CN115548398A - 磺化聚醚醚酮、硅钨酸和离子液体掺杂改性聚氯乙烯基质子交换膜的制备方法 - Google Patents

磺化聚醚醚酮、硅钨酸和离子液体掺杂改性聚氯乙烯基质子交换膜的制备方法 Download PDF

Info

Publication number
CN115548398A
CN115548398A CN202211389392.6A CN202211389392A CN115548398A CN 115548398 A CN115548398 A CN 115548398A CN 202211389392 A CN202211389392 A CN 202211389392A CN 115548398 A CN115548398 A CN 115548398A
Authority
CN
China
Prior art keywords
speek
silicotungstic acid
ionic liquid
pvc
ether ketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211389392.6A
Other languages
English (en)
Other versions
CN115548398B (zh
Inventor
鲁伊恒
訾雨晴
胡佳盈
唐婕
王梓轩
王中楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Science and Technology
Original Assignee
Anhui University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Science and Technology filed Critical Anhui University of Science and Technology
Priority to CN202211389392.6A priority Critical patent/CN115548398B/zh
Publication of CN115548398A publication Critical patent/CN115548398A/zh
Application granted granted Critical
Publication of CN115548398B publication Critical patent/CN115548398B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种磺化聚醚醚酮、硅钨酸和离子液体掺杂改性聚氯乙烯基质子交换膜的制备方法,将包括磺化聚醚醚酮、硅钨酸、离子液体中的一种或几种作为掺杂溶质,与聚氯乙烯树脂溶解于有机溶剂中,加热回流,搅拌至磺化聚醚醚酮完全溶解,反应结束后,将混合液倒入平底玻璃容器中,流延成膜,室温干燥,真空脱溶,得SPEEK/PVC/硅钨酸/离子液体掺杂复合膜。本发明将SPEEK、硅钨酸和咪唑基离子液体掺杂改性聚氯乙烯树脂,制备了PVC基杂化质子交换膜,并测定了其耐热性和阻抗电导率。制备的产品电导率与Nafion膜相近,成本显著降低,具有潜在的应用前景。

Description

磺化聚醚醚酮、硅钨酸和离子液体掺杂改性聚氯乙烯基质子 交换膜的制备方法
技术领域
本发明属于质子交换膜燃料电池领域,具体涉及一种磺化聚醚醚酮、硅钨酸和离子液体掺杂改性聚氯乙烯基质子交换膜的制备方法。
背景技术
采用磺化聚醚醚酮、杂多酸和离子液体改性制备了聚氯乙烯基离子交换膜,目的是取代或部分取代Nafion膜。Nafion膜是燃料电池的核心部件,由杜邦公司开发(全氟磺酸系列),尽管已工业化应用,但是存在下列缺点:1)通常在80℃和有水存在下使用,水管理存在问题,用于甲醇燃料时阻醇性能不佳;2)用于氢氧燃料电池时,易于生成H2O2造成Nafion降解;3)制作困难,成本高。因此急需降低成本,开发替代全氟磺酸离子膜的非含氟类膜材料。
杂多酸含有较多的质子H+酸性较强,电化学性能较好,已公开的文献有杂多酸对燃料电池质子交换膜稳定性的影响[电源技术,2015,139(3):484-487],磷钨酸表面处理对燃料电池质子交换膜热稳定性的影响[高分子材料科学与工程,2014,5:67-71]。涉及SPEEK,中国专利CN105529485B公开了一种碳纳米管负载杂多酸一磺化聚醚醚酮质子交换膜的制备方法;CN112852101B公开了一种磺化聚醚醚酮基质子交换膜及其制备方法和应用。离子液体通常含有阳离子与阴离子的离子对,电化学窗口较宽,稳定性较好,不挥发,提高温度时活性较强;PVC树脂是较弱的电解质,但是它价廉易得,耐腐蚀较好,在160℃以下较为稳定;此外全氟磺酸离子膜价格昂贵,生产成本较高的问题,仍然没有解决。在PVC树脂中加入SPEEK及不同添加剂后,存在固体质子交换膜电解质的耐热性能和电化学性能下降的问题,而提高C-S键(碳链-磺酸基团)的热稳定性、抑制离子膜降解和退化,降低产品成本,是质子交换膜燃料电池领域急需解决的难题。本发明涉及的一种磺化聚醚醚酮和硅钨酸掺杂改性聚氯乙烯基质子交换膜的制备方法,未见文献报道。
发明内容
本发明提供了一种磺化聚醚醚酮、硅钨酸和离子液体掺杂改性聚氯乙烯基质子交换膜的制备方法,以解决现有质子交换膜技术用于燃料电池价格昂贵,性能下降等问题。
本发明将SPEEK、硅钨酸和咪唑基离子液体掺杂改性聚氯乙烯树脂,制备了PVC基杂化质子交换膜,并测定了其耐热性和电化学阻抗电导率。制备的产品电导率与类Nafion膜相近,成本显著降低,具有潜在的应用前景。
本发明磺化聚醚醚酮、硅钨酸和离子液体掺杂改性聚氯乙烯基质子交换膜的制备方法,是将包括磺化聚醚醚酮、硅钨酸、离子液体中的一种或几种作为掺杂溶质,与聚氯乙烯树脂溶解于有机溶剂中,加热至70℃,回流,搅拌至磺化聚醚醚酮完全溶解,反应时间为2.5h;结束后,将混合液倒入平底玻璃容器中,流延成膜,膜的厚度范围0.3-1.0mm,室温干燥,真空脱溶,得SPEEK/PVC/硅钨酸/离子液体掺杂复合膜。
所述有机溶剂为四氢呋喃,其对PVC树脂具有较强的溶解性。
所述离子液体为1-丁基-3-甲基咪唑四氟硼酸盐。
1-丁基-3-甲基咪唑四氟硼酸盐中的阳离子结构式为:
Figure BDA0003931363320000021
1-丁基-3-甲基咪唑四氟硼酸盐中的阴离子结构式为:
Figure BDA0003931363320000022
当掺杂溶质为SPEEK时,PVC与SPEEK的质量比为1.0-2.0:1.0。
当掺杂溶质为SPEEK和硅钨酸时,PVC、SPEEK和硅钨酸的质量比为1.0-2.0:1.0:0.1-0.3,优选质量比为1.0:1.0:0.1。
当掺杂溶质为SPEEK、硅钨酸和离子液体时,PVC、SPEEK、硅钨酸和离子液体的质量比为1.0-2.0:1.0:0.1-0.3:0.15-0.45,优选为1.0:1.0:0.1:0.15。
与现有技术相比,本发明的有益效果体现在:
1、本发明利用价廉易得、性价比优良的PVC作为质子交换膜的基质,SPEEK、硅钨酸和1-丁基-3-甲基咪唑四氟硼酸盐离子液体作为添加剂共溶于复合溶剂中,由于离子液体的阳离子与质子阳离子之间的竞争以及离子液体阳离子中吡啶氨基的吸电子作用,改变了质子交换膜中溶剂分子配位给离子的溶剂化数。
2、杂多酸含有较多的氢质子,一方面可以抑制SPEEK的解离,另一方面可以提高电解液的电导率,使得下列反应向左边进行:nC-Cl(s)+mC-SO3H(s)+oH+(l)+pQ+Q-(l)→杂化膜;由此能够改善提高电解液的电导率性能。
nC-Cl(s)(碳-氯键)来自于PVC树脂;mC-SO3 -H+(s)(磺酸基)来自于SPEEK;oH+(l)来自于氢质子中的杂多酸;pQ+Q-(l)来自于1-丁基-3-甲基咪唑四氟硼酸盐离子液体,Q+为阳离子Q-为阴离子,其中n,m,o,p为系数,表示特征基团的数目。
3、本发明PVC、SPEEK、硅钨酸和咪唑基离子液体均来源方便,电解质性质稳定,制备简单,电导率提高显著,且与全氟磺酸离子膜相近,此外若使用该复合膜,可以显著降低燃料电池质子交换膜的生产成本,因此该离子膜具有潜在的应用前景。
附图说明
图1是本发明不同质子交换膜的阻抗谱图。其中a:Nepem-1135;b:PVC/SPEEK/硅钨酸/ILs=1.0/1.0/0.1/0(质量比);c:PVC/SPEEK/硅钨酸/ILs=1.0/1.0/0.1/0.15(质量比);d:PVC/SPEEK/硅钨酸/ILs=1.0/1.0/0.1/0.30(质量比);e:PVC/SPEEK/硅钨酸/ILs=1.0/1.0/0.1/0.45(质量比)。
图2是本发明不同质子交换膜的热重曲线。其中b:PVC/SPEEK/硅钨酸/ILs=1.0/1.0/0.1/0(质量比);c:PVC/SPEEK/硅钨酸/ILs=1.0/1.0/0.1/0.15(质量比)。
具体实施方式
SPEEK的制备:
称取PEEK粉末4.00g,缓慢加入100mL浓硫酸,搅拌,部分溶解,水浴加热至70℃,搅拌、回流至PEEK完全溶解。当反应液由亮黄色变为棕红色时,停止搅拌,反应时间4.5h;将制得的SPEEK液体倒入冰水中快速搅拌,得到白色纤维状SPEEK固体,抽滤,洗涤至中性,真空干燥、备用。
SPEEK/PVC复合膜的制备:
称取SPEEK粉末1.00g,缓慢加入50ml四氢呋喃,搅拌,使之溶解;加入1.00g PVC,加热至70℃,回流,搅拌至SPEEK完全溶解,反应时间为2.5h;结束后,将液体倒入平底玻璃容器中,流延成膜,室温干燥24h,真空脱溶,得SPEEK/PVC(1:1)复合薄膜。
SPEEK/PVC/硅钨酸掺杂复合膜的制备:
称取SPEEK粉末1.00g,缓慢加入50ml四氢呋喃,搅拌,使之溶解;加入1.00g PVC,硅钨酸0.10g;加热至70℃,回流,搅拌至SPEEK完全溶解,反应时间为2.5h;结束后,将液体倒入平底容器中,流延成膜,室温干燥24h,真空脱溶,得SPEEK/PVC/硅钨酸(1.0/1.0/0.1wt)复合薄膜。
SPEEK/PVC/硅钨酸/离子液体掺杂复合膜的制备:
首先将PVC、SPEEK、硅钨酸和咪唑基离子液体分别进行真空干燥脱除微量水分。
称取SPEEK粉末1.00g,缓慢加入50ml四氢呋喃,搅拌,使之溶解;加入1.00g PVC,硅钨酸0.10g,离子液体0.15g,加热至70℃,回流,搅拌至SPEEK完全溶解,反应时间为2.5h;结束后,将液体倒入平底容器中,流延成膜,室温干燥24h,真空脱溶,得SPEEK/PVC/硅钨酸/离子液体(1.0/1.0/0.1/0.15wt)掺杂复合薄膜。
分别称取SPEEK粉末1.00g,1.00gPVC,硅钨酸0.10g;
SPEEK粉末1.00g,1.00g PVC,硅钨酸0.10g,离子液体0.15g;
SPEEK粉末1.00g,1.00g PVC,硅钨酸0.10g,离子液体0.30g;
SPEEK粉末1.00g,1.00g PVC,硅钨酸0.10g,离子液体0.45g;
SPEEK粉末1.00g,1.00g PVC,硅钨酸0.20g,离子液体0.15g;
SPEEK粉末1.00g,1.00gPVC,硅钨酸0.30g,离子液体0.15g。
按上述步骤重复进行试验。
实施例1:SPEEK的制备
称取PEEK粉末4.00g,缓慢加入100mL浓硫酸,搅拌,部分溶解。水浴加热至70℃,搅拌、回流至PEEK完全溶解;当反应液由亮黄色变为棕红色时,停止搅拌,反应时间4.5h;将制得的SPEEK液体倒入冰水中快速搅拌,得到白色纤维状SPEEK固体,抽滤,洗涤至中性,真空干燥、备用。
实施例2:SPEEK/PVC复合膜的制备
称取SPEEK粉末1.00g,缓慢加入50ml四氢呋喃,搅拌,使之溶解,加入1.00g PVC,加热至70℃,回流,搅拌至SPEEK完全溶解,反应时间为2.5h;结束后,将液体倒入平底玻璃容器中,流延成膜,室温干燥24h,真空脱溶,得SPEEK/PVC(1.0:1.0)复合薄膜。
实施例3:SPEEK/PVC复合膜的制备
称取SPEEK粉末1.00g,缓慢加入50ml四氢呋喃,搅拌,使之溶解,加入2.00g PVC,加热至70℃,回流,搅拌至SPEEK完全溶解,反应时间为2.5h;结束后,将液体倒入平底玻璃容器中,流延成膜,室温干燥24h,真空脱溶,得SPEEK/PVC(1.0:2.0)复合薄膜。
实施例4:SPEEK/PVC/硅钨酸掺杂复合膜的制备
称取SPEEK粉末1.00g,缓慢加入50ml四氢呋喃,搅拌,使之溶解,加入1.00g PVC,硅钨酸0.10g;加热至70℃,回流,搅拌至SPEEK完全溶解,反应时间为2.5h;结束后,将液体倒入平底容器中,流延成膜,室温干燥24h,真空脱溶,得SPEEK/PVC/硅钨酸(1.0/1.0/0.1wt)复合薄膜。
实施例5:SPEEK/PVC/硅钨酸/离子液体掺杂复合膜的制备
称取SPEEK粉末1.00g,缓慢加入50ml四氢呋喃,搅拌,使之溶解,加入1.00g PVC,硅钨酸0.10g,离子液体0.15g;加热至70℃,回流,搅拌至SPEEK完全溶解,反应时间为2.5h;结束后,将液体倒入平底容器中,流延成膜,室温干燥24h,真空脱溶,得SPEEK/PVC/硅钨酸/离子液体(1.0/1.0/0.1/0.15wt)掺杂复合薄膜。
实施例6:SPEEK/PVC/硅钨酸/离子液体掺杂复合膜的制备
称取SPEEK粉末1.00g,缓慢加入50ml四氢呋喃,搅拌,使之溶解,加入1.00g PVC,硅钨酸0.10g,离子液体0.30g;加热至70℃,回流,搅拌至SPEEK完全溶解,反应时间为2.5h;结束后,将液体倒入平底容器中,流延成膜,室温干燥24h;真空脱溶,得SPEEK/PVC/硅钨酸/离子液体(1.0/1.0/0.1/0.30wt)掺杂复合薄膜。
实施例7:SPEEK/PVC/硅钨酸/离子液体掺杂复合膜的制备
称取SPEEK粉末1.00g,缓慢加入50ml四氢呋喃,搅拌,使之溶解,加入1.00g PVC,硅钨酸0.10g,离子液体0.45g;加热至70℃,回流,搅拌至SPEEK完全溶解,反应时间为2.5h;结束后,将液体倒入平底容器中,流延成膜,室温干燥24h,真空脱溶,得SPEEK/PVC/硅钨酸/离子液体(1.0/1.0/0.1/0.45wt)掺杂复合薄膜。
实施例8:SPEEK/PVC/硅钨酸/离子液体掺杂复合膜的制备
称取SPEEK粉末1.00g,缓慢加入50ml四氢呋喃,搅拌,使之溶解,加入1.00g PVC,硅钨酸0.20g,离子液体0.15g;加热至70℃,回流,搅拌至SPEEK完全溶解,反应时间为2.5h;结束后,将液体倒入平底容器中,流延成膜,室温干燥24h,真空脱溶,得SPEEK/PVC/硅钨酸/离子液体(1.0/1.0/0.2/0.15wt)掺杂复合薄膜。
实施例9:SPEEK/PVC/硅钨酸/离子液体掺杂复合膜的制备
称取SPEEK粉末1.00g,缓慢加入50ml四氢呋喃,搅拌,使之溶解,加入1.00g PVC,硅钨酸0.30g,离子液体0.15g;加热至70℃,回流,搅拌至SPEEK完全溶解,反应时间为2.5h;结束后,将液体倒入平底容器中,流延成膜,室温干燥24h,真空脱溶,得SPEEK/PVC/硅钨酸/离子液体(1.0/1.0/0.3/0.15wt)掺杂复合薄膜。
由不同质子交换膜的阻抗谱参见图1,采用三电极法电化学工作站测定,其阻抗值如表1所示。
表1不同质子交换膜的阻抗值
Figure BDA0003931363320000051
(备注:市售Nepem-1135为全氟磺酸离子交换膜;Ils为1-丁基-3-甲基咪唑四氟硼酸盐)
由表可见,实施例2膜组成为PVC/SPEEK(1.0:1.0)可见PVC树脂与SPEEK共混膜阻抗值Rb为244.7Ω,当提高PVC的添加量为PVC/SPEEK(2.0:1.0)时,见实施例3,阻抗值Rb为增加明显,至377.5Ω,可见此时增加PVC对电导率不利;当膜组成为PVC/SPEEK/硅钨酸(1.0/1.0/0.1)时,见实施例4,可见0.1份的硅钨酸共混可以显著降低阻抗值,此时Rb为164.6Ω;若此时继续添加0.15份的Ils,则阻抗值增大至173.8Ω,见实施例5;此时如果继续添加0.3份的Ils,则阻抗值增大至305.2Ω,见实施例6;若继续添加0.45份的Ils,则阻抗值增大至241.2Ω,见实施例7;若采用PVC/SPEEK/硅钨酸/ILs(1.0/1.0/0.2/0.15),则阻抗值继续增大至494.3Ω,可见硅钨酸和Ils的添加量,此时对提高杂化膜的电导率不利,见实施例8;若在实施例8的基础上,继续增加硅钨酸0.1份,此时阻抗值继续增大至1264.0Ω,见实施例9;由上可见,不同质子交换膜的阻抗值由小至大依次为:Nepem-1135≈实施例4<实施例5<实施例7<实施例2<实施例6<实施例3<实施例8<实施例9。可见阻抗值电导率,实施例4与类Nafion膜(市售全氟磺酸离子膜)(对照例)相近,原材料来源方便、价廉物美、表明含SPEEK/硅钨酸/Ils的杂化产物具有潜在的应用前景。
本发明所述的实施例仅仅是对本发明的优选实施方式进行的描述,并非对本发明构思和范围进行限定,在不脱离本发明设计思想的前提下,本领域中工程技术人员对本发明的技术方案作出的各种变型和改进,均应落入本发明的保护范围,本发明请求保护的技术内容,已经全部记载在权利要求书中。

Claims (9)

1.磺化聚醚醚酮、硅钨酸和离子液体掺杂改性聚氯乙烯基质子交换膜的制备方法,其特征在于:
将包括磺化聚醚醚酮、硅钨酸、离子液体中的一种或几种作为掺杂溶质,与聚氯乙烯树脂溶解于有机溶剂中,加热回流,搅拌至磺化聚醚醚酮完全溶解,反应结束后,将混合液倒入平底玻璃容器中,流延成膜,室温干燥,真空脱溶,得SPEEK/PVC/硅钨酸/离子液体掺杂复合膜。
2.根据权利要求1所述的制备方法,其特征在于:
所述有机溶剂为四氢呋喃。
3.根据权利要求1所述的制备方法,其特征在于:
所述离子液体为1-丁基-3-甲基咪唑四氟硼酸盐。
4.根据权利要求1所述的制备方法,其特征在于:
膜的厚度范围0.3-1.0mm。
5.根据权利要求1所述的制备方法,其特征在于:
所述掺杂溶质为SPEEK,PVC与SPEEK的质量比为1.0-2.0:1.0。
6.根据权利要求1所述的制备方法,其特征在于:
所述掺杂溶质为SPEEK和硅钨酸,PVC、SPEEK和硅钨酸的质量比为1.0-2.0:1.0:0.1-0.3。
7.根据权利要求6所述的制备方法,其特征在于:
PVC、SPEEK和硅钨酸的质量比为1.0:1.0:0.1。
8.根据权利要求1所述的制备方法,其特征在于:
所述掺杂溶质为SPEEK、硅钨酸和离子液体,PVC、SPEEK、硅钨酸和离子液体的质量比为1.0-2.0:1.0:0.1-0.3:0.15-0.45。
9.根据权利要求8所述的制备方法,其特征在于:
PVC、SPEEK、硅钨酸和离子液体的质量比为1.0:1.0:0.1:0.15。
CN202211389392.6A 2022-11-08 2022-11-08 磺化聚醚醚酮、硅钨酸和离子液体掺杂改性聚氯乙烯基质子交换膜的制备方法 Active CN115548398B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211389392.6A CN115548398B (zh) 2022-11-08 2022-11-08 磺化聚醚醚酮、硅钨酸和离子液体掺杂改性聚氯乙烯基质子交换膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211389392.6A CN115548398B (zh) 2022-11-08 2022-11-08 磺化聚醚醚酮、硅钨酸和离子液体掺杂改性聚氯乙烯基质子交换膜的制备方法

Publications (2)

Publication Number Publication Date
CN115548398A true CN115548398A (zh) 2022-12-30
CN115548398B CN115548398B (zh) 2024-08-06

Family

ID=84719869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211389392.6A Active CN115548398B (zh) 2022-11-08 2022-11-08 磺化聚醚醚酮、硅钨酸和离子液体掺杂改性聚氯乙烯基质子交换膜的制备方法

Country Status (1)

Country Link
CN (1) CN115548398B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864163A (zh) * 2010-06-08 2010-10-20 南通大学 复合质子交换膜的制备方法
CN102516531A (zh) * 2011-12-21 2012-06-27 上海大学 咪唑类离子液体接枝speek质子交换膜材料及其制备方法
CN105529485A (zh) * 2015-12-28 2016-04-27 湖北工程学院 一种碳纳米管负载杂多酸-磺化聚醚醚酮质子交换膜的制备方法
WO2016124052A1 (zh) * 2015-02-05 2016-08-11 成都新柯力化工科技有限公司 一种燃料电池质子交换膜及其制备方法
KR20170109291A (ko) * 2016-03-21 2017-09-29 경상대학교산학협력단 술폰화 폴리에테르에테르케톤 복합막, 이의 제조방법 및 이를 포함하는 연료전지
US20200343569A1 (en) * 2019-04-29 2020-10-29 Tianjin University Proton exchange membrane with enhanced chemical stability and method of preparing thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864163A (zh) * 2010-06-08 2010-10-20 南通大学 复合质子交换膜的制备方法
CN102516531A (zh) * 2011-12-21 2012-06-27 上海大学 咪唑类离子液体接枝speek质子交换膜材料及其制备方法
WO2016124052A1 (zh) * 2015-02-05 2016-08-11 成都新柯力化工科技有限公司 一种燃料电池质子交换膜及其制备方法
CN105529485A (zh) * 2015-12-28 2016-04-27 湖北工程学院 一种碳纳米管负载杂多酸-磺化聚醚醚酮质子交换膜的制备方法
KR20170109291A (ko) * 2016-03-21 2017-09-29 경상대학교산학협력단 술폰화 폴리에테르에테르케톤 복합막, 이의 제조방법 및 이를 포함하는 연료전지
US20200343569A1 (en) * 2019-04-29 2020-10-29 Tianjin University Proton exchange membrane with enhanced chemical stability and method of preparing thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIANGQING DUAN ET AL.: "Preparation and investigation on the low temperature proton exchange membranes with the enhanced proton conductivity at subzero temperature", 《JOURNAL OF MOLECULAR LIQUIDS》, vol. 328, 14 January 2021 (2021-01-14) *
冯文权;鲁伊恒;曹永;陈颖;杨涛;: "离子液体掺杂改性全氟磺酸复合膜的电导率", 电源技术, no. 12, 20 December 2016 (2016-12-20) *

Also Published As

Publication number Publication date
CN115548398B (zh) 2024-08-06

Similar Documents

Publication Publication Date Title
CN110336052B (zh) 一种混合基质型阳离子交换膜及其制备方法
Park et al. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis
US7771857B2 (en) Proton-conducting polymer membrane
CN101864163B (zh) 复合质子交换膜的制备方法
CN109535457B (zh) 一种磺化聚醚醚酮/磺化氧化石墨烯复合质子交换膜的制备方法
CN102504310B (zh) 一种磺化聚酰亚胺/壳聚糖复合质子导电膜的制备方法
CN102945972A (zh) 一种全钒氧化还原液流电池用复合质子交换膜的制备方法
CN101931070B (zh) 一种适用于钒电池的有机无机复合质子交换膜的制备方法
CN105255188A (zh) 磺化聚芳醚酮砜/氧化石墨烯复合材料、制备方法及质子交换膜
CN101777655B (zh) 一种燃料电池用无机复合金属氧化物掺杂的含氟质子交换膜
CN101867050A (zh) 复合质子交换膜
CN102532572B (zh) 一种掺杂带正电聚苯乙烯乳液的季铵化壳聚糖阴离子复合膜的制备方法
CN104022301A (zh) 高分子-负载植酸金属有机框架材料复合膜及制备和应用
CN112126105A (zh) 在线交联法制备聚苯并咪唑/磷酸复合膜及其制备方法
CN105680077A (zh) 一种质子交换膜
CN101346314A (zh) 新的金属(ⅲ)-铬-磷酸盐配合物及其用途
CN101787140B (zh) 硅钨酸/二氧化硅聚乙烯醇质子交换膜的制备方法
CN102786755B (zh) 一种LnF3/Nafion复合膜及其制备和应用
CN116036889B (zh) 全氟双极膜及其制备方法
JP2000038472A (ja) 高分子固体電解質
CN107834089A (zh) 一种可用于膜燃料电池的高温质子交换膜及其制备方法和应用
CN111342095B (zh) 一种高温燃料电池质子交换膜及其制备方法
CN115548398A (zh) 磺化聚醚醚酮、硅钨酸和离子液体掺杂改性聚氯乙烯基质子交换膜的制备方法
CN103996865A (zh) 高阻醇聚合物电解质膜及其制备方法
CN108376791B (zh) 一种含双质子导体的有机-无机复合质子交换膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant