,从而确保所有反应都是从相似量的模板开始的。尽管归一化可以按其他方式完成,不过毛细管的使用通过减少为确保一致性所必要的步骤,导致时间有惊人的节约。
尽管核酸结合是玻璃表面的固有性质,不过人们将领会到,捕获表面可以经过修饰而改变其结合能力或结合选择性。例如,为了捕获非修饰的DNA,主要结合力是疏水性力、电荷-电荷(静电)力和氢键。因而,为了捕获非修饰的DNA,通过在溶液相中的反应可以向捕获表面加入乙烯基,通过CVD可以加入丙胺基,通过已知反应可以加入其他胺,优选为叔胺,以最大化电荷-电荷相互作用。在其他替代选择中,可以使oligo d(T)与胺化表面共价连接,增加poly(A)mRNA的捕获。可以在硅表面与官能团之间加入通式Cn的间隔基团。对每种情况来说,通过改变官能团的浓度,可以改变特征和/或结合能力。
本发明的另外一个优点是它可用于减少与进行核酸反应有关的加工步骤数目和进行核酸反应所需的核酸与试剂量,尤其在高通量的样本加工系统中。例如,关于DNA测序反应,有必要在进行激活反应的热循环之前,使模板DNA与反应混合物结合,该反应混合物包含测序引物、DNA聚合酶、二脱氧核苷酸、dNTP、缓冲剂、盐和水。通常,这涉及如下准备20μl反应,在试管内等分反应混合物,然后加入200ng模板DNA。通常弃去用于等分DNA的吸移管尖,以避免DNA储备液的污染。然后进行各组分的混合、热循环和分析。
按照本发明的一个实施方式,向毛细管填充DNA溶液,导致5ng模板可逆固定在毛细管内部。若干加工步骤之后,然后向毛细管填充500nl反应混合物,这导致模板从试管内部洗脱至混合物中。然后密封毛细管,热循环,随后用高灵敏度毛细管电泳系统分析反应产物。因为毛细管同时充当受毛细作用填充的移液器,和反应室,所以不必用专用吸移系统单独等分模板DNA溶液或反应混合物。唯一必要的是提供各自的储备液,向其中浸入毛细管以填充之。这节约了加工步骤和材料,例如一次性移液器尖。还节约了试剂,否则将在加工步骤期间被带走而不被引入反应中。
还将显而易见的是,在毛细管中进行的测序反应可以在仅为1/10至1/40的反应体积中完成,因此试剂成本仅为1/10至1/40。
综上,这些优点减少加工、增加速度、减少成本。在高通量样本加工系统的设计中,毛细管或其功能等价物可以平行排列,其方式是本领域技术人员熟知的,以增加能够同时加工的反应的数目。采用本文所述发明各种实施方式所享有的益处与所加工的样本数成比例增加。
核酸在反应室内的可逆、直接固定
图15是流程图,图16是显示与本发明实施方式有关的步骤的略图,由此核酸被可逆地固定于反应室、例如玻璃毛细管的内表面。按这种方式准备的反应室然后能够用于与核酸进行测序反应,与核酸进行另一种类型的酶反应或生物化学反应,或者用于分配预定量的核酸到底物上,例如微量滴定板的小孔,或者分配到分析仪器中,例如毛细管电泳装置。
关于图15和图16,在步骤1中从适合的来源制备核酸样本,然后在步骤2中,在含有离液序列高的离子的溶液81中溶解核酸80。在步骤3中,向反应室填充核酸-离液剂溶液,在步骤4中恒温充分时间,以允许核酸80与反应室12内表面82可逆结合。在步骤5中除去核酸-离液剂溶液,然后在步骤6中洗涤、在步骤7中干燥反应室。此时反应室是可用的。部件12指毛细管,或更广义的反应室,包括毛细管和在功能上与其等价的结构。部件80指DNA,或更广义的核酸,包括DNA和RNA及其衍生物。
过程开始于从适合的来源获得核酸,即图15步骤1。核酸可以是脱氧核糖核酸(DNA)、核糖核酸(RNA)或这些分子的衍生形式。按照本领域熟知的方法(参见《分子生物学流行协议》John Wiley&Sons,Inc.,2000,Fred M.Ausubel等编,ISBN 0-471-50338-X),可以从各种活体生物或依赖活体细胞的自我复制系统分离和纯化核酸。细胞可以是真核细胞,包括人类与非人类哺乳动物的细胞、非哺乳动物的动物细胞、植物细胞和真菌细胞。另外,真核细胞可以是自由生活的单细胞生物,例如阿米巴虫(amoebae)或其他寄生物。细胞也可以是原核细胞,包括细菌和古细菌。核酸也可以从病毒获得,包括RNA与DNA病毒,和感染动物细胞、植物细胞、真菌细胞和细菌细胞的病毒。核酸也可以是按照本领域熟知的化学合成方法生产的。
从适当来源获得模板核酸之后,将核酸、即图16的80再悬浮和/或溶解在含有离液剂的溶液、即图16的82中,即图15的步骤2。离液剂的浓度可取地是足够高的(例如约0.5M至8.0M),以进行核酸的可逆结合,但是不至于高到导致核酸或离液剂本身在所有为实施发明而使溶液受到的条件下从溶液中沉淀出来的程度。
离液剂是这样一种物质,由于该物质对水的局部结构具有破坏作用,它影响分子从非水相到水相的分配。离液剂是离液序列高的离子的盐,非常可溶于水溶液。在水溶液中的浓度足够高时,由这类盐所提供的离液序列高的离子导致核酸丧失二级或三级结构,双链核酸熔化(也就是链分离)。假设离液序列高的离子是通过破坏水中存在的氢键网络而具有这些作用的,导致核酸的变性形式比典型水性环境中存在的更加有序的结构(例如双螺旋)是更加热力学稳定的。
正如前人Vogelstein等《美国国家科学院院报》76,615-619(1979)和Chen and Thomas《生物化学年鉴》101,339-341(1980)所述,在足够高浓度离液序列高的离子(例如约0.5M至约8.0M)的存在下,核酸将可逆地结合某些物质,例如二氧化硅。核酸与二氧化硅结合的机理可能涉及离液序列高的离子对带负电二氧化硅表面上的水结构的破坏作用,允许阳离子(例如Na+或K+)介导的盐桥形成在它与核酸链的带负电磷酸盐骨架之间。为了进行核酸与二氧化硅的结合,可以使用单独的离液剂或者两种或多种离液剂的混合物。盐桥不是永久性键,当该键附近的离子浓度降低时可被破坏。如此说来,可以用水或其他适合的低离子强度水性缓冲液将核酸从二氧化硅或类似材料中洗脱。
离液序列高的离子包括胍鎓、碘化物、高氯酸盐和三氯乙酸盐。离液序列高的盐包括高氯酸钠、高氯酸钾、溴化钠、溴化钾、碘化钠、碘化钾、硫氰酸钠、硫氰酸钾、硫氰酸胍、异硫氰酸钠、异硫氰酸钾、盐酸胍、异硫氰酸胍、氯化锂、三氯乙酸钠和三氯乙酸钾。其他具有离液性质的物质包括二甲基亚砜(DMSO)、脲和四胺卤化物,包括氯化四乙胺。
在离液剂溶液中溶解核酸之后,将核酸-离液剂溶液、即图16的83引入到反应室、即图16的12中,即图15的步骤3。
为了降低用于进行测序反应的试剂成本,反应室的容量通常将是非常小的,可取地从约1-1000纳升(nl),更可取地从约10-500nl,最可取地从约100-500nl。
在多数环境中,反应室可以是这样构造的,利用毛细作用被动地引入溶液。毛细作用是这样一种现象,当液体与固体(例如管侧)接触时,引起液体上升,在毛细管、也就是直径非常小的管子内最为明显。毛细作用取决于由表面张力和管侧湿润所产生的力。如果液体对(湿润)固体的粘附力超过液体内的内聚力(表面张力),那么液体将沿管子上升,也就是它将上升至流体静力水平以上。或者,可以向反应室内主动引入溶液,例如借助利用正或负大气压的泵。
利用毛细作用在反应室内填充核酸-离液剂溶液是最简单和最经济的,在这种情况下毛细管充当反应室。如果毛细管的内径是已知的并且表面横截面是均匀的,那么管子的容量是容易计算的,与其长度成正比。因而,根据计算切割所需给定长度的管子,可以得到给定总容量的毛细管反应室。不过按照流体动力学定律,必须加以小心的是溶液的密度不是如此之大,它的表面张力如此之低,管子直径不够小,以致溶液柱不能克服重力,从而不能填充管子。
在填充期间,管子一端浸在核酸-离液剂溶液、图16的83中,溶液的体积通常过量于填充任意管子的总体积。如此说来,管子是在一步之内填充的,减少了在入口处形成气泡的机会。毛细管的另一端必须是开放的,或者能够允许空气从正在填充的管子中逃逸。
反应室外部接近于高薄壁圆筒的形状并不是强制性的,毛细管即是如此。对技术人员来说将显而易见的是,能够按各种方式制造毛细管的功能等价物。遍及说明书各处的术语毛细管应当被理解为不仅代表普遍称之为毛细管的结构,而且代表任何在功能上与之等价的结构。例如,可以形成隧道、通道或凹槽,其结构使得能通过毛细作用向其填充流体,或者通过直接施用一定的力,例如正或负压、或离心力。隧道、通道或凹槽可以通过机械、化学、热或其他技术人员已知的方式而形成。通道或隧道可以通过从基体中除去材料而形成,例如使用钻尖、激光或化学浸蚀。
如图3E所述,底物72、例如任意形状和尺寸的玻片的表面中的凹槽或通道78可以用锯切制,或者通过激光烧蚀或化学浸蚀而形成,产生被称为屑片或微片70的结构。例如,通过本领域已知的光刻工艺可以形成硅片中的凹槽,利用氢氟酸可以浸蚀成玻片中的凹槽。
如果凹槽或相似的凹沟78是在底物72表面形成的,那么通常有利的将是用盖子74覆盖之,以形成封闭的空间。覆盖凹槽或凹沟78确保了流体相互作用的最大表面积,从而促进毛细作用,最小化污染物接触反应剂的机会,产生一层蒸汽屏障,以确保在反应温度有任何升高的期间,例如在热循环期间,反应汽化的趋势被最小化了。
盖子74的构成材料可以等同于或不同于切制凹槽的底物72,可以利用本领域已知的各种方式盖上盖子。例如,盖子74可以用环氧、氰基丙烯酸酯或其他类型胶水粘在底物上。通过热或光的施用,熔化盖子和底层材料直至它们融合,可以焊接盖子。盖子74还可以被机械固定在适当位置,例如用夹子,或者甚至被磁固定。
构成反应室的材料有利地是这样一种材料,在足够高浓度的离液序列高的离子的存在下,模板DNA或其他核酸可逆地和可饱和地与之结合。反应室经常是由玻璃构成的,尤其在成型为毛细管时。从各厂商处可以容易得到一定内径范围的高质量玻璃毛细管,包括Polymicro Technologies(Phoenix,Arizona,USA)。
如果由脆性、亲水性材料构成,象玻璃,那么可能有利的是用一种聚合材料、例如聚酰亚胺涂在毛细管外部。聚酰亚胺涂层提供了保护层,保护毛细管不磨损和不因弯曲而断裂。聚酰亚胺还在毛细管外表面上形成疏水层,有助于在将毛细管浸入反应混合物进行填充时防止水性反应混合物的粘着;这有助于防止试剂的浪费。其他潜在的涂层是丙烯酸酯、聚硅氧烷、含氟聚合物和铝。
可以使用很多类型的玻璃,包括碱-硼硅酸盐玻璃、氧化铝-硅酸盐玻璃、钡燧石玻璃、钡-硼酸盐玻璃、硼硅酸盐玻璃、包含B2O3的硼酸盐玻璃、包含GeO2的锗酸盐玻璃、硫属玻璃、包含SiO2的硅酸盐玻璃、石英玻璃、熔融石英玻璃、合成熔融石英玻璃、石英(结晶性SiO2)、熔融石英(无定形SiO2)、掺杂合成熔融石英(掺杂有痕量元素,例如锗、氟、硼、磷和钛)、镧玻璃、光学玻璃、磷酸盐玻璃和钠钙玻璃。
或者,反应室可以由金属或非金属构成,这些材料象玻璃一样,可以形成毛细管或圆片。适合的纯金属和合金金属包括镁、铝、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、锆、铌、钼、钯、金、银、钴、铌、铟、铑、锡、钢、不锈钢和青铜。适合的纯非金属和合金非金属包括硅、锗、砷和砷化镓。
反应室还可以由碳的多种同素异形体构成,包括石墨、金刚石、C60和有关同素异形体,例如包含纳管(nanotube),或者由有机化合物构成,例如塑料。关于这些材料,可能必要的是以这样一种方式衍生碳或塑料,这将支持在离液序列高的离子的存在下核酸与塑料的可逆结合。
在反应室、例如玻璃毛细管、即图1 6的12填充核酸-离液剂溶液83之后,将溶液在一定条件下保温一定时间,以便溶液中至少有一部分DNA可逆地与反应室或管子内表面、即图16的82结合,即图15步骤4。在其他实施方式中,可以进行不可逆结合。
不希望受到理论约束的是,正如上文所讨论的,据信如果内表面是含有SiO2(二氧化硅)的玻璃,那么在足够高浓度离液序列高的离子的存在下,核酸最有可能经由磷酸盐主链与二氧化硅生成盐桥类型的键。通常,允许在约室温(约24℃)下进行结合,但是在认为适当时可以选择其他温度,只要结合的有效性不受显著妨碍,并且只要DNA和离液剂都不从溶液中沉淀出来。
在核酸-离液剂溶液中的核酸具有与反应室或管子内表面82结合的机会之后,然后除去含有未结合DNA和离液剂的溶液、即5,将内表面用洗涤溶液洗涤、即6,然后通过干燥除去洗涤溶液中的残留液体痕迹、即7。
通过各种手段从反应室内除去更大比例的核酸-离液剂溶液,包括施加正或负空气压力,或者通过离心以排除溶液。
洗涤除去过量的、未结合的核酸、离液剂和任意可能污染核酸的杂质,以纯化所结合的核酸。重要的是除去离液剂,因为这些离子能够严重干扰大多数随后的化学与生物化学反应,即使在非常低的浓度下也是如此。洗涤可以按各种方式进行。例如,通过毛细作用可以填充毛细管,然后按与除去核酸-离液剂溶液相似的方式排除洗涤溶液。或者,通过泵送洗涤溶液可以填充和排空反应室。使用足量洗涤溶液,以从本质上消除所有污染物的存在。洗涤后,从反应室或管子中除去洗涤溶液。
洗涤溶液的组成是经过选择的,以便它不会通过洗脱而除去任意实质性部分的、已经开始与反应室或管子内表面结合的核酸,通常是一种醇与纯水的溶液。适合的醇包括小分子量的醇,即甲醇、乙醇和异丙醇。醇的浓度是足够高的,以便核酸的洗脱最小化,优选为至少50%,更优选为至少60%,最优选为至少70%体积/体积。通常,乙醇的使用浓度大于约70%-80%体积/体积。
洗涤溶液还可以包含一种盐,优选为缓冲液的形式,例如乙酸盐缓冲液或tris-EDTA缓冲液(例如含有10mM Tris-HCl和1mM乙二胺四乙酸(EDTA),pH 8.0)。盐可以具有缓冲pH的作用,以便pH在约6.5-8.5的范围内,还具有使DNA与反应室或管子内表面之间的结合作用在洗涤期间稳定的作用。
经常可取的是通过干燥从残留在反应室或毛细管内的任意小体积洗涤溶液中除去本质上所有液体痕迹。尽管液体的有些低浓度组分、例如乙醇不趋于显著干扰随后的生物化学反应,不过更高的浓度可能有干扰。干燥可以这样进行,使反应室或管子受到足够高真空的作用,以便液体汽化而被带走。或者,可以在压力下迫使干燥空气、例如空气、氮或氩穿过反应室或管子,以促进液体的蒸发。可以加温干燥气体,以进一步促进蒸发。
干燥后,反应室现在携带被可逆固定的核酸,可以立即用于进行与核酸的生物化学反应,或者贮存在适当条件下备用。按照上文讨论的步骤所准备的反应室能够有利地用于归一化用在平行反应中的核酸的量,分配预定量的DNA或RNA到底物上,进行纳规模DNA测序反应以及很多其他类型的与DNA和RNA的反应。不过,正如将为技术人员所清楚的,这些特定应用不应被视为限制这类反应室的用途范围。
本发明在自动化系统中的用途
毛细管形式的反应室可以如图15所述进行加工和单一使用,但是经常有利的将是按平行方式联合多个毛细管,以便能够增加样本通量,特别是在自动化系统中。为此,适宜将毛细管组织为毛细管盒;每只毛细管盒的毛细管密度越大,潜在的样本通量越大。例如未决美国申请No.09/577,199所述仪器可以用于自动化图1所述加工步骤,以及任何随后的与进行与固定化核酸的反应有关的步骤,包括毛细管填充、排空、洗涤、干燥和/或热循环。以这种方式使用,毛细管盒变为自动化的、固定体积的平行移液器,允许通过毛细作用同时从样本平板小孔向所有毛细管填充。
毛细管盒15如图3A所示。毛细管盒由延伸整个底物10的大量毛细管构成。优选的是毛细管盒具有至少一行八支毛细管,并且毛细管的间距相等。所示毛细管盒具有底物10,96支毛细管排列成8×12,管子的间距与96孔微量滴定板的小孔间距相匹配。
毛细管12延伸整个底物10,优选地是均匀排列的。毛细管是等长的,并且按基本上平行的取向延伸整个底物,以便毛细管12的相对两端各自是共面的,并且由毛细管12末端所限定的平面是基本上平行于底物10的。毛细管的间距可以是均匀的和经过选择的,以匹配微量平板上小孔的中心-到-中心间距。例如在标准的96孔微量平板上,毛细管将按9mm的中心到中心间距排列,在384孔微量平板上,毛细管12将按4.5mm的中心到中心间距排列。与1536孔微量平板或甚至更高孔密度的平板相容的、更高密度的毛细管格式也应当是可能的。毛细管12优选地被固定在底物内,以便从底物10一侧延伸的毛细管12长度短于底物10对侧上的毛细管长度。在底物短端上的毛细管12长度可以与微量平板中的小孔深度相匹配,以便短端的长度短于微量平板中的小孔深度。这种特征使毛细管盒能够被插到微量平板中,以便底物10靠在多孔平板的顶口上,底物一侧上的毛细管可以延伸到多孔平板中,但不触及底部。例如,在96孔微量平板中,毛细管可以被这样布置在底物上,以便从底物延伸的毛细管短端可以被插到微量平板的小孔中,但是毛细管不触及小孔底部。这确保了分配在小孔内的液体避开毛细管,以防止重新进入毛细管。
毛细管盒底物10可以由玻璃纤维板或其他刚性或半柔韧性材料制成。毛细管12可以被插入底物中的等距小洞内,用粘合剂固定。在一种实施方式中,底物的长度和宽度类似于标准96孔微量滴定板的长度和宽度。这对使为操作微量滴定板而设计的自动化系统适用于毛细管盒进行了简化。
用在生物化学反应中的核酸量的精确控制和归一化
在试图与核酸进行生物化学反应时,精确知道核酸的输入量对反应的成功来说经常是决定性的。这允许实验者正确计算其他反应组分、例如酶的适当比例。例如,正如背景一节所讨论的,如果在用毛细管电泳系统分析的测序反应中使用过多的模板DNA,经常导致测序数据的质量差。通过测量260nm下的吸光度,或者测量相对标准曲线的染剂结合量,储备样本中的核酸浓度是相对容易测定的。不过,这两种方法都用掉一部分样本,都不容易在高通量样本加工系统中实现。所幸本发明可用于精确控制用于各种应用的核酸量。
如果在反应室内发生结合反应期间,核酸-离液剂溶液允许与反应室或管子内表面保持接触足够时间,并且如果核酸在溶液中的浓度是足够高的,那么有可能用核酸饱和反应室或毛细管内表面上可利用的结合位置。这被称为可饱和的结合。只要溶液中的核酸量在恒温之前超过反应室内表面的结合能力,确定的、最大量的核酸将被固定,而与最初溶液中的核酸量无关。如此说来,如果溶液中的核酸浓度超过最小值,那么没有必要知道实际浓度;所结合的核酸量将仅由反应室的结合能力决定。因此,如果被可饱和地结合的毛细管内的核酸被洗脱到已知体积的液体中,那么该液体中的核酸浓度和量是可知的,并且精度高。
因而,基于毛细管或其他反应室构造的结合能力,有可能使用本发明来获得、或测量出精确已知的、少的、一致量的核酸。例如,如果需要用10ng核酸进行反应,那么仅需获得核酸结合能力共计10ng的毛细管或其他反应室。然后,向毛细管填充核酸-离液剂溶液,其中的核酸和离液剂的浓度都是足够高的,以支持在合理时间内的可饱和结合。恒温后,完成排空、洗涤和干燥步骤,实验者确信毛细管含有10ng核酸,核酸可以洗脱分配,或者保留在毛细管内备用。
通常,结合能力、或可与内表面可饱和结合的核酸量是凭经验测定的。例如,按照本领域已知的方法,将已知量的供试核酸用放射性核素标记,例如35S、33P或32P。标记后,测定被标记核酸的比活性,以确立每质量单位或浓度单位核酸、每分钟的蜕变比例。然后将被标记核酸按预定浓度溶于含有离液序列高的离子的溶液。然后试验标准的反应室,它是普遍供应品的代表。例如,切割预定长度的玻璃毛细管,填充被标记核酸-离液剂溶液。经过足够时间以发生可饱和结合后,排空毛细管,洗涤。然后,测量保留在管子内部的放射性量,借助标记比活性的知识转化为核酸的量。这种因子然后能够用于计算保留在从相同批次切割的任意长度毛细管内的核酸量,只要在所有随后的实验中使用相似的结合条件即可。
使用本发明精确获得预定量核酸的优点是归一化随后使用的核酸量。如果有必要加工很多样本,这种优点尤为显著。例如,在本领域的目前状态下,在制备用于测序的不同模板DNA时,确保模板的浓度相等是不现实的。因而,按照现有方法,有必要归一化不同的模板DNA样本,即单独测定每份制备物中的DNA浓度,每份和每个样本都要稀释DNA至适当浓度。这对毛细管电泳来说尤为重要,因为该技术对毛细管被模板DNA过载是敏感的。对模板DNA归一化的需要增加了大量时间和成本,以利用这种系统获得高质量DNA序列数据,或者需要研究者接受失败率增加。
不过,本发明允许非常迅速的归一化,以最小化起始模板浓度上的差异。为了归一化不同模板至预定浓度,仅需提供功能上等价的毛细管(每种模板一支)和模板DNA-离液剂溶液,前者具有已知的可饱和DNA结合能力,后者具有足够高的DNA与离子浓度,以便毛细管内的所有DNA结合位置都在合理的时间阶段内被占据。排空和洗涤后,所有毛细管将含有大约相等数量的模板DNA,因而是归一化的。
正如将为技术人员所显而易见的是,如果不需要饱和反应室内部所有可能的核酸结合位置,那么有可能控制被可逆结合的核酸量。这是可能的,因为结合反应的动力学取决于大量变量,包括核酸浓度、平均核酸分子大小、溶液pH、离液序列高的离子浓度、反应室内表面上可利用的结合位置数和温度。因而,根据经验分析,技术人员有可能确立结合条件,导致预定量核酸的一致的、可预期的、可逆的结合,不会饱和反应室内部所有可利用的核酸结合位置。
关于毛细管电泳的DNA测序
本发明的优点有益地用于进行DNA测序反应,特别是用高灵敏性毛细管电泳系统进行分析,例如MegaBACETM。为了使用本发明进行DNA测序,模板DNA必须被固定在毛细管或其功能等价物内。模板DNA是组成碱基序列有待测定的DNA。模板DNA可以是单链的或双链的,其中两条互补性DNA链是杂合在一起的,按照沃森-克里克碱基对互补性规则,一条链序列的知识可以用于推断另一条链中的碱基序列。
模板DNA通常是直接从自我复制的遗传系统获得的,在宿主内生长的,向该宿主内克隆有待测序的DNA片段。或者,通过利用聚合酶链反应或功能等价的线性或指数性扩增过程扩增特定的DNA序列,可以从任意来源获得模板。
自我复制的遗传系统包括附加型元件,例如含有复制起点的质粒或噬菌体(例如λ或M13),二者分别在转化或感染之后都能够在细菌内部复制,例如大肠杆菌。隐匿模板DNA的质粒是这样获得的,打开已经复制到足够高副本数的细菌,从上清液分离质粒。收集在溶解宿主细菌之后释放到细菌培养上清液内的噬菌体,通过打开噬菌体粒子分离DNA。还有可能在哺乳动物细胞内生长含有哺乳动物复制起点的附加型物质,然后按照Hirt法分离DNA。
由于质粒或其他附加型DNA的分子质量与基因组DNA相比有实质性差异,使用毛细管作为反应室提供了一种方便的方法,通过这种方法,当二者都在溶解细菌或其他类型细胞之后释放时,迅速从污染性基因组DNA纯化质粒DNA。简言之,将质粒与基因组DNA的混合物结合在离液序列高的离子溶液中。将需要向其中固定质粒的毛细管浸在该溶液中。质粒由于质量小,随着填充容易通过毛细管内径,从而与玻璃壁发生相互作用,建立盐桥而固定下来。相反,基因组DNA由于分子质量极大,排除在毛细管小内径之外,因而通过尺寸排阻与质粒分离。
如上所述,无需克隆步骤也能够得到模板DNA,即直接从适当的来源扩增DNA片段,例如病毒,原核细胞、包括细菌,或真核细胞、包括哺乳动物、其他动物或植物。
在模板DNA、即图16的80直接被可逆固定于玻璃毛细管12内表面82之后,按照本发明的方法,向毛细管填充测序反应混合物84,进行DNA测序反应。该反应是按照本领域熟知的工艺进行的,由此DNA测序反应产物被荧光染剂所标记。本领域既定的是Sanger二脱氧核苷酸链终止工艺。简言之,允许与模板DNA分子序列互补的引物与模板杂交。然后通过读取模板碱基序列,DNA聚合酶延长引物,即向成长中的引物3’末端加入dNTP。不过,缺乏相应dNTP的羟基特征的二脱氧核苷酸三磷酸防止向成长中的链进一步加入碱基。结果是链终止了。链终止后的色谱图允许实验者推断模板中的碱基序列。将终止后的反应产物用荧光标记,即使荧光团与被延长的引物缀合,或者使荧光团与所有二脱氧终止子缀合,当掺入在成长中的DNA链中时,导致引物延长的终止。
近些年来使用与能量传递染剂偶联的荧光团系统,由光受体染剂和荧光发射染剂构成,该系统的使用提高了激光扫描测序系统的性能。每种二脱氧终止子都是用两种染剂标记的。这些染剂之一荧光素吸收由测序仪激光产生的入射激光中的光能,经由无辐射能量传递方式转移所收集的能量至受体染剂。四种链终止子ddG、ddA、ddT和ddC各自具有与荧光素供体偶联的不同受体染剂。受体染剂、例如若丹明110、若丹明-6-G、四甲基若丹明和若丹明X然后发射特征波长的光。用鉴别哪种核苷酸导致终止事件的仪器检测荧光。能量传递系统的使用导致受体染剂的激发比直接被激光激发更有效,导致灵敏度更高。作为荧光标记二脱氧终止子的替代选择,标记测序引物也是可能的。如果使用这种系统,通过与引物缀合供体染剂和受体染剂,还可以使用能量传递染剂。与引物缀合的供体染剂实例是5-羧基荧光素(FAM),与引物缀合的受体染剂实例,关于胞嘧啶是若丹明110,关于腺嘌呤是6-羧基若丹明(REG),关于鸟嘌呤是N,N,N’,N’-四甲基-5-羧基若丹明(TAMRA),关于胸腺嘧啶是5-羧基-X-若丹明(ROX)。与能量传递染剂偶联的荧光团系统更详细地公开在美国专利Nos.5,688,648、5,707,804、5,728,528、5,853,992、5,869,255和6,028,190中,所有它们都全文引用在此作为参考文献。
浸入充满反应混合物的贮器85,通过毛细作用填充含有固定化模板DNA 80的毛细管、即图16的12。反应混合物84含有适当浓度的进行测序反应的全部组分,包括水、盐、缓冲剂、引物、DNA聚合酶、dNTP和二脱氧终止子。不希望受到理论约束的是,目前假设随着水性混合物沿毛细管上升,固定了的DNA很可能再水合。此外,因为混合物中的盐离子强度是相对较低的,导致DNA固定的盐桥被水分子破坏,DNA从毛细管内表面上洗脱,扩散到反应混合物中。或者/另外,DNA在热循环反应期间解吸。无论哪种机理,DNA与混合物的物理混合对反应的进行来说都不是必要的。
一旦毛细管被填充,将末端密封,以防止内含液体的汽化,然后进行热循环,以活化测序反应的多轮,目的是生成荧光标记产物供分析之用。毛细管的密封和热循环可以按多种方式进行,这对技术人员来说将是显而易见的。常见的情况是,如果需要平行进行多个测序反应,实验者可以使用高通量仪器,例如公开在美国未决申请No.09/577,199中,全文引用在此作为参考文献。所公开的仪器提供了密封排列为毛细管盒格式的多支毛细管和进行毛细管内含测序反应混合物的热循环的手段。
测序反应完成后,从毛细管中排出反应产物,通常准备进行毛细管电泳分析。
通常,将反应产物排出到底物上,或者排出到某种形式的液体容器内,例如微量滴定皿的孔,毛细管电泳系统从中可以采集产物样本进行分析。不过,技术人员将承认,有可能直接从反应毛细管中排出反应产物到电泳毛细管内。从反应毛细管中排出反应产物可以通过施加离心力、用电动方式、通过施加正或负气压或者通过本领域已知的其他手段。
此外,可以将反应产物排出到适合于其他类型分析方法的底物上,例如MALDI(矩阵辅助式激光解吸作用/电离作用)或SELDI(表面增强型激光解吸作用/电离作用)底物,用于质谱分析。
在荧光标记的测序反应产物的电泳期间,激光扫描携带产物的毛细管中的窗口,激发荧光团。捕获荧光团所发射的光,转化为强度和光频率数据,储存在计算机存储器中。完成扫描和读数后,计算机汇编代表所有被扫描系统检出的反应产物的色谱图。用解译色谱图的计算机软件处理色谱图中的数据,推断起始模板DNA中的核苷酸碱基序列。然后将序列输出储存在计算机数据文件中,既可以在随机访问存储器中,也可以在专用长期存储设备上,例如软盘、ZIP磁盘、JAZ磁盘、硬盘、CD-ROM、计算机磁带等。为了方便数据终端用户,含有序列数据的计算机文件可以储存在计算机服务器上,可以被远程客户计算机访问。当文件被传递时,它表现为与载波有关的数据信号,通过铜或光纤电话线路、有线电视线路或通过无线电波传送。
一旦被排空,回收毛细管,用于新核酸样本的固定,例如有待测序的DNA模板。管子的回收需要洗涤除去前面反应的有害痕迹,包括反应产物、反应混合物组分和被固定的核酸。
通常,洗涤溶液是低离子强度的水性洗涤溶液,以便任何残留的被固定的核酸都将趋于洗脱和带走。重蒸馏水是有效的。洗涤溶液可以加热,以增加洗涤的有效性,每一洗涤周期的洗涤次数和/或洗涤溶液体积可以酌情改变,以最大化洗涤有效性。可以通过毛细作用向毛细管填充洗涤溶液,然后利用与排出反应产物相同的方法排空。如果洗涤是通过电动泵进行的,那么洗涤溶液必须含有某种最小浓度的离子。或者,可以使用机械泵驱动洗涤溶液穿过毛细管。
洗涤还可以通过机械毛细管盒洗涤器来完成,这公开在2000年5月23日提交的共同拥有、未决美国专利申请No.09/577,199中,全文引用在此作为参考文献。
设计用来洗涤排列在毛细管盒内的多支毛细管的毛细管洗涤装置的设计公开在美国未决申请No.09/577,199中,全文引用在此作为参考文献。
水洗涤之后,利用通常包含高浓度乙醇的醇洗涤液除去大多数水和其他洗涤溶液组分的痕迹。然后典型的是通过向毛细管中通入干热空气进行干燥,然后即可贮存或再利用。
对有些应用来说,重要的是在毛细管内基本上没有从前面的反应残留核酸。一种实例是PCR,由此旧的残留模板DNA可能被指数扩增,引起新反应的污染。在这类情况下,回收过程可以包含有效破坏核酸痕迹的步骤。这类手段包括向毛细管填充含有外切核酸酶的溶液,保温为消化所有核酸所必需的时间。其他手段包括核酸的化学降解,例如用强酸性或碱性溶液洗涤;与漂白剂接触;用电离辐射照射毛细管;或者高温烘烤。破坏残留的核酸之后,通常用标准溶液洗涤毛细管。
将证实用毛细管盒进行平行处理有用的一种但决不是唯一的应用是DNA、经常是PCR产物序列的确认,用于高通量从头测序,例如用于发现单一核苷酸多态性(SNP)。关于SNP的发现,本发明的方法和仪器使“深度”测序成为可能,其中对大量个体的相同基因或遗传基因座进行测序,序列差异可鉴别存在于测序种群中的多态性。其中,有些SNP将被证明与显著表型有关,例如疾病的素因、存在或进展潜力。
将证实用毛细管盒进行平行处理有用的另一种应用是DNA、经常是PCR产物序列的确认,打算在底物上点样形成微阵列(microarray)。这类微阵列在基础与应用研究中的用途正在增加,通常由玻片上的DNA斑点矩形阵列构成,每个斑点具有不同的已知的DNA序列。实验者然后取一种被标记样本、即RNA或DNA,检测被标记核酸与点于阵列中的DNA之间的杂交事件。如此说来,实验者能够推断被标记核酸的同一性和/或部分或完整序列。
为了确保利用微阵列所生成的数据的完整性,有必要可靠知道斑点DNA序列的同一性。重排和其他样本操作程序引入格式错误,必须检出。此外,PCR经常用于生成所要点样的DNA。正如本领域所熟知的,随着它扩增模板,Taq和其他热稳定性聚合酶在每一千对中引入一定数量错误的碱基对。如果已经引入错误,必须检出它们,并且弃去已扩增的产物。通常,这需要大量加工步骤,区分于与PCR产物点样有关的那些。不过,本发明一个实施方式的使用大大增加序列测定和确认的效率。
通常将所要点样的DNA样本按预定浓度溶于包含离液序列高的离子的溶液,例如硫氰酸钠。溶解DNA是因为它要固定在微阵列玻片表面上的方式类似于在毛细管内部固定核酸。通常,将不同的DNA-离液剂溶液等分在384孔容量微量滴定皿的小孔内,贮存以备向微阵列上点样。在点样之前,与自动点样系统有关的机器人拾起微量滴定皿,置于一定位置,由此点样针或笔能够一次浸入多个小孔内,通常为12个。
本发明能够适合于在同一384孔皿的多个小孔内对DNA进行取样和测序,用作点样笔的DNA来源。显然,还能够适合于从超过384个小孔的皿中取样。因为所要测序的DNA来自所要点样的同一样本,所以避免了大量与来自不同样本的DNA测序有关的加工步骤。这导致时间和原料成本有实质性节约。按照本发明的这种实施方式,将玻璃毛细管排列成毛细管盒,模式和毛细管内尺寸与皿的一行/列或多行/列小孔相同。关于最大容量,将总计384支毛细管按等同于皿本身的模式和尺寸排列。在点样之前,按照本发明的方法向毛细管盒填充DNA-离液剂溶液(通常为硫氰酸钠)。在固定和加工DNA样本之后,对它们进行测序。如果任意模板不能给出正确的序列,点样仪器的操作者知道不点样该DNA,或者如果点样的话,也知道与相应斑点处杂交有关的数据是关于所不需要的序列的,应当从所得数据组中除去。
与可逆固定核酸的生物化学反应的替代选择
本发明反应混合物组配可以用于多种类型反应的组配。用于组配PGR反应混合物的同一基本方法可以适合于组配循环测序混合物、滚环扩增反应混合物、酶测定、化学反应或其他反应混合物。
分配预定量的核酸
正如易为显而易见的是,实验者不必进行与固定在毛细管内部的核酸的反应。出于各种原因,可以优选的是将被固定的核酸从毛细管内表面洗脱,在不同的反应室内与之进行反应或者在毛细管外按某种其他方式加工核酸。在这类情形中,有可能使用毛细管作为移液器来分配预定近似质量的核酸在由实验者所选择的底物上的固定体积液体中,因此得到预定近似浓度。为此,向毛细管填充洗脱液,洗脱本质上所有可逆固定的核酸。此后分配洗脱液与核酸的溶液,通常在底物上或内。向其上转移反应混合物的底物可以是多孔微量滴定板的小孔、平面底物的特定区域或导入分析芯片的小孔。反应物还可以被分配在溶液内,供进一步的化学或生物化学反应。
如上所述,如果多支毛细管排列成毛细管盒,该毛细管盒成为多通道的平行移液器,并且有可能同时分配大量归一化的核酸样本。可以分配在微量滴定孔、微芯片和其他反应室内,供进一步的反应。另外,核酸可以被直接分配在毛细管阵列电泳微芯片的贮器内,或MALDI或SELDI靶上,或适合用在其他分析方式中的底物上或内。
不同方法可以用于从毛细管排出或分配液体。正如将为技术人员所领会的是,这些方法不仅能够用于分配被洗脱的核酸溶液,而且能够用于从被填充的毛细管除去液体,而与目的无关,例如在反应后除去反应产物,或者除去洗涤溶液。
分配单一毛细管或排列成毛细管盒格式的多支相似毛细管中的内容物的一种方法利用离心机通过离心力分配流体。离心力均匀作用于毛细管盒内的所有毛细管,以便毛细管独立地分配它们的内容物到位于排出流体的毛细管口下方的底物上。如果底物是微量滴定皿的小孔,被分配的液体将被离心力拖至小孔底部。关于离心机和有关转子与盛放毛细管盒的桶的设计公开在美国未决申请No.09/577,199中,全文引用在此作为参考文献。
分配毛细管内含液体的第二种方法是通过利用排气装置。关于设计用来分配排列成毛细管盒的多支毛细管的液体内容物的排气装置的设计公开在美国未决申请No.09/577,199中,全文引用在此作为参考文献。
或者,毛细管内容物可以被直接分配到小孔、或分析装置(图3E的70)的样本港口(图3E的76)内,例如电泳芯片。如图3E所示,分析芯片将具有分析泳道78的阵列,可与它们各自的样本入口或港口76流通。多支毛细管可以排列成毛细管盒格式,以便毛细管间距与芯片中的样本入口76间距相匹配。例如,16支毛细管按2×8平行排列的毛细管盒可以进入分析芯片的16个小孔。
作为实例,图3C所述毛细管盒包括延伸穿过挠性条11的毛细管12。挠性条11可以单独或者与其他这类条结合使用。本质上呈直线的毛细管可以通过弯曲挠性条11形成弧形而改变其取向。图3D阐述挠性条11弯曲后允许毛细管12配合按环状模式布置在底物上的输入港口。如果使用适当的电极阵列或其他分配方法,毛细管12中的液体然后可以被电动注射或其他方式从毛细管12分配到分析芯片70的港口76中。通过把挠性条11压在曲形物上例如曲形金属块上,可以使挠性条11固定成曲形取向。这可以借助结合在自动样本制备系统中的自动条移动器进行。
毛细管盒可以通过排气或其他分配手段而被分配,优选地选择分配手段以最小化飞溅和气泡形成。在分配制备好的反应混合物到小孔76进行分析之前,可以向每个分析微芯片小孔76中加入少量稀释液。当分配毛细管盒时,稀释液将稀释样本孔76中的样本。在毛细管盒中制备的亚微升体积反应混合物、例如DNA测序反应产物混合物能够容易地与分析芯片整合,用于测序或其他分析方法。
洗脱液优选为低离子强度的水溶液,更优选为水或低离子强度缓冲液,pH通常在6.5与8.5之间,大约在该pH下核酸材料是稳定的和基本上完整的。1X浓度的TE缓冲液(10mM Tris-HCl、1mM乙二胺四乙酸(EDTA),pH 8.0)和蒸馏水或去离子水是特别优选用于本发明的洗脱溶液。上述的洗脱溶液优选形式的低离子强度将趋于破坏在核酸与包含毛细管内表面的材料之间所建立起来的盐桥,确保核酸被洗脱到溶液中。其他适用于本发明的洗脱溶液将是易为本领域技术人员所显而易见的。
按照本发明的方法,与玻璃毛细管内表面结合的核酸是可饱和的。在适当的条件下,有可能高度精确地控制固定在任意特定毛细管内部的核酸量。因而,如果核酸被洗脱到水溶液中并分配,能够知道溶液中的核酸浓度,以及任意特定体积该溶液中的核酸总量。例如,如果毛细管的结合能力是10ng DNA,并且被洗脱到500nl洗脱液中,那么溶液的浓度是0.02克/升,摩尔浓度则取决于DNA分子的分子质量。如果分配全部500nl,那么液滴含有10ng DNA。
正如将为技术人员所理解的是,由于不同毛细管之间的微小差异,可被固定和洗脱的核酸量在两支毛细管之间、甚至在同一管子的反复使用之间都不是恒等的,尽管是非常一致的。出于这个原因,洗脱到洗脱液中的核酸的预定量或质量是近似的量或质量。优选地,在本文中,预定的近似质量应当表示在相似的毛细管之间、或者在同一毛细管的反复使用之间,所有其他条件是相同的,预期被固定或分配的质量与实际被固定或分配的质量之间的误差不大于10%,更优选为5%,更优选为2%,最优选地不超过1%误差。
通常,本发明的分配功能将通过在特定毛细管内固定饱和量核酸并分配全部体积而得以利用。因而,为了控制所分配的核酸量与浓度,实验者将选择具有预定结合能力和体积的毛细管。不过,正如上文所讨论的,实验者可以凭经验确定使预定不饱和量的被固定核酸结合的条件。因此,利用这些条件,可以固定不饱和预定量的核酸,然后从毛细管洗脱,允许实验者随意分配任意给定量的核酸。
在毛细管已经可逆结合预定量的不饱和或饱和核酸这两种情形下,如果实验者利用为技术人员所熟悉的方法控制从毛细管排出的核酸-洗脱液的量,那么关于该体积的知识允许分配精确量的核酸。例如,可以通过机械泵送或电动泵送排出控制量的流体。
下列实施例阐述本发明方法的用途,是能够用所公开方法进行的很多不同类型生物化学或酶反应的代表。这些反应包括1)染剂-引物DNA测序,2)染剂-终止子DNA测序,3)PCR扩增,4)PCR扩增、酶纯化和DNA测序,和5)一般的酶反应。下列实施例仅供例证,决非限制。
实施例1
用毛细管电泳分析的染剂-引物DNA测序
在由96支未涂覆的2.8cm长、150μm I.D.、360μm O.D.熔融二氧化硅毛细管组成的毛细管盒内进行染剂-引物测序反应。染剂-引物测序反应是这样进行的,用发射特异性引物扩增模板DNA,相当于ddT、ddA、ddC和ddG终止的反应。模板的扩增是在每支毛细管内以单一反应方式进行的,然后汇集到公共的小孔内,用于反应后的加工和分析。
颜色-特异性引物是基于M13-40FWD引物(5’-FAM-GTTTTCCCAGT*CACGACG-3’)的,以5-羧基荧光素(FAM)作为供体染剂,以与所示胸腺嘧啶(T*)连接的终止-特异性氟作为受体染剂。如下标记胸腺嘧啶:ddC-终止反应用FAM(C-FAM),ddA反应用6-羧基若丹明(A-REG),ddG反应用N,N,N’,N’-四甲基-5-羧基若丹明(G-TMR),ddT反应用5-羧基-X-若丹明(T-ROX)。100次染剂-引物测序反应用总混合物是这样制备的,混合65μL反应缓冲液(220mMTris-HCl,pH9.5,33.2mM MgCl2)、100μL染剂-引物溶液(1μMT-ROX,1μM G-TMR,0.5μMA-REG或0.5μM C-FAM)、100μL相应的脱氧与二脱氧核苷酸混合物(0.94mM dATP,dCTP,dTTP,7-去氮杂-dGTP,与3.1μM二脱氧核苷酸)、10μL酶(32单位/μLThermoSequenase)和225μL滤过去离子水。将该溶液等分在96孔试剂平板中,然后与模板DNA混合。一般的混合流程需要使用两组毛细管盒和384孔“混合板”。将第一组毛细管盒(转移毛细管盒)浸入模板DNA溶液(20ng/μLM13mp18),然后倒置在384孔“混合板”顶部上,使毛细管的短端插入小孔。将倒置的转移毛细管盒和混合板放入台顶离心机内。加入平衡板,以平衡转子,在3,000xg下离心5秒钟。离心作用均匀分配转移毛细管盒内容物到384孔平板的个别小孔内。离心步骤后,将转移毛细管盒转移到毛细管盒洗涤器410中清洗,混合板用于随后的离心步骤,以加入试剂。
为了加入试剂,将第二组毛细管盒(反应毛细管盒)浸入含有测序试剂(如前段所述制备)的小孔,倒置在相同384孔平板的相同小孔上。将反应毛细管盒和混合板放入离心机,在3,000xg下自旋5秒钟,从离心机中取出。此时每孔含有500nL模板DNA和500nL测序试剂,形成最终的反应混合物。然后将第二组毛细管盒(用于加入试剂)浸入混合板中的1μL混合物,向反应毛细管盒的毛细管填充500nL。
将毛细管盒插入基于空气的热循环器内室,如本文图7A-C所述,在那里是这样密封毛细管节段末端的,将毛细管末端压在可变形膜264a和264b上。95℃2秒、55℃2秒和72℃60秒的30次循环后,打开热循环器,取出毛细管末端,脱离与可变形膜的接触。取出毛细管盒,放置在96孔“汇集板”顶部,使毛细管短端插入小孔。将毛细管盒和混合板放入离心机,加入平衡板。反应产物被离心力(~2500xg)分配到含有40μL 80%异丙醇的微量滴定板中。最初的反应后,如本文所述洗涤毛细管。在四组独立的毛细管盒中进行四次染剂-引物反应,并且将四组反应产物汇集到96孔汇集微量滴定板小孔中之后,随后将样本在3000xg下离心30分钟。小心地倒置自旋以滗去醇,将样本再次悬浮在5μL ddH2O中,用于电动注射,和用MegaBACETM毛细管阵列电泳进行分析。
用MegaBACETM进行DNA测序片段的分析,这是一种96支毛细管阵列电泳仪器(Molecular Dynamics,Sunnyvale,CA),使用扫描聚焦激光诱导的荧光检测。在62cm长、75μm I.D.、200μm O.D.熔融二氧化硅毛细管中进行分离,工作分离距离为40cm。通过乙烯基与毛细管表面的格利雅偶联和丙烯酰胺聚合减少电渗流。向毛细管填充3%线性聚丙烯酰胺的新鲜溶液(MegaBACETM Long Read Matrix,Amersham LifeSciences,Piscataway,NJ),在高压作用下泵送穿过毛细管,从阳极室到达阴极室96孔缓冲板的各孔内。每孔填充100μL Tris-TAPS运行缓冲液(30mM Tris,100mM TAPS,1mM EDTA,pH 8.0)。平衡基质达20分钟,然后在180V/cm下预电泳5分钟。在样本注射之前,阴极毛细管末端和电极用重蒸馏水(ddH2O)冲洗,以除去残留的LPA,然后进行样本注射。
按照指定条件,从96孔微量滴定板以恒定电压电动注射DNA测序样本;关于500nL样本的一种优选注射条件是在2kV电压下注射40秒。注射后,毛细管末端用水冲洗,将缓冲板放置在阴极室内,开始进行电泳。分离通常在8kV下进行120分钟。利用LabBench软件(Molecular Dynamics,Sunnyvale,CA)进行计算机控制的仪器自动化和数据收集。具体注射和运行条件因所要分析的反应混合物而异。
所述亚微升染剂-引物循环测序方法的可再现性如图9所示。该直方图显示不同可读长度箱中的样本百分率,显示该方法的可再现性高。所测序的DNA插入片段有80%以上具有600个碱基以上的可读长度。总之,这种96份样本板得到55,000个高质量“Phred 20”碱基,平均可读长度为605个碱基。
实施例2
用毛细管电泳微芯片分析的染剂-引物DNA测序
在另一种分析实例中,在相同毛细管盒内进行的染剂-引物反应是这样分析的,直接注射到16通道微型构造的“基于芯片的”分析仪内,详细描述参见S.Liu,H.Ren,Q.Gao,D.J.Roach,R.T.LoderJr.,T.M.Armstrong,Q.Mao,I.Blaga,D.L.Barker和S.B.Jovanovich《美国国家科学院院报》5-00。16通道芯片是这样构成的,粘合两层玻璃圆片,顶层圆片具有50um深100um宽的通道,用标准微型构造法浸蚀而成。浸蚀模式是两个8通道组的组合,各自共用一个阳极贮器。十六个阴极贮器按4.5mm等距排成一线,十六个样本贮器和十六个废液贮器也是如此。钻孔穿过顶层浸蚀圆片,形成这些贮器。来自连接主分离通道的样本贮器和废液贮器的通道支管构成十六只250μm长的双T注射器。在检测区中相邻通道之间的距离(中心到中心)是600μm。两个对准孔用于对准芯片与检测器。
本例中,如上所述进行被ddT终止的染剂-引物反应,分配到含有1.5μL ddH2O的微芯片的样本孔内。分别向废液与阴极贮器施加50与10伏特电压进行样本注射,通常达60秒,同时研磨样本与阳极贮器。在样本注射之后,立即向阳极贮器施加2,000伏特电压,向样本与废液贮器施加140伏特电压,进行分离,同时研磨阴极贮器。相应的分离场强度约为227V/cm。收集激光诱导的荧光,使之数字化,加工成电泳图,如图10所示。电泳图示范在所述毛细管盒系统中进行的反应的微芯片分析。
实施例3
染剂-终止子循环测序与醇沉淀纯化
在毛细管阵列电泳之前使用毛细管盒系统和醇沉淀进行净化,示范染剂-终止子循环测序。本例中,测序反应混合物是这样制备的,混合400μL测序试剂(动态ET终止子试剂盒,Amersham PharmaciaBiotech,Part 81600)与100μL 5pmol/μL M13-28 FWD引物(5’-TGT AAAACG ACG GCC AGT-3’)。向96孔“试剂”板分布5μL等分试样的反应混合物。按与实施例1所述相同的步骤系列进行模板DNA与测序试剂的混合,转移毛细管盒用于转移500nL DNA样本,反应毛细管盒用于转移500nL测序试剂从试剂板到混合板小孔。然后向该同一反应毛细管盒通过毛细作用填充模板/试剂混合物。
将毛细管盒转移到基于空气的热循环器内,在热循环器内的可变形膜之间密封毛细管。用95℃2秒、55℃2秒和60℃60秒的30次循环实现热循环。热循环之后,从循环室取出毛细管盒,用离心力(3000xg)分配毛细管内容物到含有40μL 80%乙醇的96孔平板中。将样本在3000xg下离心30分钟。小心地倒置自旋以滗去醇,将样本再次悬浮在5μL ddH2O中,用于电动注射,和用MegaBACETM毛细管阵列电泳进行分析。用醇沉淀法净化染剂-终止子反应,该技术的可再现性和在“真实世界”模板中的应用以图11表示,这是成功百分率对可读长度的直方图。图11示范用M13亚克隆插入片段获得优异的可读长度和成功率,该片段是从小鼠细菌人工染色体的亚克隆文库制备的。
实施例4
染剂-终止子循环测序与尺寸排阻纯化
在另一种实例中,如实施例3所述在500nL毛细管中进行染剂-终止子反应,反应产物被离心力分配到15μL ddH2O中。将15μL样本转移到含有45μL水合Sephadex G-50的滤板。将样本在910xg下通过Sephadex基质离心5分钟,在清洁的96孔注射板中收集fluent。将样本电动注射到MegaBACETM内,无需进一步脱水或加工。关于16份样本,所得平均可读长度为650个碱基,证明亚微升染剂-终止子测序与尺寸排阻纯化的相容性。
实施例5
质粒插入片段DNA的PCR扩增
本项技术使用所公开的系统进行插入片段DNA(例如来自DNA文库的亚克隆插入片段)的PCR扩增。PCR反应混合物是这样制备的,混合5μL 10μM M13-40 FWD引物(5’GTT TTC CCA GTC ACG AC 3’)和5μL 10μM-40 REV引物(5’GGA TAACAA TTT CAC ACA GG 3’)与25μL10x GeneAmp缓冲液、15μL 25mM MgCl2、5μL Ampl iTaq Gold、2.5μL1mg/ml牛血清白蛋白(BSA)和67.5μL ddH2O。将该混合物按相等体积分在十六支0.20ml管子内。
利用所述双毛细管盒和混合板法混合模板DNA与PCR鸡尾酒,引发反应。将转移毛细管盒浸入亚克隆文库的甘油储备溶液,被离心力分配到384孔平板的小孔内。第二组“反应”毛细管盒用于通过离心力转移500nL PCR鸡尾酒到相同小孔内。随后将反应毛细管盒的毛细管浸入模板DNA与PCR试剂的组合混合物,通过毛细作用填充毛细管。扩增是这样进行的,将毛细管放置在循环室内,热循环的活化步骤是95℃12分,然后是64℃4.5分和95℃5秒的30次循环。
用琼脂糖凝胶电泳分析PCR产物,并对比由在0.20ml管子内进行的全体积(25μL)反应所扩增的相同亚克隆体。纳规模毛细管盒样本被离心力分配到4.5μL ddH2O中。利用小体积移液器手工转移全体积反应的等体积试样。向各为5μL的样本中加入1μL 6x负载染剂,将样本定量转移到琼脂糖凝胶的小孔中。使用0.7%琼脂糖凝胶和1X Tris-乙酸盐-EDTA缓冲液pH8.0进行琼脂糖凝胶电泳。在15V/cm下分离样本达40分钟,用Sybr Green II(Molecular Probes,Eugene,OR)染色,用两维荧光扫描仪(FluorImager,Molecular Dynamics,Sunnyvale,CA)成像。所扫描的凝胶图象显示在图12A和图12B中。可以看到,按全体积(图12A)和500nL体积(图12B)制备的样本具有相同的分子量分布。本例证明,纳规模样本制备可以用于PCR反应,产物可以用传统的大规模分析方法进行分析,例如琼脂糖凝胶电泳。
实施例6
PCR扩增和循环测序
利用本发明制备循环测序样本的优选方式是在毛细管盒和有关器械中制备纳规模PCR样本,进行大规模ExoI/SAP反应,然后在毛细管盒和有关器械中进行循环测序。从甘油储备亚克隆体进行PCR扩增,示范用于DNA测序的纳规模PCR模板制备物。甘油储备亚克隆体是在毛细管盒内通过PCR和有关硬件扩增的,如实施例5所述。PCR扩增后,毛细管内容物被离心分配到96孔平板的小孔内,其中含有4.5μL7.5mU虾碱性磷酸酶(SAP)和37.5mU外切核酸酶I(ExoI)。PCR产物和ExoI/SAP溶液在37℃下培养5分钟,以消化未掺入的引物和脱磷酸化未掺入的核苷酸。最初的培养之后,加热溶液至72℃达15分钟,使酶灭活。
将ExoI/SAP处理的PCR产物用转移毛细管盒和离心分配作用等分到新鲜的384孔混合板。将染剂-终止子测序试剂的等分试样用另一组毛细管盒、即反应毛细管盒和离心分离作用加入到500nL纯化PCR产物中。然后将毛细管盒浸入1μL反应混合物,填充反应毛细管盒的毛细管。按照实施例3扩增模板,如上所述分配到40μL 80%乙醇中和纯化。利用电动注射,用MegaBACETM进行测序反应的分析。图13显示来自亚克隆模板的六个碱基的部分,称为测序电泳图,该模板是通过纳规模PCR扩增从甘油储备溶液和通过纳规模循环测序制备的。在毛细管盒中进行PCR,随后转移反应混合物到微量板,本系统可以简化从纳规模(小于1μL体积)到纳规模反应体积以上的转变。本系统还可以简化从大规模(大于1μL体积)到纳规模反应体积的转变,利用ExoI/SAP反应在毛细管盒中进行循环测序显示了这一点。
实施例7
在亚微升毛细管盒中进行的等温酶反应
用β-半乳糖苷酶催化的β-D-β-半乳糖苷酶水解为荧光团试卤灵的荧光酶测定法示范所述系统用于进行酶反应的用途。在96支毛细管盒的毛细管内和对照全体积反应中进行β-半乳糖苷酶催化的试卤灵-β-D-半乳糖苷酶(RBG)水解,其中β-Gal水解RBG。
从5ml缓冲液(100mM Tris-HCl,20mM KCl,2mM MgCl2)和5mg RBG制备RBG的35μM储备溶液,剧烈涡旋,通过0.40微米滤器过滤溶液,然后加入等体积缓冲液。然后从储备溶液制备RBG的稀释曲线。在0.20ml管子内准备各为10μL的RBG溶液,向其中加入200ug β-半乳糖苷酶,简单混合后,通过毛细作用填充毛细管盒。将毛细管盒放置在空气循环器内,在37℃下2分钟后,取出毛细管盒,从毛细管离心出内容物到含有5μL 1M碳酸钠的384孔扫描板中。随后向扫描板的小孔填充50μL ddH2O。按平行方式,将0.2ml管子在37℃下培养2分钟,加入1M碳酸钠终止全体积反应。将在0.20ml管子内进行的酶反应所得对照等分试样加入到扫描板上。
简单地向毛细管盒填充β-半乳糖苷酶的20μg/ml溶液,以结合毛细管表面,然后除去过量液体,利用所述毛细管盒洗涤歧管干燥毛细管盒,用该系统还示范β-半乳糖苷酶的固相捕获。β-半乳糖苷酶结合后,通过毛细作用向毛细管填充RBG溶液。使反应在37℃下进行2分钟,在扫描板内分配到1M碳酸钠中,并用水稀释,进行分析。
一旦所有三套反应(全体积、毛细管盒和带有固相捕获的毛细管盒)已被加入到扫描板中后,用荧光平板读数器(Typhoon,MolecularDynamics,Sunnyvale,CA)读取平板。在0.2ml管子中进行的标准曲线(管子反应)、在没有固相捕获的毛细管盒中进行的反应(毛细管反应)和在带有固相捕获的毛细管盒中进行的反应(毛细管与结合反应)的结果总结在图14中。图14显示关于管子反应的预期信号对底物浓度和关于在毛细管盒中进行的预混合酶反应与毛细管结合β-半乳糖苷酶测定的信号数据点。
本例起到阐述所述系统进行一定范围的通用酶活性与抑制作用测定的相容性的作用。另外还证明,固相捕获能够应用于蛋白质和酶以及DNA。最后显示,所述系统能够应用于等温反应。
实施例8
模板纯化
本例证明本发明方法的有效性,它能够用于纯化模板DNA,除去干扰测序反应的污染物,还证明高质量序列数据的获得。
利用与熔融二氧化硅毛细管内表面的直接可逆结合,模板捕获净化PCR产物为DNA测序模板。利用ET染剂-终止子循环测序法,在150μm内径毛细管中进行500nl体积序列反应,在MegaBACETM上分析,利用2kV、30s注射。图17A显示在测序之前与反应混合物混合的PCR产物的测序结果。图17B显示首先混合PCR模板与硫氰酸钠,使DNA与毛细管内表面结合,用80%乙醇洗涤DNA,然后测序的结果。
核酸归一化实施例
下列实施例证明本发明方法的有用性和有效性,用于归一化被直接与可逆固定在毛细管内部的核酸的量。
实施例9
对M13、质粒和PCR产物DNA的模板归一化作用
图18代表模板捕获方案之后所保留的DNA质量。关于M13(▲)、质粒(●)和PCR产物(■),所结合的DNA量保持恒定在高于40ng起始模板。
模板DNA是这样制备的,通过M13mp18和PUC19 DNA的限制消化,分别生成线性单链与线性双链DNA。利用[γ-32P]ATP和T4多核苷酸激酶,将这些模板以及800bp PCR产物(标准扩增条件)用32P进行末端标记。将被标记的DNA接种到相同类型的未标记模板内,生成关于被接种DNA溶液的校准曲线。将储备DNA与10M硫氰酸钠混合,装入500nl熔融二氧化硅毛细管,进行模板结合。培养10分钟,用80%乙醇洗涤后,将毛细管置于闪烁液中,量化。图18显示关于三种来源模板DNA的限定性归一化。
实施例10
对可读长度的模板捕获归一化作用
图19显示关于通过预混合DNA与测序试剂所制备的样本(▲)和通过模板捕获所制备的样本(●)的可读长度对起始DNA质量的图。归一化作用是突出的,因为关于模板捕获样本所得可读长度几乎是恒定的,而关于预混合样本,在高于20ng起始DNA发生模板过载和可读长度减少。
混合储备M13mp18 DNA与10M硫氰酸钠,装入500nl熔融二氧化硅毛细管,进行模板结合。培养10分钟,用80%乙醇洗涤,向毛细管填充与M13-40FWD测序引物预混合的ET终止子。制成体积为10μl的预混合试剂,装入清洁的样本制备毛细管中。如前所述进行基于空气的循环测序,然后是乙醇沉淀和MegaBACETM分析,条件是2kV、30秒注射、8kV、120分钟运转时间。
实施例11
模板捕获聚合酶链反应与归一化
在所示起始量的M13mp18的模板结合之后进行PCR反应。与M13-100 FWD和M13-400 REV引物的标准PCR扩增反应是在500nl毛细管盒中进行的,条件是95℃10秒、55℃10秒和72℃120秒。反应产物被离心分配到加载缓冲液中,转移到1.5%琼脂糖凝胶中。将产物用SYBR Green染剂染色,用Fluorimager仪成像,如图20所示。
实施例12
对峰高度与迁移时间的模板捕获归一化作用和关于预混合样本的峰高度与迁移时间
对峰高度与迁移时间的模板捕获归一化作用。图21代表用递增模板浓度所得相对信号强度,表示为峰79、峰308和峰604(电泳色谱图中早期、中期和晚期ddT-终止的峰)的强度。峰强度增加至40ng/μl后稳定,峰高度确认了归一化作用和模板捕获技术的饱和水平。第一峰的迁移时间在不同模板浓度下是相对稳定的。
关于预混合样本的峰高度与迁移时间。图22显示峰高度随着模板浓度增加而增加,由于测序样本过载而达到最大值。过量模板DNA抑制电动注射,减少样本运行中的电流,所以增加样本穿过毛细管的迁移时间。
实施例13
对克隆体的甘油储备液直接进行纳规模的循环测序
如果能够排除涉及从所克隆的细菌细胞DNA制备测序样本的很多步骤中的一些,就能够简化关于DNA测序的样本制备。典型的毛细管电泳分析中,使细菌细胞生长、溶解,进行PCR扩增,然后是ExoI/SAP净化,再循环测序。本发明提供简化工作流程的方法,对克隆体的甘油储备液直接进行循环测序。将等体积甘油储备液和10M NaSCN吸入96通道500nl毛细管盒。在美国未决申请No.09/577,199所公开的空气循环器内,在60℃下进行五分钟结合,其全文引用在此作为参考文献。在美国未决申请No.09/577,199所公开的毛细管盒洗涤器内,将毛细管盒用80%乙醇洗液洗涤,用流动的氮干燥。然后通过毛细作用向毛细管盒填充引物、ET终止子预混合物与水的1∶4∶5混合物,在空气循环器内循环。关于ET终止子的循环方案如上实施例1所述。离心(在4℃和3220g下30分钟)分配样本到含有80%乙醇的微量滴定板中,进行乙醇沉淀。滗析和在50g下倒置自旋30秒以除去乙醇后,将样本再次悬浮在5ul水中。然后将样本注射到MegaBACETM中,条件是2kV、30秒注射,然后是8kV、140分钟分离。用序列分析仪软件(Molecular Dynamics)分析数据,然后处理,以测定Phred 20碱基召集分(calling scores)。图23A和B显示用这种方法所得痕迹,Phred 20分为561个碱基。本例证明本发明对细菌的冷冻甘油储备液直接测序的应用。对技术人员来说将显而易见的是,该方法可应用于生长在琼脂平板或类似固体生长培养基上的细菌集落的测序,与平板是新鲜的还是干燥的无关。
实施例14
基因型形成与核酸的纳规模单碱基延长
本发明可用于进行纳规模的基因型形成反应。
单碱基延长(SBE)反应是在96通道毛细管盒中进行的。单碱基延长分析由DNA引物的单碱基延长组成,该引物立即终止于所要访问的碱基之前。制备25ul PCR反应物,含有5ng/ul基因组人DNA、1μM正向与反向引物、缓冲剂、MgCl2和AmpliTaq Gold。PCR循环是96℃12分,再94℃20秒、60℃20秒和72℃30秒的35次循环,然后是72℃2分。向25μl PCR产物中加入9单位SAP和45单位Exo I而进行ExoI/SAP净化。将反应物在37℃下培养45分钟,然后加热至95℃达15分钟使ExoI/SAP酶变性。
关于全体积对照反应,向10μl ExoI/SAP处理的PCR产物中加入9μl SBE预混合物,含有荧光标记的二脱氧终止子、DNA聚合酶、缓冲溶液和1μl 2μM引物。关于500nl毛细管盒中的反应,通过毛细作用加载样本。
通过96℃10秒、50℃5秒、60℃30秒的25次循环进行单碱基延长反应。关于全体积对照样本,热循环是在MJ Research四元组(一种热循环机)内进行的,或者关于毛细管盒样本,热循环是在空气循环器内进行的,该循环器公开在美国未决申请No.09/577,199中,全文引用在此作为参考。将样本分配到水中,注射到MegaBACETM中,进行分析。
图24证明,基于毛细管的反应能够正确地鉴别单核苷酸的多态性。痕迹1、3和4得自在被访问碱基处纯合的样本。痕迹2得自在被访问碱基处杂合的样本,证明利用纳规模反应能够检测等位基因的多态性。信号本质上与全体积反应所得结果相同。
从PCR到SBE的全部过程都是利用毛细管盒完成的。
如本申请所述毛细管中的模板捕获用于这种纳规模单碱基延长反应的改进版本,提供甚至更好的结果。
对技术人员将显而易见的是使用逆转录酶和荧光标记核糖核苷酸进行的信使RNA的单碱基延长允许使用mRNA作为基因组DNA的替代选择形成基因型。
实施例15
纳规模的基因型形成与被扩增片段长度的多态性
本发明的方法可用于进行纳升体积的AFLP(被扩增片段长度的多态性)反应。为了进行AFLP反应,将基因组DNA用限制酶对消化。使片段与接头连接,扩增成某一长度的扩增片段,反应按某一取向进行,这由所用两种限制酶决定,或者,利用简并引物直接通过PCR扩增。用毛细管电泳分析被扩增的片段。AFLP分析法用于生成基因组的“表现形式”,也称为扩增子,具有可变的片段以及恒定的片段。扩增子用于评价生物种群的多样性,或绘制生物的基因组图,其中几乎没有序列和标记物信息可供利用。
实施例16
纳规模的基因型形成与直接显示分析
本发明的方法可用于进行纳升体积的直接显示分析。为了进行直接显示分析反应,将互补DNA用限制酶对消化。使片段与接头连接,扩增某一长度的片段,反应按某一取向进行,这取决于所用两种限制酶,或者,利用简并引物直接通过PCR扩增。用毛细管电泳分析被扩增的片段。直接显示分析法用于生成转录组(transcriptosome)的“表现形式”,具有可变的片段以及恒定的片段。直接显示分析用于评价生物之间表达水平的定量变化或由环境或生理作用引起的差异。
实施例17
通过微卫星分析进行纳规模基因型形成
本发明的方法可用于通过微卫星分析进行纳升体积的基因型形成。为了通过微卫星分析反应进行基因型形成,用标记物系列进行基因组DNA的PCR扩增,例如PE Applied Biosystems Linkage MappingSets。例如,利用四色分析法,在约30分钟内分析96份人样本的12种基因型系列。三种颜色用于四套引物,第四种颜色提供内部尺寸标准。
根据引物系列厂商的建议进行PCR设置和热循环。聚合酶链反应混合物的一个实例如下:
成分
体积
10X Gold缓冲液 1.50μl
MgCl2(25mM) 1.50μl
dNTP混合物(2.5mM) 1.50μl
引物混合物 1.00μl
AmpliTaq Gold 0.12μl
无菌蒸馏水
1.38μl
7.00μl
DNA(5ng/μl)
8.00μl
15.0μl每孔引物混合物含有正向与反向引物,各自的最终浓度为5μM。热循环器程序的一个实例如下:
温度
时间
循环次数
95℃ 12分 1次
94℃ 15秒
55℃ 15秒
72℃ 30秒 10次
89℃ 15秒
55℃ 15秒
72℃ 30秒 20次
72℃ 10分 1次
汇集
将密封后的PCR样本托盘贮存在-20℃下。
首先,汇集各1μl PCR产物,然后加入水使最终体积达到约15至20μl。然后,透析样本。在0.1X TE中进行透析15分钟,然后将所汇集的PCR样本加载到MegaBACETM中。
加载为加载到MegaBACETM上,制备样品,如下所述:
成分
体积
脱盐后的PCR汇集物 2.00ul
ET400-R尺寸标准 0.25ul
甲酰胺加载溶液
2.75ul
总加载体积 5.00ul
实施例18
与核酸的纳规模酶反应
本发明有利地用于与核酸进行纳升体积的纳规模酶反应。将核酸固定在按照本发明方法准备的反应室中,例如玻璃毛细管。向毛细管填充反应混合物,混合物包含一种或多种不同的酶,例如限制酶。
典型的限制酶消化是在总计20μl的体积中进行的,其中包括0.2至1.5μg底物DNA和2-10倍过量于DNA的限制酶。在反应管内混合反应缓冲液、酶、水和DNA,在37℃下培养1至4小时。按照本发明,使模板DNA与毛细管内表面结合。然后通过毛细作用向毛细管抽入限制酶(例如Hind III)在1x KGB缓冲液(100mM谷氨酸钾、25mM Tris-乙酸盐,pH 7.5、10mM硫酸镁、50μg/ml牛血清白蛋白和1mM β-巯基乙醇)中的预混合物。将反应物在37℃下培养指定时间,然后将内容物分配在凝胶加载缓冲液中,用于琼脂糖凝胶尺寸分级,或者分配到含有10mM EDTA的溶液中。
其他包含不同酶的反应也是可能的。这些酶包括但不限于甲基化酶、DNA依赖性DNA聚合酶、末端转移酶、RNA依赖性DNA聚合酶、DNA依赖性RNA聚合酶、磷酸酶、激酶、外切核酸酶(例如Sl或绿豆核酸酶)、其他核酸酶、核糖核酸酶、或DNA或RNA连接酶。对大多数这些反应来说,控制核酸与酶的比例是反应过程成功的关键。
本申请的使用有益地减少与浓度依赖性与核酸的酶反应有关的误差,以及减少宝贵的酶的消耗。此外,通过洗涤,本发明方法的使用有效消除残留离子,例如乙酸铵、EDTA和氯化锂,以及其他污染物,例如干扰酶活性的多糖。
实施例19
直接从微阵列点样板测序
为了确保利用微阵列所生成的数据的完整性,有必要确信知道被点样DNA序列的同一性。PCR经常用于生成所要点样的DNA,正如本领域所熟知的,Taq和有关热稳定性聚合酶随着扩增模板,在每千对中引入一定数量错误碱基对。如果错误已被引入,必须检出它们,弃去其中被扩增产物或数据。通常,这需要大量独立于与PCR产物点样有关的加工步骤。不过,本发明实施方式的使用大大增加序列确认的效率。
利用本发明的方法实现一系列微阵列点样样本序列的确认如下。
从人基因组DNA模板的平均500bp的PCR产物制备微阵列点样样本。将产物用标准盐酸胍鎓玻璃滤板加工法纯化,与等体积10M硫氰酸钠混合。将样本排列在微量滴定板(“点样板”)中,用于随后向微阵列玻片点样。
为了确认PCR产物序列和微阵列杂交玻片上的位置排列,进行测序反应:将96支毛细管盒末端浸入点样板,使DNA与毛细管内表面结合。用80%乙醇洗涤后,向毛细管填充测序混合物,其中含有缓冲剂、聚合酶、染剂标记的二脱氧核苷酸和浓度为1x的测序引物。热循环(95℃5秒、55℃5秒和60℃60秒的30次循环)后,通过乙醇沉淀纯化测序反应物,用MegaBACETM分析。
本例中,60份样本得到经过证实的序列,平均可读长度为335个碱基(最大450bp)。通过直接对点在阵列上的相同制备物和来源进行测序,我们解决了PCR产物的位置或同一性上的含糊性。
实施例20
PCR产物的直接测序,无需预先除去PCR核苷酸和引物
本发明的方法已经用于在测序之前简化PCR产物的纯化。通常,在循环测序之前需要使用外切核酸酶I(ExoI)和北极虾碱性磷酸酶(SAP)进行PCR产物的酶纯化,以除去引物和过量dNTP。不过,因为模板结合是尺寸依赖性的,反而能够这样从模板中除去未掺入引物和剩余核苷酸:使模板与毛细管进行差别结合,然后洗涤除去核苷酸和引物。这种方法避免PCR产物的酶净化,大大简化总的工作流程。
作为证明,对含有小鼠亚克隆插入片段的M13 DNA的96 PCR产物直接测序,无需在PCR扩增后进行酶纯化。
使用含有小鼠基因组DNA的亚克隆插入片段(约2000bp)的M13模板进行PCR扩增反应。M13模板预先通过聚乙二醇沉淀和洗涤剂溶剂化(Thermomax)制备,稀释200倍,重新排列在96孔微量滴定板中。
将该溶液的2μl等分试样转移到用下列组分制备的PCR扩增混合物中:2.5μL 10X GeneAmp缓冲剂,0.2μL 25mM每种dNTP,0.5μL 10μMM13-40FWD(GTT TTC CCA GTC ACG AC),0.5μL 10μM M13-40REV引物(GGAFAA CAA TTT CAC ACA GG),1.5μL 25mM氯化镁,0.5μL 5U/μLAmpliTaq聚合酶和17.3μL水。混合、密封平板后,进行热循环反应,在95℃ 10秒、55℃ 10秒和72℃2分下循环三十次。PCR扩增后,取出5μL等分试样,在独立的96孔平板中与5μL 10M硫氰酸钠混合。
将96支毛细管盒的毛细管浸入离液剂-PCR产物混合物中,然后填充毛细管盒。在60℃下培养5分钟后,在真空下拖入80%乙醇穿过毛细管,除去残留的离液剂、未结合的缓冲组分和DNA。用气流干燥内表面1分钟后,将毛细管浸入测序混合物中,其中含有ET终止子反应混合物的1x溶液和正向测序引物M13-21FWD(TGT AAA ACG ACG GCCAGT)。
在气-热循环中密封毛细管末端,进行循环测序。反应在95℃5秒、55℃5秒和60℃60秒下循环30次。利用离心力分配循环测序产物到含有40μL 80%乙醇的微量滴定板中。在3000xg下离心30分钟后,滗去乙醇,将形成颗粒的DNA再次悬浮在5μL ddH2O中,用MegaBACETM分析样本。
关于这96份样本,实现了550个碱基的平均可读长度,通过率为83%,总计44000个碱基。该程序已被重复5000份样本以上,证明优于全体积与酶纯化反应。
本文提到的所有专利、专利申请和其他出版物都全文引用在此作为参考,如同各自被单独和具体引用在此作为参考文献。尽管描述了本发明优选的例证性实施方式,不过本领域技术人员将领会到,本发明可以通过所述实施方式以外的方式加以实施,所述实施方式仅供阐述绝非限制。本发明仅受权利要求书的限定。
Claims (24)
1.一种从第一和第二样品获得大致相同量的核酸的方法,包括:
直接将得自所述第一样品的核酸可饱和地结合在第一毛细管的内表面上,方法是将所述内表面与一种包含核酸和离液剂的溶液接触足以使该核酸被可饱和地结合到所述内表面上的一段时间;和
直接将得自所述第二样品的核酸可饱和地结合在第二毛细管的内表面上,方法是将所述内表面与一种包含核酸和离液剂的溶液接触足以使该核酸被可饱和地结合到所述内表面上的一段时间,
其中,所述第一和第二毛细管的所述内表面分别能够从所述第一和第二样品中每一个可饱和地结合大致相同量的核酸。
2.权利要求1的方法,其中可饱和地结合到所述第一和第二毛细管的内表面上的核酸的量相差大约10%以下。
3.权利要求1的方法,其中所述两个结合步骤大体上是同时进行的。
4.权利要求1的方法,其中所述第二毛细管与所述第一毛细管是同样的毛细管,而且其中所述两个结合步骤是循环地进行的。
5.权利要求1的方法,在所述结合步骤之前进一步包含对于要可饱和地结合的核酸进行尺寸选择的步骤。
6.权利要求1的方法,在所述结合步骤之后进一步包含在酶反应中使用所述第一或第二毛细管任一个的核酸的步骤。
7.权利要求1的方法,其中所述第一或第二毛细管任一个的可饱和地结合的核酸是DNA。
8.权利要求7的方法,在所述结合步骤之后进一步包含在酶反应中使用所述第一或第二毛细管任一个的DNA的步骤。
9.权利要求8的方法,其中所述酶反应是DNA测序反应。
10.权利要求1的方法,其中所述第一或第二毛细管任一个包含玻璃。
11.权利要求1的方法,其中所述毛细管存在于一个阵列中。
12.权利要求11的方法,其中所述阵列包含至少8个毛细管。
13.权利要求11的方法,其中所述阵列包含至少16个毛细管。
14.权利要求11的方法,其中所述阵列包含至少96个毛细管。
15.权利要求1的方法,其中所述离液剂选自下组:脲、高氯酸钠、高氯酸钾、溴化钠、溴化钾、碘化钠、碘化钾、硫氰酸钠、硫氰酸钾、硫氰酸胍、异硫氰酸钠、异硫氰酸钾、盐酸胍、异硫氰酸胍、氯化锂、三氯乙酸钠、二甲基亚砜、四胺卤化物、氯化四乙胺和三氯乙酸钾。
16.权利要求1的方法,进一步包含除去该溶液的步骤,其中所述除去步骤发生在所述接触步骤之后。
17.权利要求16的方法,进一步包含洗涤所述第一或第二毛细管任一个的内表面的步骤,其中所述洗涤步骤发生在所述除去步骤之后。
18.权利要求17的方法,进一步包含干燥所述第一或第二毛细管任一个的内表面的步骤,其中所述干燥步骤发生在所述洗涤步骤之后。
19.一种分配归一化量的核酸的方法,包含:
直接将得自第一样品的核酸可饱和地结合在第一毛细管的内表面上,方法是将所述内表面与一种包含核酸和离液剂的溶液接触足以使该核酸被可饱和地结合到所述内表面上的一段时间;和
直接将得自第二样品的核酸可饱和地结合在第二毛细管的内表面上,方法是将所述内表面与一种包含核酸和离液剂的溶液接触足以使该核酸被可饱和地结合到所述内表面上的一段时间;和
从所述第一或第二毛细管任一个分配大体上所有可饱和地结合的核酸;
其中,所述第一和第二毛细管的所述内表面分别能够从第一和第二样品每一个可饱和地结合大致相同量的核酸。
20.权利要求19的方法,进一步包括在所述分配步骤之前从所述第一或第二毛细管任一个的内表面洗脱该核酸的步骤。
21.权利要求20的方法,其中所述核酸被分配在大约500-2000纳升的流体体积中。
22.权利要求20的方法,其中所述核酸被分配在大约1-500纳升的流体体积中。
23.一种使用归一化量的核酸在毛细管中进行酶反应的方法,包含:
使用归一化量的所述核酸在毛细管中进行所述酶反应,
所述核酸已经从其过量之中直接可饱和地结合到所述毛细管的内表面,方法是将所述内表面与一种包含核酸和离液剂的溶液接触足以使该核酸被可饱和地结合到所述内表面的一段时间;和
所述过量的核酸已从其中除去。
24.权利要求23的方法,进一步包含在所述过量核酸已从其中除去之后向所述毛细管引入一种酶反应混合物的步骤。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14673299P | 1999-08-02 | 1999-08-02 | |
US60/146,732 | 1999-08-02 | ||
US09/577,199 | 2000-05-23 | ||
US09/577,199 US6423536B1 (en) | 1999-08-02 | 2000-05-23 | Low volume chemical and biochemical reaction system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2004100431615A Division CN1560267A (zh) | 1999-08-02 | 2000-08-02 | 模板捕获与归一化亚微升反应的方法和装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1373813A CN1373813A (zh) | 2002-10-09 |
CN1156584C true CN1156584C (zh) | 2004-07-07 |
Family
ID=26844248
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2004100431615A Pending CN1560267A (zh) | 1999-08-02 | 2000-08-02 | 模板捕获与归一化亚微升反应的方法和装置 |
CNB008128707A Expired - Fee Related CN1156584C (zh) | 1999-08-02 | 2000-08-02 | 模板捕获与归一化亚微升反应的方法和装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2004100431615A Pending CN1560267A (zh) | 1999-08-02 | 2000-08-02 | 模板捕获与归一化亚微升反应的方法和装置 |
Country Status (9)
Country | Link |
---|---|
US (4) | US6423536B1 (zh) |
EP (2) | EP1200191A1 (zh) |
JP (2) | JP2003505711A (zh) |
CN (2) | CN1560267A (zh) |
AU (2) | AU6512700A (zh) |
CA (2) | CA2379969A1 (zh) |
DE (1) | DE20022783U1 (zh) |
GB (1) | GB2368032B (zh) |
WO (2) | WO2001009389A2 (zh) |
Families Citing this family (231)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6893877B2 (en) | 1998-01-12 | 2005-05-17 | Massachusetts Institute Of Technology | Methods for screening substances in a microwell array |
US8337753B2 (en) * | 1998-05-01 | 2012-12-25 | Gen-Probe Incorporated | Temperature-controlled incubator having a receptacle mixing mechanism |
ATE426456T1 (de) | 1998-05-01 | 2009-04-15 | Gen Probe Inc | Automatische diagnostische analysevorrichtung |
US6689323B2 (en) * | 1998-10-30 | 2004-02-10 | Agilent Technologies | Method and apparatus for liquid transfer |
AU762897B2 (en) * | 1999-02-16 | 2003-07-10 | Applera Corporation | Bead dispensing system |
CN1348396A (zh) | 1999-03-19 | 2002-05-08 | 金克克国际有限公司 | 用于高效筛选的多通孔测试板 |
EP1181548B1 (en) * | 1999-04-06 | 2007-03-21 | The University of Alabama at Birmingham Research Foundation | Method for screening crystallization conditions in solution crystal growth |
US7247490B2 (en) * | 1999-04-06 | 2007-07-24 | Uab Research Foundation | Method for screening crystallization conditions in solution crystal growth |
US20030022383A1 (en) * | 1999-04-06 | 2003-01-30 | Uab Research Foundation | Method for screening crystallization conditions in solution crystal growth |
US7214540B2 (en) * | 1999-04-06 | 2007-05-08 | Uab Research Foundation | Method for screening crystallization conditions in solution crystal growth |
US7250305B2 (en) * | 2001-07-30 | 2007-07-31 | Uab Research Foundation | Use of dye to distinguish salt and protein crystals under microcrystallization conditions |
US7244396B2 (en) * | 1999-04-06 | 2007-07-17 | Uab Research Foundation | Method for preparation of microarrays for screening of crystal growth conditions |
US7138254B2 (en) * | 1999-08-02 | 2006-11-21 | Ge Healthcare (Sv) Corp. | Methods and apparatus for performing submicroliter reactions with nucleic acids or proteins |
US6423536B1 (en) * | 1999-08-02 | 2002-07-23 | Molecular Dynamics, Inc. | Low volume chemical and biochemical reaction system |
CA2391758C (en) * | 1999-08-13 | 2010-02-16 | Cartesian Technologies, Inc. | Apparatus for liquid sample handling |
US20030027204A1 (en) * | 1999-09-03 | 2003-02-06 | Yokogawa Electric Corporation, A Japan Corporation | Method and apparatus for producing biochips |
JP3865107B2 (ja) * | 2000-05-26 | 2007-01-10 | 横河電機株式会社 | バイオチップ作製方法およびそれを用いたバイオチップ作製装置 |
CA2290731A1 (en) | 1999-11-26 | 2001-05-26 | D. Jed Harrison | Apparatus and method for trapping bead based reagents within microfluidic analysis system |
US6432290B1 (en) | 1999-11-26 | 2002-08-13 | The Governors Of The University Of Alberta | Apparatus and method for trapping bead based reagents within microfluidic analysis systems |
US7390459B2 (en) * | 1999-12-13 | 2008-06-24 | Illumina, Inc. | Oligonucleotide synthesizer |
US20020151040A1 (en) | 2000-02-18 | 2002-10-17 | Matthew O' Keefe | Apparatus and methods for parallel processing of microvolume liquid reactions |
US7867763B2 (en) | 2004-01-25 | 2011-01-11 | Fluidigm Corporation | Integrated chip carriers with thermocycler interfaces and methods of using the same |
DE10032730A1 (de) * | 2000-07-05 | 2002-01-24 | Nmi Univ Tuebingen | Trägerplatte und Verfahren zur Durchführung funktioneller Tests |
US6640891B1 (en) * | 2000-09-05 | 2003-11-04 | Kevin R. Oldenburg | Rapid thermal cycling device |
US20020100582A1 (en) * | 2000-09-05 | 2002-08-01 | Oldenburg Kevin R. | Rapid thermal cycling device |
US7025120B2 (en) * | 2000-09-05 | 2006-04-11 | Oldenburg Kevin R | Rapid thermal cycling device |
WO2002026386A2 (en) * | 2000-09-29 | 2002-04-04 | Avantium International B.V. | Assembly of an integrated vessel transporter and at least one reaction vessel for transporting a chemical substance |
JP2002228669A (ja) * | 2001-01-31 | 2002-08-14 | Shimadzu Corp | 液体移送器及び反応容器 |
DE10104025B4 (de) * | 2001-01-31 | 2008-07-10 | Qiagen North American Holdings, Inc. | Verfahren zur Aufreinigung und anschließenden Amplifikation von Doppelstrang-DNA |
US20030091473A1 (en) * | 2001-02-08 | 2003-05-15 | Downs Robert Charles | Automated centrifuge and method of using same |
US20070054393A1 (en) * | 2001-02-14 | 2007-03-08 | Markus Kehlenbeck | Dispensing device |
US7670429B2 (en) * | 2001-04-05 | 2010-03-02 | The California Institute Of Technology | High throughput screening of crystallization of materials |
US20050123970A1 (en) * | 2001-04-25 | 2005-06-09 | Can Ozbal | High throughput autosampler |
US8414774B2 (en) * | 2001-04-25 | 2013-04-09 | Agilent Technologies, Inc. | Systems and methods for high-throughput screening of fluidic samples |
US7588725B2 (en) * | 2001-04-25 | 2009-09-15 | Biotrove, Inc. | High throughput autosampler |
US20030119193A1 (en) * | 2001-04-25 | 2003-06-26 | Robert Hess | System and method for high throughput screening of droplets |
DK1389955T3 (da) * | 2001-05-10 | 2010-03-01 | Chempaq As | Indretning til at udtage prøve af små og præcise væskevolumener |
US6811752B2 (en) * | 2001-05-15 | 2004-11-02 | Biocrystal, Ltd. | Device having microchambers and microfluidics |
US20030073230A1 (en) * | 2001-06-01 | 2003-04-17 | Akyuz Can D. | Liquid handling system and method |
US7402286B2 (en) * | 2001-06-27 | 2008-07-22 | The Regents Of The University Of California | Capillary pins for high-efficiency microarray printing device |
US6855538B2 (en) * | 2001-06-27 | 2005-02-15 | The Regents Of The University Of California | High-efficiency microarray printing device |
KR100414157B1 (ko) * | 2001-09-28 | 2004-01-13 | 삼성전자주식회사 | 유체 샘플링 장치 및 이를 갖는 분석 장치 |
US20030108664A1 (en) * | 2001-10-05 | 2003-06-12 | Kodas Toivo T. | Methods and compositions for the formation of recessed electrical features on a substrate |
US7614444B2 (en) | 2002-01-08 | 2009-11-10 | Oldenburg Kevin R | Rapid thermal cycling device |
US7373968B2 (en) * | 2002-01-08 | 2008-05-20 | Kevin R. Oldenburg | Method and apparatus for manipulating an organic liquid sample |
JP3740528B2 (ja) * | 2002-02-05 | 2006-02-01 | 独立行政法人産業技術総合研究所 | 微細粒子製造方法 |
AU2003217369A1 (en) * | 2002-02-08 | 2003-09-02 | Amersham Biosciences (Sv) Corporation | Method and apparatus for performing submicroliter reactions with nucleic acids or proteins |
JP3933058B2 (ja) * | 2002-02-25 | 2007-06-20 | 日立化成工業株式会社 | マイクロ流体システム用支持ユニット及びその製造方法 |
FR2839979B1 (fr) * | 2002-05-21 | 2004-08-20 | Agronomique Inst Nat Rech | Dispositif de culture de cellules |
US20030217923A1 (en) * | 2002-05-24 | 2003-11-27 | Harrison D. Jed | Apparatus and method for trapping bead based reagents within microfluidic analysis systems |
US7273589B2 (en) * | 2002-05-28 | 2007-09-25 | Pss Bio Instruments, Inc. | Samples delivering device, method of manufacturing samples applicator, method of delivering samples, and base activation device |
US20070026528A1 (en) * | 2002-05-30 | 2007-02-01 | Delucas Lawrence J | Method for screening crystallization conditions in solution crystal growth |
US20040224329A1 (en) * | 2003-05-08 | 2004-11-11 | Gjerde Douglas T. | Three-dimensional solid phase extraction surfaces |
WO2004005898A1 (en) * | 2002-07-10 | 2004-01-15 | Uab Research Foundation | Method for distinguishing between biomolecule and non-biomolecule crystals |
US7452712B2 (en) | 2002-07-30 | 2008-11-18 | Applied Biosystems Inc. | Sample block apparatus and method of maintaining a microcard on a sample block |
US6997066B2 (en) * | 2002-08-07 | 2006-02-14 | Perkinelmer Las, Inc. | Dispensing apparatus |
US8277753B2 (en) | 2002-08-23 | 2012-10-02 | Life Technologies Corporation | Microfluidic transfer pin |
WO2004020673A1 (en) * | 2002-08-28 | 2004-03-11 | Millipore Corporation | Compositions of solution for sequencing reaction clean-up |
US9394332B2 (en) | 2002-08-29 | 2016-07-19 | Epigenomics Ag | Method for bisulfite treatment |
US7217542B2 (en) * | 2002-10-31 | 2007-05-15 | Hewlett-Packard Development Company, L.P. | Microfluidic system for analyzing nucleic acids |
US20060211055A1 (en) * | 2002-11-12 | 2006-09-21 | Caliper Life Sciences, Inc. | Capture and release assay system and method |
US7879580B2 (en) * | 2002-12-10 | 2011-02-01 | Massachusetts Institute Of Technology | Methods for high fidelity production of long nucleic acid molecules |
EP1571210A4 (en) * | 2002-12-10 | 2006-08-16 | Olympus Corp | METHOD FOR ANALYZING THE VARIATION OF NUCLEIC ACID MUTATION AND METHOD FOR GENE EXPRESSION ANALYSIS |
AU2003302264A1 (en) * | 2002-12-20 | 2004-09-09 | Biotrove, Inc. | Assay apparatus and method using microfluidic arrays |
US7195026B2 (en) * | 2002-12-27 | 2007-03-27 | American Air Liquide, Inc. | Micro electromechanical systems for delivering high purity fluids in a chemical delivery system |
CA2512071A1 (en) | 2002-12-30 | 2004-07-22 | The Regents Of The University Of California | Methods and apparatus for pathogen detection and analysis |
GB0303524D0 (en) * | 2003-02-15 | 2003-03-19 | Sec Dep For The Home Departmen | Improvements in and relating to the handling of dna |
US7435601B2 (en) * | 2003-02-19 | 2008-10-14 | Fitzco Incorporated | Biological specimen handling method |
US20040241872A1 (en) * | 2003-03-17 | 2004-12-02 | Qiagen Operon, Inc. | Optical detection liquid handling robot system |
EP1606419A1 (en) | 2003-03-18 | 2005-12-21 | Quantum Genetics Ireland Limited | Systems and methods for improving protein and milk production of dairy herds |
US7553455B1 (en) * | 2003-04-02 | 2009-06-30 | Sandia Corporation | Micromanifold assembly |
US20050058577A1 (en) * | 2003-04-08 | 2005-03-17 | Irm, Llc | Material removal and dispensing devices, systems, and methods |
WO2004099788A1 (ja) * | 2003-04-30 | 2004-11-18 | Riken | マイクロアレイ作製方法、マイクロアレイ作製用ヘッドおよび装置 |
CA2527342A1 (en) * | 2003-06-05 | 2004-12-16 | Bioprocessors Corp. | System and method for process automation |
EP1628754A2 (en) * | 2003-06-05 | 2006-03-01 | Bioprocessors Corporation | Apparatus and method for manipulating substrates |
JP3818277B2 (ja) | 2003-07-14 | 2006-09-06 | 株式会社日立製作所 | 化学反応デバイス、化学反応システムおよび化学反応方法 |
WO2005023091A2 (en) * | 2003-09-05 | 2005-03-17 | The Trustees Of Boston University | Method for non-invasive prenatal diagnosis |
US20050221358A1 (en) * | 2003-09-19 | 2005-10-06 | Carrillo Albert L | Pressure chamber clamp mechanism |
US20050226779A1 (en) * | 2003-09-19 | 2005-10-13 | Oldham Mark F | Vacuum assist for a microplate |
EP2322278B1 (en) * | 2003-10-24 | 2017-01-04 | Aushon Biosystems, Inc. | Apparatus and Method for Dispensing Fluid, Semi-Solid and Solid Samples |
WO2005064325A2 (en) * | 2003-12-23 | 2005-07-14 | Egene, Inc. | Bio-analysis cartridge tracking and protection mechanism |
DE502004010672D1 (de) | 2004-01-06 | 2010-03-11 | Thermo Electron Led Gmbh | Klimagerät mit keimdicht abgetrennten Bereichen |
US8592219B2 (en) * | 2005-01-17 | 2013-11-26 | Gyros Patent Ab | Protecting agent |
US20050196790A1 (en) * | 2004-02-05 | 2005-09-08 | U.S. Genomics, Inc. | Methods for detection and quantitation of minimum length polymers |
US20050202484A1 (en) | 2004-02-19 | 2005-09-15 | The Governors Of The University Of Alberta | Leptin promoter polymorphisms and uses thereof |
JP2007529015A (ja) | 2004-03-12 | 2007-10-18 | バイオトローブ, インコーポレイテッド | ナノリットルのアレイローディング |
US7223949B2 (en) * | 2004-04-21 | 2007-05-29 | Beckman Coulter, Inc. | Analysis apparatus having improved temperature control unit |
EP1758981A4 (en) * | 2004-05-28 | 2013-01-16 | Wafergen Inc | APPARATUS AND METHODS FOR PERFORMING MULTIPLEX ANALYZES |
US7799553B2 (en) * | 2004-06-01 | 2010-09-21 | The Regents Of The University Of California | Microfabricated integrated DNA analysis system |
US20050268943A1 (en) * | 2004-06-08 | 2005-12-08 | Arthur Schleifer | Microarray washing apparatus and method |
US20050282270A1 (en) * | 2004-06-21 | 2005-12-22 | Applera Corporation | System for thermally cycling biological samples with heated lid and pneumatic actuator |
US7692219B1 (en) | 2004-06-25 | 2010-04-06 | University Of Hawaii | Ultrasensitive biosensors |
US20060292558A1 (en) * | 2004-07-19 | 2006-12-28 | Cell Biosciences Inc. | Methods and apparatus for protein assay diagnostics |
US7846676B2 (en) * | 2004-07-19 | 2010-12-07 | Cell Biosciences, Inc. | Methods and devices for analyte detection |
EP2916128B1 (en) * | 2004-07-19 | 2019-04-03 | ProteinSimple | Method and device for analyte detection |
US20060292649A1 (en) * | 2004-07-19 | 2006-12-28 | Cell Biosciences Inc. | Methods and apparatus for reference lab diagnostics |
US7935479B2 (en) * | 2004-07-19 | 2011-05-03 | Cell Biosciences, Inc. | Methods and devices for analyte detection |
US20060024204A1 (en) * | 2004-08-02 | 2006-02-02 | Oldenburg Kevin R | Well plate sealing apparatus and method |
CN102759466A (zh) | 2004-09-15 | 2012-10-31 | 英特基因有限公司 | 微流体装置 |
US20060110764A1 (en) * | 2004-10-25 | 2006-05-25 | Tom Tang | Large-scale parallelized DNA sequencing |
US7785785B2 (en) | 2004-11-12 | 2010-08-31 | The Board Of Trustees Of The Leland Stanford Junior University | Charge perturbation detection system for DNA and other molecules |
US8480970B2 (en) | 2004-11-30 | 2013-07-09 | Hitachi Chemical Co., Ltd. | Analytical pretreatment device |
EP1849005A1 (en) * | 2005-01-17 | 2007-10-31 | Gyros Patent Ab | A method for detecting an at least bivalent analyte using two affinity reactants |
US20060166223A1 (en) * | 2005-01-26 | 2006-07-27 | Reed Michael W | DNA purification and analysis on nanoengineered surfaces |
WO2006086673A2 (en) * | 2005-02-09 | 2006-08-17 | Pacific Biosciences Of California, Inc. | Nucleotide compositions and uses thereof |
US20060228734A1 (en) * | 2005-03-18 | 2006-10-12 | Applera Corporation | Fluid processing device with captured reagent beads |
JP2008536128A (ja) * | 2005-04-09 | 2008-09-04 | セル バイオサイエンシズ,インコーポレイテッド | 自動化微小体積アッセイシステム |
US20060286378A1 (en) * | 2005-05-23 | 2006-12-21 | Shivkumar Chiruvolu | Nanostructured composite particles and corresponding processes |
JP2006329716A (ja) * | 2005-05-24 | 2006-12-07 | Ushio Inc | マイクロチップ測定装置 |
US20090136926A1 (en) * | 2005-05-30 | 2009-05-28 | Ralf Himmelreich | Device and method for standardizing nucleic acid concentrations |
WO2007035864A2 (en) * | 2005-09-20 | 2007-03-29 | Cell Biosciences, Inc. | Electrophoresis standards, methods and kits |
US7749365B2 (en) | 2006-02-01 | 2010-07-06 | IntegenX, Inc. | Optimized sample injection structures in microfluidic separations |
EP1979079A4 (en) | 2006-02-03 | 2012-11-28 | Integenx Inc | MICROFLUIDIC DEVICES |
US7766033B2 (en) * | 2006-03-22 | 2010-08-03 | The Regents Of The University Of California | Multiplexed latching valves for microfluidic devices and processors |
US20070258862A1 (en) * | 2006-05-02 | 2007-11-08 | Applera Corporation | Variable volume dispenser and method |
KR100785016B1 (ko) * | 2006-05-22 | 2007-12-12 | 삼성전자주식회사 | 단일 마이크로 챔버에서 핵산의 농축 및 증폭을 수행하는방법 및 장치 |
US7608399B2 (en) * | 2006-06-26 | 2009-10-27 | Blood Cell Storage, Inc. | Device and method for extraction and analysis of nucleic acids from biological samples |
DE102006033875A1 (de) * | 2006-07-21 | 2008-01-31 | Siemens Ag | Analysesystem basierend auf porösem Material für hochparallele Einzelzelldetektion |
US20080017512A1 (en) * | 2006-07-24 | 2008-01-24 | Bordunov Andrei V | Coatings for capillaries capable of capturing analytes |
US20080075635A1 (en) * | 2006-09-27 | 2008-03-27 | Hongjun Wang | Pipette Holder |
US8841116B2 (en) * | 2006-10-25 | 2014-09-23 | The Regents Of The University Of California | Inline-injection microdevice and microfabricated integrated DNA analysis system using same |
US11339430B2 (en) | 2007-07-10 | 2022-05-24 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
EP2639578B1 (en) | 2006-12-14 | 2016-09-14 | Life Technologies Corporation | Apparatus for measuring analytes using large scale fet arrays |
US8262900B2 (en) | 2006-12-14 | 2012-09-11 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8349167B2 (en) | 2006-12-14 | 2013-01-08 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
US8999636B2 (en) | 2007-01-08 | 2015-04-07 | Toxic Report Llc | Reaction chamber |
US20080175757A1 (en) * | 2007-01-19 | 2008-07-24 | Andrew Powell | Microarray device with elastomeric well structure |
CN101711257A (zh) | 2007-01-22 | 2010-05-19 | 瓦弗根公司 | 用于高通量化学反应的装置 |
WO2008115626A2 (en) | 2007-02-05 | 2008-09-25 | Microchip Biotechnologies, Inc. | Microfluidic and nanofluidic devices, systems, and applications |
US20090023156A1 (en) * | 2007-07-20 | 2009-01-22 | Voss Karl O | Methods and reagents for quantifying analytes |
WO2009015296A1 (en) | 2007-07-24 | 2009-01-29 | The Regents Of The University Of California | Microfabricated dropley generator |
US20090055243A1 (en) | 2007-08-21 | 2009-02-26 | Jayson Lee Lusk | Systems and methods for predicting a livestock marketing method |
CA3138078C (en) * | 2007-10-02 | 2024-02-13 | Labrador Diagnostics Llc | Modular point-of-care devices and uses thereof |
CA2703993A1 (en) * | 2007-11-02 | 2009-05-07 | Can Ozbal | Sample injection system |
WO2009117167A1 (en) * | 2008-01-02 | 2009-09-24 | Blood Cell Storage, Inc. | Devices and processes for nucleic acid extraction |
US20090253181A1 (en) | 2008-01-22 | 2009-10-08 | Microchip Biotechnologies, Inc. | Universal sample preparation system and use in an integrated analysis system |
US10107782B2 (en) | 2008-01-25 | 2018-10-23 | ProteinSimple | Method to perform limited two dimensional separation of proteins and other biologicals |
CN101990631B (zh) * | 2008-02-15 | 2014-08-06 | 3M创新有限公司 | 样品采集装置 |
US8247217B2 (en) * | 2008-02-15 | 2012-08-21 | Bio-Rad Laboratories, Inc. | Thermal cycler with self-adjusting lid |
US20110141465A1 (en) * | 2008-05-22 | 2011-06-16 | Waters Technologies Corporation | Light-Guiding Flow Cells And Analytical Devices Using The Same |
JP5667049B2 (ja) | 2008-06-25 | 2015-02-12 | ライフ テクノロジーズ コーポレーション | 大規模なfetアレイを用いて分析物を測定するための方法および装置 |
US20100035252A1 (en) * | 2008-08-08 | 2010-02-11 | Ion Torrent Systems Incorporated | Methods for sequencing individual nucleic acids under tension |
US20100055733A1 (en) * | 2008-09-04 | 2010-03-04 | Lutolf Matthias P | Manufacture and uses of reactive microcontact printing of biomolecules on soft hydrogels |
DE102008047790A1 (de) * | 2008-09-17 | 2010-04-15 | Qiagen Gmbh | Verfahren zur Normierung des Gehalts von Biomolekülen in einer Probe |
US8361716B2 (en) | 2008-10-03 | 2013-01-29 | Pathogenetix, Inc. | Focusing chamber |
US20100301398A1 (en) | 2009-05-29 | 2010-12-02 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes |
US20100137143A1 (en) | 2008-10-22 | 2010-06-03 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes |
US20100119454A1 (en) * | 2008-11-03 | 2010-05-13 | Ping Shen | Use of the conserved Drosophila NPFR1 system for uncovering interacting genes and pathways important in nociception and stress response |
CN102264899A (zh) * | 2008-11-04 | 2011-11-30 | 血细胞保存公司 | 弯曲的玻璃表面上的核酸提取 |
US9103782B2 (en) | 2008-12-02 | 2015-08-11 | Malvern Instruments Incorporated | Automatic isothermal titration microcalorimeter apparatus and method of use |
WO2010077322A1 (en) | 2008-12-31 | 2010-07-08 | Microchip Biotechnologies, Inc. | Instrument with microfluidic chip |
WO2010114842A1 (en) * | 2009-03-30 | 2010-10-07 | Ibis Biosciences, Inc. | Bioagent detection systems, devices, and methods |
US8673627B2 (en) | 2009-05-29 | 2014-03-18 | Life Technologies Corporation | Apparatus and methods for performing electrochemical reactions |
US8776573B2 (en) | 2009-05-29 | 2014-07-15 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US20120261274A1 (en) | 2009-05-29 | 2012-10-18 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US8388908B2 (en) | 2009-06-02 | 2013-03-05 | Integenx Inc. | Fluidic devices with diaphragm valves |
WO2010141921A1 (en) | 2009-06-05 | 2010-12-09 | Integenx Inc. | Universal sample preparation system and use in an integrated analysis system |
US8584703B2 (en) | 2009-12-01 | 2013-11-19 | Integenx Inc. | Device with diaphragm valve |
CN202823394U (zh) | 2010-01-19 | 2013-03-27 | 伊鲁米那股份有限公司 | 用于处理化学反应的设备和系统 |
US8512538B2 (en) | 2010-05-28 | 2013-08-20 | Integenx Inc. | Capillary electrophoresis device |
US8858782B2 (en) | 2010-06-30 | 2014-10-14 | Life Technologies Corporation | Ion-sensing charge-accumulation circuits and methods |
EP2589084B1 (en) | 2010-06-30 | 2016-11-16 | Life Technologies Corporation | Transistor circuits for detection and measurement of chemical reactions and compounds |
US20120001646A1 (en) | 2010-06-30 | 2012-01-05 | Life Technologies Corporation | Methods and apparatus for testing isfet arrays |
US11307166B2 (en) | 2010-07-01 | 2022-04-19 | Life Technologies Corporation | Column ADC |
EP2589065B1 (en) | 2010-07-03 | 2015-08-19 | Life Technologies Corporation | Chemically sensitive sensor with lightly doped drains |
US8763642B2 (en) | 2010-08-20 | 2014-07-01 | Integenx Inc. | Microfluidic devices with mechanically-sealed diaphragm valves |
WO2012024658A2 (en) | 2010-08-20 | 2012-02-23 | IntegenX, Inc. | Integrated analysis system |
EP2617061B1 (en) | 2010-09-15 | 2021-06-30 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
CN103299182A (zh) | 2010-09-24 | 2013-09-11 | 生命科技公司 | 匹配的晶体管对电路 |
JP5616309B2 (ja) | 2010-12-01 | 2014-10-29 | アークレイ株式会社 | デバイス及びその製造方法 |
EP2654955B1 (de) | 2010-12-20 | 2015-07-15 | Boehringer Ingelheim Microparts GmbH | Verfahren zum mischen wenigstens einer probenlösung mit reagenzien |
WO2012159063A2 (en) | 2011-05-19 | 2012-11-22 | Blood Cell Strorage, Inc. | Gravity flow fluidic device for nucleic acid extraction |
US9012375B2 (en) | 2011-07-25 | 2015-04-21 | Csir | Array printing |
US9029297B2 (en) | 2011-07-25 | 2015-05-12 | Csir | Array printing |
US9034797B2 (en) | 2011-07-25 | 2015-05-19 | Csir | Array printing |
US9664702B2 (en) | 2011-09-25 | 2017-05-30 | Theranos, Inc. | Fluid handling apparatus and configurations |
US8475739B2 (en) | 2011-09-25 | 2013-07-02 | Theranos, Inc. | Systems and methods for fluid handling |
US9632102B2 (en) | 2011-09-25 | 2017-04-25 | Theranos, Inc. | Systems and methods for multi-purpose analysis |
US20140170735A1 (en) | 2011-09-25 | 2014-06-19 | Elizabeth A. Holmes | Systems and methods for multi-analysis |
DK2756101T3 (en) | 2011-09-15 | 2018-08-27 | David A Shafer | PROBLEMS: ANTISON DETAIL COMPOSITIONS FOR DETECTING HIGH OR SPECIFIC DNA OR RNA |
US9810704B2 (en) | 2013-02-18 | 2017-11-07 | Theranos, Inc. | Systems and methods for multi-analysis |
US10865440B2 (en) | 2011-10-21 | 2020-12-15 | IntegenX, Inc. | Sample preparation, processing and analysis systems |
US20150136604A1 (en) | 2011-10-21 | 2015-05-21 | Integenx Inc. | Sample preparation, processing and analysis systems |
US9970984B2 (en) | 2011-12-01 | 2018-05-15 | Life Technologies Corporation | Method and apparatus for identifying defects in a chemical sensor array |
US8821798B2 (en) | 2012-01-19 | 2014-09-02 | Life Technologies Corporation | Titanium nitride as sensing layer for microwell structure |
US8747748B2 (en) | 2012-01-19 | 2014-06-10 | Life Technologies Corporation | Chemical sensor with conductive cup-shaped sensor surface |
JP6014865B2 (ja) * | 2012-03-22 | 2016-10-26 | 株式会社エンプラス | 液体分割方法及び液体分割用キット |
US8685708B2 (en) | 2012-04-18 | 2014-04-01 | Pathogenetix, Inc. | Device for preparing a sample |
EP2839276B1 (en) | 2012-04-19 | 2018-06-27 | ProteinSimple | Dual wavelength isoelectric focusing for determining drug load in antibody drug conjugates |
CN103421676B (zh) * | 2012-05-25 | 2016-04-20 | 国家纳米科学中心 | 一种核酸等温扩增反应系统及其制备方法和应用 |
US8786331B2 (en) | 2012-05-29 | 2014-07-22 | Life Technologies Corporation | System for reducing noise in a chemical sensor array |
US20140100102A1 (en) * | 2012-10-10 | 2014-04-10 | California Institute Of Technology | Devices and methods for cell lysis and sample preparation through centrifugation |
KR20150090037A (ko) * | 2012-11-27 | 2015-08-05 | 젠셀 바이오시스템즈 리미티드 | 액체 샘플의 취급 |
US9080968B2 (en) | 2013-01-04 | 2015-07-14 | Life Technologies Corporation | Methods and systems for point of use removal of sacrificial material |
US9841398B2 (en) | 2013-01-08 | 2017-12-12 | Life Technologies Corporation | Methods for manufacturing well structures for low-noise chemical sensors |
US8962366B2 (en) | 2013-01-28 | 2015-02-24 | Life Technologies Corporation | Self-aligned well structures for low-noise chemical sensors |
US8841217B1 (en) | 2013-03-13 | 2014-09-23 | Life Technologies Corporation | Chemical sensor with protruded sensor surface |
US8963216B2 (en) | 2013-03-13 | 2015-02-24 | Life Technologies Corporation | Chemical sensor with sidewall spacer sensor surface |
JP2016510895A (ja) | 2013-03-15 | 2016-04-11 | ライフ テクノロジーズ コーポレーション | 一貫性のあるセンサ表面積を有する化学センサ |
US9116117B2 (en) | 2013-03-15 | 2015-08-25 | Life Technologies Corporation | Chemical sensor with sidewall sensor surface |
WO2014149779A1 (en) | 2013-03-15 | 2014-09-25 | Life Technologies Corporation | Chemical device with thin conductive element |
EP2972279B1 (en) | 2013-03-15 | 2021-10-06 | Life Technologies Corporation | Chemical sensors with consistent sensor surface areas |
WO2014149268A1 (en) | 2013-03-19 | 2014-09-25 | Life Technologies Corporation | Thermal cycler cover |
US20140336063A1 (en) | 2013-05-09 | 2014-11-13 | Life Technologies Corporation | Windowed Sequencing |
US10458942B2 (en) | 2013-06-10 | 2019-10-29 | Life Technologies Corporation | Chemical sensor array having multiple sensors per well |
WO2015008281A1 (en) * | 2013-07-16 | 2015-01-22 | Technion Research And Development Foundation Ltd. | Sample recording device and system |
US9766206B2 (en) * | 2013-09-27 | 2017-09-19 | ProteinSimple | Apparatus, systems, and methods for capillary electrophoresis |
CN110560187B (zh) | 2013-11-18 | 2022-01-11 | 尹特根埃克斯有限公司 | 用于样本分析的卡盒和仪器 |
GB201401584D0 (en) * | 2014-01-29 | 2014-03-19 | Bg Res Ltd | Intelligent detection of biological entities |
GB201403522D0 (en) * | 2014-02-28 | 2014-04-16 | Ge Healthcare Uk Ltd | Improvements in and relating to processed biological sample storage |
US10208332B2 (en) | 2014-05-21 | 2019-02-19 | Integenx Inc. | Fluidic cartridge with valve mechanism |
EP3552690B1 (en) | 2014-10-22 | 2024-09-25 | IntegenX Inc. | Systems and methods for sample preparation, processing and analysis |
CN107407656B (zh) | 2014-12-18 | 2020-04-07 | 生命科技公司 | 使用大规模 fet 阵列测量分析物的方法和装置 |
US10077472B2 (en) | 2014-12-18 | 2018-09-18 | Life Technologies Corporation | High data rate integrated circuit with power management |
EP4354131A3 (en) | 2014-12-18 | 2024-06-26 | Life Technologies Corporation | High data rate integrated circuit with transmitter configuration |
EP3822361A1 (en) | 2015-02-20 | 2021-05-19 | Takara Bio USA, Inc. | Method for rapid accurate dispensing, visualization and analysis of single cells |
JP7133473B2 (ja) * | 2016-05-20 | 2022-09-08 | クアンタム-エスアイ インコーポレイテッド | 標識ヌクレオチド組成物および核酸の配列を決定するための方法 |
JP7075394B2 (ja) | 2016-07-21 | 2022-05-25 | タカラ バイオ ユーエスエー, インコーポレイテッド | マルチウェルデバイスを用いたマルチz撮像及び分注 |
WO2018073934A1 (ja) * | 2016-10-20 | 2018-04-26 | 株式会社日立ハイテクノロジーズ | 生体分子の処理方法および分析方法 |
DE102016015700A1 (de) | 2016-12-21 | 2018-06-21 | Bayer Pharma Aktiengesellschaft | Dosiervorrichtung |
CN106591107B (zh) * | 2017-01-12 | 2019-04-12 | 武汉菲思特生物科技有限公司 | 焦磷酸测序用的加样装置 |
WO2018175715A1 (en) | 2017-03-24 | 2018-09-27 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Herpes simplex virus type-1(hsv-1) vaccine strain vc2 generating an anti-ehv-1 immune response |
CN111148850A (zh) | 2017-07-24 | 2020-05-12 | 宽腾矽公司 | 高强度经标记的反应物组合物及用于测序的方法 |
KR102635801B1 (ko) * | 2018-09-28 | 2024-02-08 | 신퓨얼 아메리카스 코포레이션 | 서브 시스템을 포함하는 여과 튜브를 형성하기 위한 생산 시스템 및 그 사용 방법 |
CA3127102A1 (en) | 2019-01-23 | 2020-07-30 | Quantum-Si Incorporated | High intensity labeled reactant compositions and methods for sequencing |
US20220170950A1 (en) * | 2019-03-22 | 2022-06-02 | Siemens Healthcare Diagnostics Inc. | Biological sample analyzer with forced air convection plenum |
US20220184617A1 (en) * | 2019-04-12 | 2022-06-16 | Shimadzu Corporation | Microfluidic system |
CN114829015B (zh) * | 2019-12-20 | 2024-04-26 | 贝克曼库尔特有限公司 | 用于自动机械式液体处理系统的热循环仪 |
US20230098565A1 (en) * | 2020-01-31 | 2023-03-30 | Western Connecticut Health Network, Inc. | Apparatus and method for collecting liquid samples |
WO2023105419A1 (en) * | 2021-12-08 | 2023-06-15 | Dh Technologies Development Pte. Ltd. | Capillary electrophoresis methods for characterizing genome integrity |
GB202212732D0 (en) * | 2022-09-01 | 2022-10-19 | Remedy Biologics Ltd | Methods and systems of material recovery |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3915652A (en) | 1973-08-16 | 1975-10-28 | Samuel Natelson | Means for transferring a liquid in a capillary open at both ends to an analyzing system |
CA1289856C (en) * | 1986-09-11 | 1991-10-01 | Ei Mochida | Chemical reaction apparatus |
US5234809A (en) * | 1989-03-23 | 1993-08-10 | Akzo N.V. | Process for isolating nucleic acid |
US5455175A (en) | 1990-06-04 | 1995-10-03 | University Of Utah Research Foundation | Rapid thermal cycling device |
SE9002579D0 (sv) * | 1990-08-07 | 1990-08-07 | Pharmacia Ab | Method and apparatus for carrying out biochemical reactions |
WO1992020778A1 (en) | 1991-05-24 | 1992-11-26 | Kindconi Pty Limited | Biochemical reaction control |
US6017696A (en) * | 1993-11-01 | 2000-01-25 | Nanogen, Inc. | Methods for electronic stringency control for molecular biological analysis and diagnostics |
US5498392A (en) | 1992-05-01 | 1996-03-12 | Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification device and method |
EP0636413B1 (en) | 1993-07-28 | 2001-11-14 | PE Corporation (NY) | Nucleic acid amplification reaction apparatus and method |
US5438127A (en) * | 1993-09-27 | 1995-08-01 | Becton Dickinson And Company | DNA purification by solid phase extraction using a PCl3 modified glass fiber membrane |
US5840573A (en) | 1994-02-01 | 1998-11-24 | Fields; Robert E. | Molecular analyzer and method of use |
DE69422604T2 (de) | 1994-03-08 | 2000-06-08 | Zeptosens Ag, Witterwil | Vorrichtung und Verfahren, die Bioaffinitätsassay und elektrophoretische Auftrennung kombinieren |
JP3434914B2 (ja) * | 1994-11-11 | 2003-08-11 | 株式会社日立製作所 | 電気泳動装置用試料保持装置、電気泳動装置及び電気泳動装置への試料注入方法 |
US5560811A (en) | 1995-03-21 | 1996-10-01 | Seurat Analytical Systems Incorporated | Capillary electrophoresis apparatus and method |
US5759779A (en) * | 1995-08-29 | 1998-06-02 | Dehlinger; Peter J. | Polynucleotide-array assay and methods |
US5783686A (en) | 1995-09-15 | 1998-07-21 | Beckman Instruments, Inc. | Method for purifying nucleic acids from heterogenous mixtures |
US5785926A (en) | 1995-09-19 | 1998-07-28 | University Of Washington | Precision small volume fluid processing apparatus |
CA2192262C (en) * | 1995-12-08 | 2011-03-15 | Yoshihide Hayashizaki | Method for purification and transfer to separation/detection systems of dna sequencing samples and plates used therefor |
US5830657A (en) | 1996-05-01 | 1998-11-03 | Visible Genetics Inc. | Method for single-tube sequencing of nucleic acid polymers |
CA2245888C (en) * | 1996-02-14 | 2008-12-23 | Jaap Goudsmit | Isolation and amplification of nucleic acid materials |
CA2252571A1 (en) * | 1996-05-01 | 1997-11-06 | Visible Genetics Inc. | Method and apparatus for thermal cycling and for automated sample preparation with thermal cycling |
US5958342A (en) * | 1996-05-17 | 1999-09-28 | Incyte Pharmaceuticals, Inc. | Jet droplet device |
US6083762A (en) | 1996-05-31 | 2000-07-04 | Packard Instruments Company | Microvolume liquid handling system |
US5846727A (en) | 1996-06-06 | 1998-12-08 | Board Of Supervisors Of Louisiana State University And Agricultural & Mechanical College | Microsystem for rapid DNA sequencing |
US6083761A (en) * | 1996-12-02 | 2000-07-04 | Glaxo Wellcome Inc. | Method and apparatus for transferring and combining reagents |
SE9702005D0 (sv) | 1997-05-28 | 1997-05-28 | Alphahelix Ab | New reaction vessel and method for its use |
DE19746874A1 (de) * | 1997-10-23 | 1999-04-29 | Qiagen Gmbh | Verfahren zur Isolierung und Reinigung von Nukleinsäuren an hydrophoben Oberflächen - insbesondere unter Verwendung hydrophober Membranen |
CA2307141C (en) * | 1997-10-31 | 2004-01-27 | The Perkin-Elmer Corporation | Method and apparatus for making arrays |
US6225061B1 (en) * | 1999-03-10 | 2001-05-01 | Sequenom, Inc. | Systems and methods for performing reactions in an unsealed environment |
US6423536B1 (en) * | 1999-08-02 | 2002-07-23 | Molecular Dynamics, Inc. | Low volume chemical and biochemical reaction system |
DE10006214A1 (de) * | 2000-02-11 | 2001-08-16 | Roche Diagnostics Gmbh | System zur einfachen Nukleinsäureanalytik |
-
2000
- 2000-05-23 US US09/577,199 patent/US6423536B1/en not_active Expired - Lifetime
- 2000-08-02 GB GB0201920A patent/GB2368032B/en not_active Expired - Fee Related
- 2000-08-02 WO PCT/US2000/021182 patent/WO2001009389A2/en not_active Application Discontinuation
- 2000-08-02 US US09/632,094 patent/US6489112B1/en not_active Expired - Fee Related
- 2000-08-02 DE DE20022783U patent/DE20022783U1/de not_active Expired - Lifetime
- 2000-08-02 JP JP2001513520A patent/JP2003505711A/ja active Pending
- 2000-08-02 EP EP00952424A patent/EP1200191A1/en not_active Withdrawn
- 2000-08-02 EP EP00952450A patent/EP1203099A2/en not_active Withdrawn
- 2000-08-02 CA CA002379969A patent/CA2379969A1/en not_active Abandoned
- 2000-08-02 AU AU65127/00A patent/AU6512700A/en not_active Abandoned
- 2000-08-02 AU AU65147/00A patent/AU6514700A/en not_active Abandoned
- 2000-08-02 JP JP2001513644A patent/JP2003505110A/ja not_active Withdrawn
- 2000-08-02 CN CNA2004100431615A patent/CN1560267A/zh active Pending
- 2000-08-02 CN CNB008128707A patent/CN1156584C/zh not_active Expired - Fee Related
- 2000-08-02 CA CA002380794A patent/CA2380794A1/en not_active Abandoned
- 2000-08-02 WO PCT/US2000/021116 patent/WO2001008802A1/en not_active Application Discontinuation
-
2002
- 2002-04-18 US US10/125,045 patent/US20020110900A1/en not_active Abandoned
- 2002-09-30 US US10/262,476 patent/US6927045B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO2001008802A1 (en) | 2001-02-08 |
CN1560267A (zh) | 2005-01-05 |
US6927045B2 (en) | 2005-08-09 |
EP1203099A2 (en) | 2002-05-08 |
JP2003505110A (ja) | 2003-02-12 |
US6423536B1 (en) | 2002-07-23 |
AU6514700A (en) | 2001-02-19 |
US6489112B1 (en) | 2002-12-03 |
US20020110900A1 (en) | 2002-08-15 |
CA2379969A1 (en) | 2001-02-08 |
CA2380794A1 (en) | 2001-02-08 |
GB2368032B (en) | 2003-01-08 |
US20030032052A1 (en) | 2003-02-13 |
EP1200191A1 (en) | 2002-05-02 |
WO2001009389A3 (en) | 2001-08-16 |
GB2368032A (en) | 2002-04-24 |
WO2001009389A2 (en) | 2001-02-08 |
DE20022783U1 (de) | 2002-08-14 |
CN1373813A (zh) | 2002-10-09 |
GB0201920D0 (en) | 2002-03-13 |
AU6512700A (en) | 2001-02-19 |
JP2003505711A (ja) | 2003-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1156584C (zh) | 模板捕获与归一化亚微升反应的方法和装置 | |
CN1128884C (zh) | 有效进行核酸测序的方法和组合物 | |
CN1791682A (zh) | 通过杂交进行的随机阵列dna分析 | |
CN1282741C (zh) | 核酸扩增方法 | |
CN1151374C (zh) | 用于分子生物学分析和诊断的自我可寻址自我装配的微电子学系统及装置 | |
CN1668923A (zh) | 带有标准探针的dna微阵列以及包含该阵列的试剂盒 | |
CN1146668C (zh) | 用于分选和鉴定的寡核苷酸标记物 | |
CN1248781C (zh) | 靶核酸序列的热依赖性链反应扩增装置 | |
CN1268634C (zh) | 自寻址、自组装微电子集成系统、组成装置、机理和分子生物学分析和诊断的方法 | |
CN1273609A (zh) | 检测或量化核酸物类的方法和组合物 | |
CN101619352B (zh) | 一种基于等位基因特异性扩增的双探针基因突变检测方法及其专用芯片和试剂盒 | |
CN1354691A (zh) | 试样蒸发控制方法及装置 | |
CN1656233A (zh) | 利用切割剂扩增核酸片段 | |
CN1325458A (zh) | 核酸扩增和测序方法 | |
CN1500887A (zh) | 引物伸长反应检测方法、碱基种类判别方法及其装置 | |
CN1839317A (zh) | 选择结合性物质固定化载体 | |
CN1192648A (zh) | 用于贮存和分析遗传物质的干固体介质 | |
CN1040220A (zh) | 一种扩增核苷酸顺序的方法 | |
CN102858995A (zh) | 靶向测序方法 | |
CN1608139A (zh) | 数字化分析 | |
CN1251609A (zh) | 分析聚合物的方法和产品 | |
CN1114359A (zh) | 使用荧光染料检测双链核酸的同相方法和其中使用的药盒 | |
CN101065498A (zh) | 在微阵列上的靶的实时pcr | |
CN1434874A (zh) | 核酸的检测 | |
CN1293204C (zh) | 等位基因的测定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |