CN115521611B - 一种用于密封圈的高流动性尼龙材料及其制备方法 - Google Patents

一种用于密封圈的高流动性尼龙材料及其制备方法 Download PDF

Info

Publication number
CN115521611B
CN115521611B CN202211312640.7A CN202211312640A CN115521611B CN 115521611 B CN115521611 B CN 115521611B CN 202211312640 A CN202211312640 A CN 202211312640A CN 115521611 B CN115521611 B CN 115521611B
Authority
CN
China
Prior art keywords
nylon material
parts
nylon
fluidity
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211312640.7A
Other languages
English (en)
Other versions
CN115521611A (zh
Inventor
董锦忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Jianeng Technology Co ltd
Original Assignee
Xiamen Jianeng Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Jianeng Technology Co ltd filed Critical Xiamen Jianeng Technology Co ltd
Priority to CN202211312640.7A priority Critical patent/CN115521611B/zh
Publication of CN115521611A publication Critical patent/CN115521611A/zh
Application granted granted Critical
Publication of CN115521611B publication Critical patent/CN115521611B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本申请涉及尼龙材料的技术领域,具体公开了一种用于密封圈的高流动性尼龙材料及其制备方法。用于密封圈的高流动性尼龙材料,其包括以下重量份的原料:尼龙612 60‑80份、增韧剂8‑15份、分散剂1‑5份、多壁碳纳米管5‑12份、复合物6‑16份,其中,复合物为母盐溶液和己内酰胺复配而成;其制备方法为:将尼龙612、增韧剂、分散剂、多壁碳纳米管、复合物混合,熔融挤出,冷却造粒,得到用于密封圈的高流动性尼龙材料。本申请的用于密封圈的高流动性尼龙材料,通过原料之间的协同作用,具有提高尼龙材料流动性的优点。

Description

一种用于密封圈的高流动性尼龙材料及其制备方法
技术领域
本申请涉及尼龙材料技术领域,尤其是涉及一种用于密封圈的高流动性尼龙材料及其制备方法。
背景技术
密封圈是碱锰电池封口结构中至关重要的配件,不仅影响电池的安全性能,更是碱锰电池漏液性能的关键部位,碱锰电池密封圈一般使用聚丙烯或聚酰胺两种材料,聚丙烯材料因软化温度以及强度降低,防漏性能较差,而碱性电池内部是化学活性物质,含有高浓度的氢氧化钾,导致安全方面存在一定缺陷,因此,聚丙烯材料逐渐被聚酰胺材料取代,即尼龙材料的应用越来越广泛。
目前,密封圈的材料主要有尼龙612、尼龙610、尼龙66,尼龙具有相对密度小、更低的吸收率、尺寸稳定性好的优点。其中,尼龙612材料具有较低的吸湿性和优异的耐碱性,自身较脆,加入增强力学性能的材料后,可使尼龙材料的力学性能提高,但是,流动性明显变差,导致加工难度提高。
发明内容
为了提高尼龙材料的流动性,本申请提供一种用于密封圈的高流动性尼龙材料及其制备方法。
第一方面,本申请提供一种用于密封圈的高流动性尼龙材料,采用如下技术方案:一种用于密封圈的高流动性尼龙材料,其包括以下重量份的原料:尼龙612 60-80份、增韧剂8-15份、分散剂1-5份、多壁碳纳米管5-12份、复合物6-16份,其中,复合物为母盐溶液和己内酰胺复合而成。
通过采用上述技术方案,本申请的用于密封圈的高流动性尼龙材料,通过各原料之间的协同作用,不仅使尼龙材料保持了优良的力学性能,还提高了尼龙材料的流动性,其中,熔融指数为1.71-2.02g/min,缺口冲击强度为16.3-19.9KJ/m2,拉伸强度为66.1-70.3MPa,弯曲强度为53.9-57.8MPa。
尼龙612为基础原料,增韧剂能够提高尼龙材料的韧性和强度,分散剂应用在尼龙材料的原料中,能够使各原料分布的更加均匀,便于各原料更好的发挥作用。多壁碳纳米管中存在许多C=C共价键,是自然界最稳定的化学键,因此多壁碳纳米管具有十分优异的力学性能,具有极高的强度和极大的韧性,应用到尼龙材料的原料中,能够提高多壁碳纳米管的强度。
复合物为母盐溶液和己内酰胺复配而成,母盐溶液与己内酰胺聚合形成复合物,母盐溶液具有更好的热稳定性,母盐溶液中含有树枝单元,能够削弱尼龙612基体中分子间的氢键作用,是N-H伸缩振动产生差异造成的,但是不会造成尼龙材料力学性能的下降,从而能够提高尼龙材料的熔融指数,能够提高尼龙材料的流动性。
作为优选:其包括以下重量份的原料:尼龙612 65-72份、增韧剂10-12份、分散剂2-4份、多壁碳纳米管8-10份、复合物8-14份。
通过采用上述技术方案,通过对尼龙612、增韧剂、分散剂、多壁碳纳米管、复合物的添加量进行优化,有助于使各原料发挥作用,便于在保持尼龙材料良好的力学性能的同时,还提高尼龙材料的流动性。
作为优选:所述复合物采用以下方法制备:将己内酰胺、母盐溶液、冰醋酸放入水中,在氮气保护下加压,升温,反应一段时间,减压至常压,切粒,萃取,烘干后得到复合物。
进一步的,所述复合物采用以下方法制备:将己内酰胺、母盐溶液、冰醋酸放入水中,在氮气保护下加压至0.2-0.3MPa,升温至70-80℃,不断搅拌,25-35min后,升温至200-210℃,加压至0.4-0.5MPa,反应20-30min,再升温至245-250℃,加压至0.6-0.7MPa,反应30-60min,减压至常压,切粒,用沸水萃取,烘干后得到复合物;
其中,每1g己内酰胺中冰醋酸的添加量为4-6mL,每1g己内酰胺中水的添加量为8-10mL。
通过采用上述技术方案,利用上述制备方法对复合物进行制备,便于复合物的制备,便于复合物更好的发挥作用,从而进一步提高尼龙材料的流动性。
作为优选:所述己内酰胺和母盐溶液的重量配比为1:(0.4-0.6)。
母盐溶液的添加量较少,不能与己内酰胺更好的发生聚合反应,不能更优的形成复合物;母盐溶液的添加量较多,会对己内酰胺的性能造成影响,也不能较优的与己内酰胺发生聚合反应。通过采用上述技术方案,当母盐溶液的添加量在上述范围内使,能够更好的与己内酰胺生成复合物,在保持尼龙材料优良的力学性能的同时,便于提高尼龙材料的流动性。
作为优选:所述母盐溶液采用以下方法制备:将乙二胺放入甲醇中,混合均匀,加入丙烯酸甲酯,反应一段时间,升温,在真空条件下减压蒸馏,得到中间产物;将中间产物放入水中,混合均匀,得到混合物,将对苯二甲酸放入水中,边搅拌边加入混合物,升温,反应一段时间,得到母盐溶液。
进一步的,所述母盐溶液采用以下方法制备:将乙二胺放入甲醇中,混合均匀,加入丙烯酸甲酯,反应22-26h,升温至45-55℃,在真空度为0.1MPa的条件下减压蒸馏,得到中间产物;将中间产物放入水中,混合均匀,得到混合物,将对苯二甲酸放入水中,边搅拌边加入混合物,升温至70-90℃,反应40-50min,得到母盐溶液;
其中,每1g乙二胺中甲醇的添加量为3-5mL,乙二胺和丙烯酸甲酯的重量配比为1:(7-8),每1g中乙二胺中水的添加量为3-4mL,乙二胺和对苯二甲酸的重量配比为1:(0.4-0.6),每1g对苯二甲酸中水的添加量为5-7mL。
通过采用上述技术方案,利用上述制备方法对母盐溶液进行制备,利用含有多个端胺官能团的树枝形结构与含有两个羧基端的对苯二甲酸进行成盐反应,得到母盐溶液,便于母盐溶液更好的发挥作用,从而进一步提高尼龙材料的高流动性。
作为优选:所述尼龙材料中还包括1-5重量份的油酸。
通过采用上述技术方案,熔融温度的高低与聚合物体系的结晶程度以及聚合物分子链的运动能力有密切的关系,一般来说,聚合物基体中晶体的尺寸越大,结晶程度越完善,聚合物分子链运动能力低,则熔融温度就越高,相反,熔融温度就越低。尼龙材料中加入油酸后,能够降低复合材料的熔融温度,表明油酸的加入降低了尼龙材料的结晶程度,提高了分子链的运动能力,从而提高了尼龙材料的流动性。
作为优选:所述增韧剂为马来酸酐接枝POE、SEBS中的一种或多种。
作为优选:所述分散剂为硬脂酸、聚乙烯蜡、液体石蜡中的一种或多种。
通过采用上述技术方案,对增韧剂和分散剂进行限定,便于提高尼龙材料的流动性。
第二方面,本申请提供一种用于密封圈的高流动性尼龙材料的制备方法,采用如下技术方案:
一种用于密封圈的高流动性尼龙材料的制备方法,包括如下步骤:
将尼龙612、增韧剂、分散剂、多壁碳纳米管、复合物混合,熔融挤出,冷却造粒,得到用于密封圈的高流动性尼龙材料。
进一步,一种用于密封圈的高流动性尼龙材料的制备方法,包括如下步骤:
将尼龙612、增韧剂、分散剂、多壁碳纳米管、复合物混合,在220-230℃的温度下熔融挤出,冷却造粒,得到用于密封圈的高流动性尼龙材料。
作为优选:在加入复合物时,一并加入油酸。
通过采用上述技术方案,将各原料混合均匀,便于各原料发挥作用,便于提高尼龙材料的流动性。
综上所述,本申请包括以下至少一种有益技术效果:
1、由于本申请中采用母盐溶液与己内酰胺聚合形成复合物,母盐溶液具有更好的热稳定性,母盐溶液中含有树枝单元,能够削弱尼龙612基体中分子间的氢键作用,且不会造成尼龙材料力学性能的下降,从而提高了尼龙材料的熔融指数,提高了尼龙材料的流动性,可使熔融指数达到2.02g/min,缺口冲击强度达到19.9KJ/m2,拉伸强度达到70.3MPa,弯曲强度达到57.8MPa。
2、本申请中优选油酸应用到尼龙材料的原料中,能够降低复合材料的熔融温度,熔融温度的高低与聚合物体系的结晶程度以及聚合物分子链的运动能力有密切的关系,一般来说,聚合物基体中晶体的尺寸越大,结晶程度越完善,聚合物分子链运动能力低,则熔融温度就越高,相反,熔融温度就越低。表明油酸的加入降低了尼龙材料的结晶程度,提高了分子链的运动能力,从而提高了尼龙材料的流动性。
具体实施方式
以下结合具体内容对本申请作进一步详细说明。
原料
增韧剂为马来酸酐接枝POE;分散剂为硬脂酸。
制备例
制备例1
一种母盐溶液,其采用以下方法制备:
将2kg乙二胺放入8L甲醇中,混合均匀,加入丙烯酸甲酯,反应24h,升温至50℃,在真空度为0.1MPa的条件下减压蒸馏,得到中间产物;将中间产物放入7L水中,混合均匀,得到混合物,将1kg对苯二甲酸放入6L水中,边搅拌边加入混合物,升温至80℃,反应45min,得到母盐溶液。
制备例2
一种复合物,其采用以下方法制备:
将2kg己内酰胺、0.8kg采用制备例1制备得到的母盐溶液、10L冰醋酸放入18L水中,在氮气保护下加压至0.25MPa,升温至75℃,不断搅拌30min后,升温至205℃,加压至0.45MPa,反应25min,再升温至247℃,加压至0.65MPa,反应45min,减压至常压,切粒,用沸水萃取,烘干后得到复合物。
制备例3
一种复合物,其和制备例2的区别之处在于,母盐溶液的添加量不同,制备例3中的母盐溶液的添加量为1kg。
制备例4
一种复合物,其和制备例2的区别之处在于,母盐溶液的添加量不同,制备例4中的母盐溶液的添加量为1.2kg。
实施例
实施例1
一种用于密封圈的高流动性尼龙材料,其原料配比见表1所示。
一种用于密封圈的高流动性尼龙材料的制备方法,包括如下步骤:
将尼龙612、增韧剂、分散剂、多壁碳纳米管、采用制备例2制备得到的复合物混合,在225℃的温度下熔融挤出,冷却造粒,得到用于密封圈的高流动性尼龙材料。
实施例2-5
一种用于密封圈的高流动性尼龙材料,其和实施例1的区别之处在于,尼龙材料的原料配比不同,其原料配比见表1所示。
表1实施例1-5尼龙材料中各原料掺量(单位:kg)
实施例6-8
一种用于密封圈的高流动性尼龙材料,其和实施例5的区别之处在于,尼龙材料的原料配比不同,其原料配比见表2所示。
表2实施例6-8尼龙材料中各原料掺量(单位:kg)
实施例9
一种用于密封圈的高流动性尼龙材料,其和实施例7的区别之处在于,尼龙材料原料中的复合物的来源不同,其采用制备例3制备得到。
实施例10
一种用于密封圈的高流动性尼龙材料,其和实施例7的区别之处在于,尼龙材料原料中的复合物的来源不同,其采用制备例4制备得到。
实施例11-13
一种用于密封圈的高流动性尼龙材料,其和实施例9的区别之处在于,尼龙材料中还加入了油酸,原料配比见表3所示,且制备方法不同,即在加入复合物时,一并加入油酸。
表3实施例11-13尼龙材料中各原料掺量(单位:kg)
对比例
对比例1
一种用于密封圈的高流动性尼龙材料,其和实施例1的区别之处在于,尼龙材料的原料中未添加复合物。
性能检测试验
对实施例1-13和对比例1中的尼龙材料进行下述性能检测:
熔融指数:采用熔体流动速率测试仪,在测试温度为230℃,熔体载荷为0.375kg下,计算10min内从毛细管内流出的熔体质量,检测结果如表4所示。
缺口冲击强度:依据GB/T1043-2008《塑料简支梁冲击强度的测定》对尼龙材料的缺口冲击强度进行测定,检测结果如表4所示。
拉伸强度:依据GB/T1040-1992《塑料拉伸性能试验方法》对尼龙材料的拉伸强度进行测定,检测结果如表4所示。
弯曲强度:依据GB/T9314-2008《塑料弯曲性能的测定》对尼龙材料的弯曲强度进行测定,检测结果如表4所示。
表4检测结果
从表4中可以看出,本申请的用于密封圈的高流动性尼龙材料,通过各原料之间的协同作用,不仅使尼龙材料保持了优良的力学性能,还提高了尼龙材料的流动性,其中,熔融指数为1.71-2.02g/min,缺口冲击强度为16.3-19.9KJ/m2,拉伸强度为66.1-70.3MPa,弯曲强度为53.9-57.8MPa。
结合实施例1和对比例1可以看出,实施例1中的尼龙材料的熔融指数为1.71g/min,缺口冲击强度为16.3KJ/m2,拉伸强度为66.1MPa,弯曲强度为53.9MPa,优于对比例1,表明尼龙材料的原料中加入采用母盐溶液和己内酰胺复配而成的复合物更为合适,不仅使尼龙材料保持了优良的力学性能,还提高了尼龙材料的流动性。
结合实施例1-5可以看出,实施例5中的尼龙材料的熔融指数为1.90g/min,缺口冲击强度为18.6KJ/m2,拉伸强度为68.4MPa,弯曲强度为56.2MPa,优于其他实施例,表明实施例5中的复合物的添加量更为合适,能够使尼龙材料保持良好的力学性能,还能够提高尼龙材料的流动性。
结合实施例6-8可以看出,尼龙材料的原料中除复合物外,其他原料对尼龙材料的性能影响不大。
结合实施例7、实施例9-10可以看出,实施例9中的尼龙材料的熔融指数为1.98g/min,缺口冲击强度为19.5KJ/m2,拉伸强度为69.5MPa,弯曲强度为57.0MPa,优于其他实施例,表明复合物采用制备例3制备得到更为合适,能够使尼龙材料保持良好的力学性能,还能够提高尼龙材料的流动性。
结合实施例9、实施例11-13可以看出,实施例12中的尼龙材料的熔融指数为2.02g/min,缺口冲击强度为19.9KJ/m2,拉伸强度为70.3MPa,弯曲强度为57.8MPa,表明尼龙材料中加入油酸更为合适,且实施例12中油酸的添加量更为合适,不仅使尼龙材料保持了优良的力学性能,还提高了尼龙材料的流动性。
上述具体实施方式的实施例均为本申请的较佳实施例,并非依此限制本申请的保护范围,故:凡依本申请的结构、形状、原理所做的等效变化,均应涵盖于本申请的保护范围之内。

Claims (9)

1.一种用于密封圈的高流动性尼龙材料,其特征在于:其包括以下重量份的原料:尼龙612 60-80份、增韧剂8-15份、分散剂1-5份、多壁碳纳米管5-12份、复合物6-16份,其中,复合物为母盐溶液和己内酰胺复配而成;
所述母盐溶液采用以下方法制备:将乙二胺放入甲醇中,混合均匀,加入丙烯酸甲酯,反应一段时间,升温,在真空条件下减压蒸馏,得到中间产物;将中间产物放入水中,混合均匀,得到混合物,将对苯二甲酸放入水中,边搅拌边加入混合物,升温,反应一段时间,得到母盐溶液。
2.根据权利要求1所述的一种用于密封圈的高流动性尼龙材料,其特征在于:其包括以下重量份的原料:尼龙612 65-72份、增韧剂10-12份、分散剂2-4份、多壁碳纳米管8-10份、复合物8-14份。
3.根据权利要求1所述的一种用于密封圈的高流动性尼龙材料,其特征在于:所述复合物采用以下方法制备:将己内酰胺、母盐溶液、冰醋酸放入水中,在氮气保护下加压,升温,反应一段时间,减压至常压,切粒,萃取,烘干后得到复合物。
4.根据权利要求3所述的一种用于密封圈的高流动性尼龙材料,其特征在于:所述己内酰胺和母盐溶液的重量配比为1:(0.4-0.6)。
5.根据权利要求1所述的一种用于密封圈的高流动性尼龙材料,其特征在于:所述尼龙材料中还包括1-5重量份的油酸。
6.根据权利要求1所述的一种用于密封圈的高流动性尼龙材料,其特征在于:所述增韧剂为马来酸酐接枝POE、SEBS中的一种或多种。
7.根据权利要求1所述的一种用于密封圈的高流动性尼龙材料,其特征在于:所述分散剂为硬脂酸、聚乙烯蜡、液体石蜡中的一种或多种。
8.一种如权利要求1-7任一所述的用于密封圈的高流动性尼龙材料的制备方法,其特征在于,包括如下步骤:
将尼龙612、增韧剂、分散剂、多壁碳纳米管、复合物混合,熔融挤出,冷却造粒,得到用于密封圈的高流动性尼龙材料。
9.根据权利要求8所述的一种用于密封圈的高流动性尼龙材料的制备方法,其特征在于:在加入复合物时,一并加入油酸。
CN202211312640.7A 2022-10-25 2022-10-25 一种用于密封圈的高流动性尼龙材料及其制备方法 Active CN115521611B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211312640.7A CN115521611B (zh) 2022-10-25 2022-10-25 一种用于密封圈的高流动性尼龙材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211312640.7A CN115521611B (zh) 2022-10-25 2022-10-25 一种用于密封圈的高流动性尼龙材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115521611A CN115521611A (zh) 2022-12-27
CN115521611B true CN115521611B (zh) 2023-09-19

Family

ID=84703605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211312640.7A Active CN115521611B (zh) 2022-10-25 2022-10-25 一种用于密封圈的高流动性尼龙材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115521611B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009571A1 (en) * 1998-08-13 2000-02-24 Solutia Inc. Methods for the preparation of polyamide nanocomposite compositions by in situ and solid state polymerizations
CN102108122A (zh) * 2011-01-05 2011-06-29 湖南大学 一种高韧性、高流动性尼龙6复合材料的制备方法
CN111423722A (zh) * 2020-05-23 2020-07-17 厦门市嘉能科技有限公司 一种电池密封圈用改性尼龙、其制备方法及电池密封圈
CN114874618A (zh) * 2022-06-15 2022-08-09 厦门市嘉能科技有限公司 一种电池密封圈用尼龙材料及其制备方法及电池密封圈
CN115011114A (zh) * 2022-07-02 2022-09-06 厦门市嘉能科技有限公司 一种高流动性的尼龙及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7011784B2 (en) * 2003-01-28 2006-03-14 Lung-Tao Lin Industrial nylon composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009571A1 (en) * 1998-08-13 2000-02-24 Solutia Inc. Methods for the preparation of polyamide nanocomposite compositions by in situ and solid state polymerizations
CN102108122A (zh) * 2011-01-05 2011-06-29 湖南大学 一种高韧性、高流动性尼龙6复合材料的制备方法
CN111423722A (zh) * 2020-05-23 2020-07-17 厦门市嘉能科技有限公司 一种电池密封圈用改性尼龙、其制备方法及电池密封圈
CN114874618A (zh) * 2022-06-15 2022-08-09 厦门市嘉能科技有限公司 一种电池密封圈用尼龙材料及其制备方法及电池密封圈
CN115011114A (zh) * 2022-07-02 2022-09-06 厦门市嘉能科技有限公司 一种高流动性的尼龙及其制备方法

Also Published As

Publication number Publication date
CN115521611A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
CN108070140B (zh) 纤维改性剂和改性纤维及其制备方法和应用和聚丙烯复合材料及其制备方法
CN114573805B (zh) 一种高阻隔透明阻燃共聚尼龙的制备方法
CN115521611B (zh) 一种用于密封圈的高流动性尼龙材料及其制备方法
KR100876519B1 (ko) 2개의 폴리아미드 부품의 용접 방법
CN102532545B (zh) 一种长碳链半芳香族聚酰胺酰亚胺及其合成方法
CN103122063A (zh) 聚对氨基苯甲酰氨基十一胺的制备方法
CN111234516B (zh) 一种改性聚丁内酰胺的制备方法
CN115160460A (zh) 一种枝接聚乙烯醇改性材料及制备方法
JP7419935B2 (ja) 特定のアイオノマーを含むポリアミド樹脂組成物
CN112795008A (zh) 一种尼龙mxd6的合成工艺
TWI738137B (zh) 具有低熔點之吸濕性聚醯胺纖維及其製造方法
CN115505254B (zh) 一种可光-生物降解聚酮淀粉复合材料及其制备方法
CN113667115A (zh) 一种半芳香族耐高温pa6t/11材料及其制备方法
CN115785662B (zh) 一种冷却管用聚酰胺软管的组合物及制备方法
CN116217904B (zh) 一种高韧性二氧化碳基聚酯-聚碳酸酯及其制备方法
CN113136073B (zh) 一种耐低温抗冲击聚丙烯弹性体材料及其制备方法
CN108440926B (zh) 高性能立构复合型聚乳酸/弹性体合金材料或制品及其制备方法
CN114940755B (zh) 一种聚酰胺弹性体及其制备方法
CN116515290B (zh) 抗静电的玻璃纤维-pa双6复合材料及其制备方法
CN117659274A (zh) 一种耐热抗冻高强度凝胶组合物及其制备方法
CN115521538A (zh) 一种三元共混挤出片材
CN116535831A (zh) 一种热塑性交联淀粉填充改性的pbat及其制备方法
CN118005905A (zh) Pbat/纤维素的相容和成核一体化助剂、制备方法及应用
CN117844088A (zh) 一种共聚型尼龙12/聚乙烯复合材料及其制备方法
CN113502024A (zh) 一种抗冲击聚苯乙烯材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant