CN115505597A - 水稻微丝解聚因子adf6转基因植株的培育、鉴定及应用 - Google Patents

水稻微丝解聚因子adf6转基因植株的培育、鉴定及应用 Download PDF

Info

Publication number
CN115505597A
CN115505597A CN202110724143.7A CN202110724143A CN115505597A CN 115505597 A CN115505597 A CN 115505597A CN 202110724143 A CN202110724143 A CN 202110724143A CN 115505597 A CN115505597 A CN 115505597A
Authority
CN
China
Prior art keywords
osadf6
gene
sequence
plant
arabidopsis thaliana
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110724143.7A
Other languages
English (en)
Inventor
汪澈
王丽娜
王瑾书
程佳宁
程欣
毕霜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Agricultural University
Original Assignee
Shenyang Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Agricultural University filed Critical Shenyang Agricultural University
Priority to CN202110724143.7A priority Critical patent/CN115505597A/zh
Publication of CN115505597A publication Critical patent/CN115505597A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于分子植物育种及基因拼接技术和DNA重组技术领域,提供包括水稻OsADF6基因的重组载体、转化细胞、转OsADF6基因的拟南芥的培育鉴定及应用。转OsADF6基因拟南芥的培育方法包括:水稻OsADF6基因的克隆、植物表达载体PCAMBIA1300‑221‑OsADF6的构建和农杆菌GV3101浸染法转化拟南芥。对转化植株进行PCR检测、荧光定量RT‑PCR检测验证水稻OsADF6基因整合到拟南芥植株基因组中并正常转录表达。对转基因植株进行检测,转基因植株的抗旱性明显提高,为水稻OsADF6基因进一步相关研究提供技术支持。

Description

水稻微丝解聚因子ADF6转基因植株的培育、鉴定及应用
技术领域
本发明属于分子植物育种及基因拼接技术和DNA重组技术领域,涉及一种通过将水稻OsADF6基因转入拟南芥来进一步研究该基因相关功能的方法,具体涉及转水稻OsADF6基因的重组载体、转化细胞、转OsADF6基因的拟南芥的培育鉴定及应用。
背景技术
水稻(Oryza sativa L.),是禾本科草本稻属一年生单子叶植物。水稻作为重要的粮食作物,为全球将近50%以上的人口提供口粮,鉴于人口的增长,预计在2025年,在干旱多发地区作物的生产至少要增加40%,而水稻的生产量必须增加60%才可以满足急剧膨胀的人口数量[1]。不论是自然生长的植物还是人工栽培的作物,在其一个生命周期中,总会在某一个或几个生育阶段遭遇一种以上的逆境胁迫[2-4]。随着全球气候的变化,水稻生产受到的非生物胁迫与日俱增,其中干旱胁迫已经成为全世界范围内影响水稻生产最重要的环境因子[5]。水稻这种中生性的植物,在演变进化过程中对水旱环境有了一定的双重适应性,在满足水稻蒸腾需求的水分供应前提下,可以降低水分的供应,以达到节水的目的[6]。有研究表明,水稻不需要连续的灌水也可以实现高产,在育苗期结束以后,即使田间无水层,水稻根系仍能够在根区周围的地下土壤中吸收水分[7]。有研究结果表明,水稻的生理需水只占其全部耗水的15%左右,说明水稻栽培节水的空间潜力十分巨大[8]。水稻抗旱分子育种为应对干旱缺水环境提供了新途径,水稻抗旱特性的调控主要受功能基因和调节基因的影响,其中蛋白酶的调节、渗透调节、可溶性糖的积累、抗氧化酶类的活性和水稻细胞结构的变化受功能基因的调控,而编码信号转导和响应胁迫的转录因子受调节基因的控制,目前中国抗旱分子育种还处在起步阶段,旱稻的推广面积也相对较少[9]
水稻是中国最主要的粮食作物之一,保障粮食安全要求水稻生产的不断稳产和增产。如何解决日益提高的水稻总产需求和干旱缺水环境之间的矛盾可能是中国21世纪将面临的最严重问题之一[9]。所以,通过基因拼接技术和DNA重组技术来发掘和克隆水稻抵御逆境的重要基因,证明其抗逆的作用机制和开展基因功能分析有着至关重要的作用。而植物育种技术和转基因技术的不断发展为作物遗传育种、基因功能研究和育种改良等多个方面提供了理论指导,为这一研究提供了技术保障。
植物细胞中微丝骨架参与多种基础性的细胞生理活动,例如胞质环流、细胞分裂、细胞壁的沉积等。而微丝动态需要微丝结合蛋白的调节,目前已经有多种蛋白被证明参与微丝聚合和解聚过程,其中微丝解聚因子(Actin-depolymerizing factors,ADFs)是一类重要的微丝结合蛋白,在真核生物中广泛存在,对植物生长发育的调节和逆境胁迫的适应中发挥重要作用。ADFs具有保守的剪切和解聚微丝的功能,并参与生物细胞中微丝骨架的动态调节。微丝的组织结构对于细胞维持特定的形态和功能非常重要,而维持微丝的动态需要微丝结合蛋白的调节。ADF/cofilin蛋白家族在真核生物细胞骨架中普遍存在,并且含量丰富[10]。作为细胞骨架中微丝的主要组成成分,肌动蛋白广泛存在于所有真核细胞中。它参与很多重要的细胞过程,如囊泡运输、细胞器运动和重排、胞质运动和顶端生长等[11]。肌动蛋白解聚因子(Actin Depolymerizing Factor,ADF)是真核生物中重要的肌动蛋白结合蛋白,由多基因家族成员组成,蛋白分子量在13~19kDa之间[12]。ADF是由多基因家族编码的[13],ADF的同源基因具有不同的表达模式[14]。拟南芥ADF家族的表达研究较为清楚[15],其中,ADF1-4属于Subclass I,在除了花粉外的其他组织中强烈表达;Subclass II包含IIa(ADF7和ADF10)及IIb(ADF8和ADF11),ADF7和ADF10主要在成熟花粉和花粉管中表达,而ADF8和ADF11主要在根和根毛中表达;ADF5和ADF9属Subclass III,主要在愈伤组织、幼叶和分生组织等快速生长细胞中表达,在成熟营养组织中微弱表达;Subclass IV只含有ADF6,表达于所有组织中。不同的ADF亚型具有功能性差异。ADFs在植物的生长和发育中发挥着重要作用,参与多个生物与非生物应答反应[16-17]。ADF/cofilin能结合G-actin和F-actin,可与ADP-G-actin优先结合,ADF/cofilin主要有剪切微丝的能力,并且可以促使单体actin从微丝负端解离[18]
拟南芥(Arabidopsis thaliana)是十字花科植物,从高海拔的热带地区到斯湛的那维亚北部寒冷地带的许多地方都有分布,我国的华东、华南及新疆等地也有发现。由于它具有植株小、生育期短、种子量大、具有开花植物的全部特征,自交亲和,且远缘杂交可育、基因组小、重复序列少、可被土壤杆菌转化等特点,成为现代生物科学许多领域理想的模式物种[19]。本实验前期发现拟南芥AtADF6基因在提高植物抗逆性中起着至关重要的作用(数据尚未发表)。本研究将通过基因拼接技术和DNA重组技术,克隆水稻OsADF6基因并构建重组载体,将水稻OsADF6基因转入拟南芥中,在较的短时间内获得转基因植株。所获得的转基因植株将节省OsADF6基因功能研究中所需的时间。
水稻是世界上最重要的粮食作物,是世界一半以上人口的主食。随着生活水平的提高增加了世界范围内对高产和优质水稻品种的需求[20]。对抗旱基因的挖掘利用,可以为作物的遗传改良和分子育种提供强有力的支撑[21],加速育种进程,提高育种效率[22]。ADF家族对植物的抗逆性起着至关重要的作用,但是ADF家族在水稻中还未见报道。因此,本发明提出的关于OsADF6转基因植株的培育、鉴定及应用方法将有利于揭示作物抗逆的机理,并为抗逆品种的高产栽培提供理论依据。
参考文献:
[1]FAGERIA N K.Yield physiology of rice[J].Plant Nutr,2007,30:843-879.)。
[2]KEMIN S,BREMER D J,KEELEY S J,et al.Effects of High Temperatureand Drought on A Hybrid Bluegrass Compared with Kentucky Bluegrass and TallFescue[J].Crop science,2007,47(5):2152-2161.
[3]BARBANAS B,JAGER K,FEHER,A.The Effect of Drought and Heat Stresson Reproductive Processes in Cereals[J].Plant,Cell and Environment.2008,31(1):11-38.
[4]KAUR V,BEHL R K.Grain Yield in Wheat as Affected by Short Periodsof High Temperature,Drought and Their Interaction during Pre-and Post-anthesis Stages[J].Cereal Research Communications,2010,38(4):514-520.)
[5]PANDEY V,SHUKLA A.Acclimation and tolerance strategies of riceunder drought stress[J].Rice Sci,2015,22:147-161.)
[6]杨晓龙,汪本福,李阳,张枝盛,李进兰,余振渊,程建平.干旱胁迫对水稻农艺特性和产量的影响综述[J].湖北农业科学,2020,59(S1):39-43.)
[7]LAMPAYAN R L,REJESUS R M,SINGLETON G R,et al.Adop-tionandeconomics of alternate wetting and drying water manage-ment for irrigatedlowland rice[J].Field Crops Res,2015,170:95-108.
[8]BOUMAN B A M.A conceptual framework for the improvement of cropwater productivity at different spatial scales[J].Agr Syst,2007,93:43-60)
[9]王莉,钱前,张光恒.水稻抗旱基因调控机制及其分子育种利用[J].分子植物育种,2014,12(5):1027-1033.)。
[10]南琼.植物微丝解聚因子ADF在进化过程中功能发生分化的分子机制研究[D].兰州大学,2017.)
[11]Staiger C J.Signaling to the actin cytoskeleton in plant[J].AnnuRev Plant Physiol Plant Mol Biol,2000,51:257-288.)
[12]Roy-Zokan E M,Dyer K A,Meagher R B.Phylogenetic patterns of codonevolution in the actin-depolymerizing factor/cofilin(ADF/CFL)gene family[J].PloS One,2015,10(12):e0145917.)
[13]MACIVER S K,HUSSEY P J.The ADF/cofiin family:actin-remodelingproteins[J].Genome Biology,2002,3(5):3007.1-3007.12.)
[14]KIJIMA S T,HIROSE K,KONG S G,et al.Distinct biochemicalproperties of Arabidopsis thaliana actin isoforms[J].Plant Cell Physiol,2016,57:46-56.)
[15]RUZICKA D R,KANDASAMY M K,MCKINNEY E C,et al.The ancientsubclasses of Arabidopsis actin depolymerizing factor genes exhibitnovel anddifferential expression[J].Plant J,2007,52:460-472.)
[16]DONG C H,XIA G X.Arabidopsis CDPK6phosphorylates ADF1at N-terminal serine 6predominantly[J].Plant Cell Rep,2013,32:1715-1728.
[17]FU Y,DUAN X,TANG C,et al.TaADF7,an actin-depolymerizing factor,contributes to wheat resistance against Pucciniastriiformisf.sp.tritici[J].Plant J,2014,78:16-30.)
[18](Zheng,Y.,Xie,Y.,Jiang,Y.,Qu,X.,andHuang,S.(2013).ArabidopsisACTIN-DEPOLYMERIZING FACTOR7severs actin filaments and regμLatesactin cableturnover to promote normal pollen tube growth.Plant Cell 25:3405-3423.)
[19]陈璋.拟南芥:植物分子生物学研究的模式物种[J].植物学通报,1994(01):6-11.)[20]Hori K.Genetic dissection and breeding for grain appearance qualityin rice.In:Sasaki T.,Ashilari M.,editors.Rice Genomics,Genetics andBreeding.Springer;Singapore:2018.pp.435-451.)
[21]张瑞杰,王喆,连卜颖,郭展,魏东,于世慧,李红英,刘晓东.谷子ABC转运蛋白基因与抗旱关系的研究[J].山西农业大学学报(自然科学版),2018,38(01):11-15.
[22]宋健,曹晓宁,王海岗,陈凌,王君杰,刘思辰,乔治军.SiASRs家族基因的鉴定及表达分析[J].作物杂志,2019(06):33-42.
发明内容
为了弥补上述现有技术的不足,本发明提出一种转水稻OsADF6基因的培育、鉴定方法及抗旱性应用,采用农杆菌介导法将水稻OsADF6基因导入拟南芥中提高其抗旱能力,为改善拟南芥品种提供切实可行的方法,为抗旱品种的高产栽培提供理论依据。
本发明的目的是通过以下技术方案实现的:
利用农杆菌花序浸染法,将水稻OsADF6基因导入拟南芥,通过含卡那霉素的培养基筛选抗性植株;对所得的具有卡那霉素抗性的转化植株进行PCR、定量RT-PCR检测,验证水稻OsADF6基因已经转入拟南芥基因组并进行转录;对转基因拟南芥后代进行抗旱性分析,最终获得抗旱能力提高的转基因拟南芥植株。本发明的技术要点为:
1.本发明提供一种重组载体,该重组载体包括序列如SEQ ID NO.1所示OsADF6基因,通过DNA连接酶将OsADF6基因连接到载体。
2.本发明还提供包括有上述1提供重组载体的转化细胞。
3.本发明还提供一种转OsADF6基因拟南芥的培育方法,该方法以水稻为材料获得目的基因OsADF6,通过酶切连接与植物表达载体pCAMBIA1300-221质粒进行重组连接,通过农杆菌介导法将OsADF6基因导入拟南芥。
4.本发明提供一种转OsADF6基因拟南芥的培育方法,该方法包括如下步骤:
(1)水稻OsADF6基因的克隆
以水稻为材料,提取RNA并反转录成cDNA,根据基因序列信息设计特异性引物:
正向引物OsADF6-F:序列如SEQ ID NO.2所示;
反向引物OsADF6-R:序列如SEQ ID NO.3所示,获得OsADF6基因序列;
结合PCR扩增目的基因的全长序列,在OsADF6基因的上游和下游分别引入Xba I和Sma I酶切位点,设计引物:
正向引物OsADF6-2F:序列如SEQ ID NO.4所示;
反向引物OsADF6-2R:序列如SEQ ID NO.5所示,获得PCR产物;
(2)植物表达载体pCAMBIA1300-221-OsADF6的构建
将步骤(1)获得的PCR产物连接到pGM-T载体上,转化DH5α感受态细胞,提取阳性质粒;用限制性内切酶Xba I和Sma I分别对提取的质粒及pCAMBIA1300-221载体进行双酶切,酶切产物经PCR电泳检测后回收;用T4连接酶过夜连接回收的酶切产物;将连接产物转化DH5α大肠杆菌,提取阳性质粒并进行双酶切验证。
(3)农杆菌GV3101介导遗传转化法转化拟南芥
将步骤(2)制备的阳性质粒pCAMBIA1300-221-T-OsADF6转化农杆菌感受态GV3101,获得阳性克隆农杆菌,通过浸染法转化拟南芥,将OsADF6基因转入拟南芥中,获得转基因植株。
5.上述1提供的重组载体在培育抗旱性拟南芥上的应用。
6.上述2提供的转化细胞在培育抗旱性拟南芥上的应用。
7.上述3或4提供的转OsADF6基因拟南芥的培育方法在抗旱性转基因拟南芥株系培育上的应用。
8.通过上述3或4提供的培育方法获得抗旱性拟南芥的应用。
9.转OsADF6基因拟南芥的鉴定方法,该鉴定方法将转OsADF6基因初步获得转化植株进行PCR鉴定、荧光定量RT-PCR分子检测,筛选阳性植株,获得转基因拟南芥株系。
具体步骤如下:
(1)PCR检测
提取生根筛选得到的卡那霉素抗性待检测植株基因组DNA,将筛选基因NPTII作为检测目标,根据NPT II基因两端合成扩增反应引物,扩增出的片段长为430bp,引物序列为:
正向引物pCAMBIA1300-221-NPTII-F:序列如SEQ ID NO.6所示;
反向引物pCAMBIA1300-221-NPTII-R:序列如SEQ ID NO.7所示;
分别以卡那霉素抗性植株和未转化植株DNA为模板,以pCAMBIA1300-221-NPT II-F和pCAMBIA1300-221-NPTII-R为引物,进行PCR扩增,对扩增产物进行琼脂糖凝胶电泳检测分析;
(2)荧光定量RT-PCR检测
分别提取抗卡那霉素植株根部及野生型植株根部的RNA、反转录合成cDNA,进行荧光定量RT-PCR检测(每个样品重复3次)。根据荧光定量RT-PCR检测数据分析得到各个样品的CT值,以野生型植株的表达为基准值,计算各转基因植株的相对表达情况;特异引物扩增出的片段长为97bp,引物序列如下:
正向引物OsADF6-RT-F:序列如SEQ ID NO.8所示,
反向引物OsADF6-RT-R:序列如SEQ ID NO.9所示;
以18S扩增的基因片段为内参,片段长度为186bp阳性结果,引物序列:
正向引物18S-F:序列如SEQ ID NO.10所示,
反向引物18S-R:序列如SEQ ID NO.11所示;
由PCR、荧光定量RT-PCR检测呈阳性,确定获得转基因拟南芥株系。
本发明的有益效果:
1.本发明采用转基因技术,将水稻OsADF6基因整合到拟南芥基因组中,可以从根本上提高拟南芥的抗逆能力。转化外源OsADF6基因并正常转录表达后,在干旱胁迫环境下筛选出抗旱的拟南芥植株,为水稻OsADF6基因的相关功能的后续研究奠定基础。
2.通过后续的实验分析结果发现,本实验方法选育的转基因拟南芥材料与对照组相比,转入OsADF6基因的拟南芥植株耐旱能力得到了很大提高,在不同浓度甘露醇处理下转基因拟南芥植株中OsADF6基因表达量均显著高于对照组、明显提高了拟南芥的耐旱能力。
附图说明:
图1为pCAMBIA1300-221植物载体图;
图2为植物表达载体构建过程的琼脂糖凝胶电泳图;
图2其中:M:DL2000Marker,1:OsADF6,2:双酶切验证电泳图,3:菌液PCR;
图3为农杆菌浸染拟南芥过程;
图3中:1、2:农杆菌侵染拟南芥,3:浸染后为提高浸染效率将拟南芥水平放置,4:浸染后黑暗处理24小时;
图4为转OsADF6基因拟南芥特异引物检测电泳图;
图4中:M:DL2000Marker,阳:阳性质粒,WT:野生型植株,OsADF6-1-5:转OsADF6抗性株系(OsADF6-1,OsADF6-3,OsADF6-4,OsADF6-5为转入成功的阳性苗);
图5为转基因及野生型植株中OsADF6基因的相对表达水平;
图5中:WT:野生型植株,OsADF6-1-6:转OsADF6的株系(OsADF6-1,OsADF6-3,OsADF6-4,OsADF6-5表达明显升高);
图6为拟南芥野生型及转基因植株在不同浓度甘露醇培养基中培养七天生长状态。
图6中:1:拟南芥野生型和OsADF6转基因植株在1/2MS培养基生长七天,2:拟南芥野生型和OsADF6转基因植株在1/2MS+250mM甘露醇培养基生长七天,3:拟南芥野生型和OsADF6转基因植株在1/2MS+350mM甘露醇培养基生长七天(OsADF6-3和OsADF6-5转基因苗明显提高了抗旱性)。
具体实施方式
下面结合实例对本发明做进一步的说明,下列实时例中未注明具体条件的试验方法,通常按照本领域的公知手段。
实施例1
(1)水稻OsADF6基因的克隆
以水稻为材料,取根100mg,参照TIANGEN植物总RNA提取试剂盒说明书的操作方法提取叶片的总RNA,采用Prime Script TM II lst Strand cDNA Synthesis Kit反转录试剂盒进行反转录获得cDNA,根据转录组测序所得该基因序列信息,利用DNAMAN软件设计特异性引物扩增OsADF6。
正向引物OsADF6-F:序列如SEQ ID NO.2所示:ATGGCGAACTCAGCGTCG
反向引物OsADF6-R:序列如SEQ ID NO.3所示:TCAGAGGGCTCTCGCTTT
以水稻根的cDNA为模板,进行PCR反应,20μL反应体系;2×PCR Mix×10μL,cDNA模板1μL,OsADF6-F、OsADF6-R引物各1μL,ddH2O7μL;反应程序:95℃预变性5min,95℃解链30s,59℃退火30s,72℃延伸40s,72℃延伸10min。PCR产物琼脂糖凝胶电泳结果如图1所示,片段大小为420bp,PCR产物用艾德莱公司凝胶回收试剂盒进行回收,即获得OsADF6基因序列,序列测定为SEQ ID NO.1:
Figure BSA0000245909640000051
(2)植物表达载体的构建
根据OsADF6基因全长序列设计引物:
正向引物OsADF6-2F:序列如SEQ ID NO.4所示:
Figure BSA0000245909640000052
反向引物OsADF6-2R:序列如SEQ ID NO.5所示:
Figure BSA0000245909640000053
以水稻根的cDNA为模板进行PCR反应:20μL反应体系;2×PCR Mix×10μL,cDNA模板1μL,OsADF6-2F、OsADF6-2R引物各1μL,ddH2O7μL。反应程序:95℃预变性5min,95℃解链30s,59℃退火30s,72℃延伸30s,72℃延伸10min。在目的基因两端分别引入酶切位点Xba I和Sma I,PCR产物用艾德莱公司凝胶回收试剂盒进行回收,回收产物与pGM-T载体连接,转化DH5α感受态细胞,提取阳性质粒pGM-T-OsADF6;
植物表达载体构建的过程如图1所示,具体实施措施如下:
用限制性内切酶Xba I和Sma I分别对质粒pCAMBIA1300-221和pGM-T-OsADF6进行双酶切,双酶切体系40μL:1×M Buffer 4μL,Xba I 2μL,Sma I 2μL,质粒或pGM-T-OsADF616μL,ddH2O16μL;37℃,过夜。将双酶切产物用琼脂糖凝胶电泳进行分析,如图所示,分别获得了线性载体和OsADF6目的片段,用凝胶回收试剂盒将酶切产物进行回收,用T4DNA连接酶过夜连接,连接反应体系(10μL):ddH2O2μL,10×T4DNA Ligase Buffer 1μL,OsADF6片段5μL,T4DNA Ligase 1μL,16℃,过夜。连接产物转化DH5α感受态细胞,筛选阳性克隆,提取质粒进行双酶切验证,PCR电泳检测结果如图所示,植物表达载体构建成功,通过pCAMBIA1300-221引入OsADF6基因。
(3)转化农杆菌GV3101
将5μL pCAMBIA1300-221-OsADF6重组载体加入到在冰上融化的50μL GV3101农杆菌感受态中,轻轻吸打混匀,在冰上放置30min后42℃热激90s,热激后冰中放置2min。将28℃预热的500μL LB培养基加入后,28℃振荡1h。吸取50μL涂在含有抗生素(Kana)的固体培养基上,把培养基倒置在28℃培养箱中培养过夜,16h左右。在培养基上长出单菌落后进行菌落PCR鉴定,将鉴定结果为阳性的菌落剩余菌样加入到8ml LB培养基中,28℃摇菌(约16h)后用于保存及浸染拟南芥。
(4)农杆菌GV3101浸染法转化拟南芥
将100μL转化了OsADF6基因的农杆菌GV3101,加入20mL到含有Kana+Rif的液体LB中,28℃摇菌(约16h);将变浑浊的菌液在6000r/min条件下离心2min,倒掉上清液。用5%蔗糖和0.03%silwet-77配制的浸染液悬浮剩余菌体,至0D=0.8。取生长状态良好的拟南芥,剪掉植株上的角果,留下花苞,用移液器吸取浸染液并滴在花序上。将浸染过的苗平放在黑暗环境中24-36h后将苗扶正、浇水,放到正常光照条件下培养。
被浸染的拟南芥为T0代,T0代成熟后收取的种子为T1代。把T1代种子用加入抗生素的1/2MS培养基进行筛选培养,浸染成功的植株能在培养基上正常生长,具有真叶和正常的根长,同时用表达载体上另一个抗性基因筛选。将具有真叶和正常根长的植株移苗到土里,单株收种子,收到的种子为T2代。T2代植株继续在抗性培养基上进行筛选,符合正常生长和不正常生长植株比例为3∶1条件时,将生长正常的植株移到土里,单株收种子,收的种子为T3代。再将T3代种子在抗性培养基上进行筛选,全部都正常生长的植株为纯合植株,由此初步获得了纯合的抗性植株。
(5)转OsADF6基因抗性植株进行分子检测
a.PCR检测
取生根筛选得到的卡那霉素抗性植株的根及未转化植株的根,提取基因组DNA,将NPT II基因作为检测目标,根据NPTII基因两端合成扩增反应引物,扩增出的片段长为430bp,引物序列为:
正向引物pCAMBIA1300-221-OsADF6-F:序列如SEQ ID NO.6所示:
AATAGCTCGA CATACTGTTC;
反向引物pCAMBIA1300-221-OsADF6-R:序列如SEQ ID NO.7所示:
GTTAAGGCCA CTATAAGAGT:
分别以转化植株和野生型植株DNA为模板,以pCAMBIA1300-221-OsADF6-F和pCAMBIA1300-221-OsADF6-R为引物,进行PCR检测。扩增体系为:2×PCR Mix×10μL,PCAMBIA1300-221-OsADF6-F、PCAMBIA1300-221-OsADF6-R引物各1μL,cDNA模板2μL,ddH2O6μL;反应程序:95℃预变性5min,95℃解链30s,57℃退火40s,72℃延伸30s,反应35个循环,72℃延伸10min;扩增产物进行琼脂糖凝胶电泳检测分析(如图4)。从图4中可以看到,转基因植株均可扩增出片段大小为430bp的条带,与阳性对照扩增得到的特异条带相同,而野生型植株没有扩增出该条带。
b.荧光定量RT-PCR检测
分别提取卡那霉素抗性植株根及野生型植株根的总RNA,反转录成第一链cDNA,对OSADF6基因的表达量进行荧光定量RT-PCR检测(每个样品重复3次)。按照荧光定量试剂盒说明书建立扩增体系,扩增体系为:2×PCR Mix×10μL,pCAMBIA1300-221-OsADF6-F、pCAMBIA1300-221-OsADF6-R引物各1μL,cDNA模板1μL,ddH2O7μL。根据荧光定量RT-PCR检测数据分析得到各个样品的CT值,以野生型植株的表达为基准值,计算各转基因植株及野生型植株基因相对表达情况。特异引物扩增出的片段长为97bp为阳性结果,引物序列:
正向引物OsADF6-RT-F:序列如SEQ ID NO.8所示TTCGACTTCGACTTCGTCAC;
反向引物OsADF6-RT-R:序列如SEQ ID NO.9所示GCATCTTGCTCCTCACCTT;
以18S扩增的基因片段为内参,引物序列:
正向引物18S-F:序列如SEQ ID NO.10所示:AAAAGATGACGGTCAAGACCTCGTCC;
反向引物18S-R:序列如SEQ ID NO.11所示:ACAGGTATCGACAATGATCCTTCCG;
根据荧光定量RT-PCR检测的结果,与野生型拟南芥植株相比,转OsADF6的植株基因表达量有所提高。转基因株系表达量明显较高,证实内源基因已经转入拟南芥基因组DNA中并表达,如图5。由PCR、荧光定量RT-PCR检测呈阳性,获得转基因植株.
(6)转基因植株后代的抗旱性分析
将生长健壮的野生型拟南芥植株与转基因拟南芥植株进行干旱处理,差异极其显著。结果显示转基因植株生长良好,表现出一定的抗旱性。
Figure ISA0000245909660000011
Figure ISA0000245909660000021

Claims (9)

1.一种重组载体,其特征在于:该重组载体包括序列如SEQ ID NO.1所示OsADF6基因,通过DNA连接酶将OsADF6基因连接到载体。
2.包括有权利要求1所述的重组载体的转化细胞。
3.一种转OsADF6基因拟南芥的培育方法,其特征在于:该方法以水稻为材料获得目的基因OsADF6,通过酶切连接与植物表达载体pCAMBIA1300-221质粒进行重组连接,通过农杆菌介导法将OsADF6基因导入拟南芥。
4.一种转OsADF6基因拟南芥的培育方法,该方法包括如下步骤:
(1)水稻OsADF6基因的克隆
以水稻根为材料,提取RNA并反转录成cDNA,根据转录组测序所得到的序列信息设计特异性引物:
正向引物OsADF6-F:序列如SEQ ID NO.2所示
反向引物OsADF6-R:序列如SEQ ID NO.3所示;获得OsADF6基因序列;
结合PCR扩增目的基因的全长序列,在OsADF6基因的上游和下游分别引入XbaI和SmaI酶切位点,设计引物:
正向引物OsADF6-2F:序列如SEQ ID NO.4所示
反向引物OsADF6-2R:序列如SEQ ID NO.5所示;获得PCR产物;
(2)植物表达载体pCAMBIA1300-221-OsADF6的构建
将步骤(1)获得的PCR产物连接到pGM-T载体上,转化DH5α感受态细胞,提取阳性质粒;
用限制性内切酶XbaI和SmaI分别对提取的质粒及pCAMBIA1300-221载体进行双酶切,酶切产物经PCR电泳检测后回收;用T4连接酶过夜连接回收的酶切产物;将连接产物转化DH5α大肠杆菌,提取阳性质粒并进行双酶切验证。
(3)农杆菌GV3101介导遗传转化法转化拟南芥
将步骤(2)制备的阳性质粒pCAMBIA1300-221-T-OsADF6转化农杆菌感受态GV3101,获得阳性克隆农杆菌,通过浸染法转化拟南芥,将OsADF6基因转入拟南芥中,获得转基因植株。
5.权利要求1所述的重组载体在培育转基因拟南芥上的应用。
6.权利要求2所述的转化细胞在培育拟南芥上的应用。
7.权利要求3或4所述的转OsADF6基因拟南芥的培育方法在抗旱性转基因拟南芥株系培育上的应用。
8.通过权利要求3或4所述的培育方法获得抗旱性转基因拟南芥的应用。
9.转OsADF6基因拟南芥的鉴定方法,其特征在于,该鉴定方法将转OsADF6基因初步获得的抗性植株进行PCR鉴定、荧光定量RT-PCR分子检测,筛选阳性植株,获得转基因拟南芥株系。
具体步骤如下:
(1)PCR检测
提取生根筛选得到的卡那霉素抗性待检测植株基因组DNA,将筛选基因NPTII作为检测目标,根据NPTII基因两端合成扩增反应引物,扩增出的片段长为430bp,引物序列为:
正向引物pCAMBIA1300-221-NPTII-F:序列如SEQ ID NO.6所示;
反向引物pCAMBIA1300-221-NPTII-R:序列如SEQ ID NO.7所示;
分别以卡那霉素抗性植株和未转化植株DNA为模板,以pCAMBIA1300-221-NPTII-F和pCAMBIA1300-221-NPTII-R为引物,进行PCR扩增,对扩增产物进行琼脂糖凝胶电泳检测分析;
(2)荧光定量RT-PCR检测
分别提取抗卡那霉素植株根及野生型植株根的RNA、反转录合成cDNA,进行荧光定量RT-PCR检测(每个样品重复3次)。根据荧光定量RT-PCR检测数据分析得到各个样品的CT值,以野生型植株的表达为基准值,计算各转基因植株的相对表达情况;特异引物扩增出的片段长为97bp,引物序列为:
正向引物OsADF6-RT-F:序列如SEQ ID NO.8所示,
反向引物OsADF6-RT-R:序列如SEQ ID NO.9所示;
以18S扩增的基因片段为内参,片段长度为186bp阳性结果,引物序列:
正向引物18S-F:序列如SEQ ID NO.10所示,
反向引物18S-R:序列如SEQ ID NO.11所示;
由PCR、荧光定量RT-PCR检测呈阳性,确定获得转基因拟南芥株系。
CN202110724143.7A 2021-06-23 2021-06-23 水稻微丝解聚因子adf6转基因植株的培育、鉴定及应用 Withdrawn CN115505597A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110724143.7A CN115505597A (zh) 2021-06-23 2021-06-23 水稻微丝解聚因子adf6转基因植株的培育、鉴定及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110724143.7A CN115505597A (zh) 2021-06-23 2021-06-23 水稻微丝解聚因子adf6转基因植株的培育、鉴定及应用

Publications (1)

Publication Number Publication Date
CN115505597A true CN115505597A (zh) 2022-12-23

Family

ID=84499970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110724143.7A Withdrawn CN115505597A (zh) 2021-06-23 2021-06-23 水稻微丝解聚因子adf6转基因植株的培育、鉴定及应用

Country Status (1)

Country Link
CN (1) CN115505597A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001955A (zh) * 2004-07-28 2007-07-18 巴斯福植物科学有限公司 通过改变肌动蛋白解聚因子的含量和/或活性产生具有增加的病原体抗性的转基因植物的方法
CN102181531A (zh) * 2011-03-18 2011-09-14 上海市农业生物基因中心 水稻干旱响应蛋白或编码该蛋白的基因的应用
US20160145637A1 (en) * 2013-07-08 2016-05-26 Niranjan Baisakh Abiotic Stress Resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001955A (zh) * 2004-07-28 2007-07-18 巴斯福植物科学有限公司 通过改变肌动蛋白解聚因子的含量和/或活性产生具有增加的病原体抗性的转基因植物的方法
CN102181531A (zh) * 2011-03-18 2011-09-14 上海市农业生物基因中心 水稻干旱响应蛋白或编码该蛋白的基因的应用
US20160145637A1 (en) * 2013-07-08 2016-05-26 Niranjan Baisakh Abiotic Stress Resistance
CN105705643A (zh) * 2013-07-08 2016-06-22 路易斯安那州州立大学及农业机械学院管理委员会 非生物胁迫抗性

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
G. SHARMA等: "Sub-Functionalization in Rice Gene Families with Regulatory Roles in Abiotic Stress Responses", CRITICAL REVIEWS IN PLANT SCIENCES, 25 January 2017 (2017-01-25), pages 31 *
GH. HOSSEINI SALEKDEH等: "Proteomic analysis of rice leaves during drought stress and recovery", PROTEOMICS, vol. 2, 31 December 2002 (2002-12-31) *
GHULAM MUHAMMAD ALI等: "Proteomic Analysis of Rice Leaf Sheath during Drought Stress", JOURNAL OF PROTEOME RESEARCH, vol. 5, no. 2, 4 January 2006 (2006-01-04) *
YA-CHEN HUANG等: "Comprehensive analysis of differentially expressed rice actin depolymerizing factor gene family and heterologous overexpression of OsADF3 confers Arabidopsis Thaliana drought tolerance", RICE, vol. 5, 31 December 2012 (2012-12-31) *
马若瑀: "水稻肌动蛋白去聚合因子OsADF2及OsADF11基因异位表达于阿拉伯芥中之功能性分析", 台湾大学生物资源暨农学院硕士论文, 25 August 2016 (2016-08-25) *

Similar Documents

Publication Publication Date Title
CN112831478B (zh) 一种调控水稻垩白的蛋白质OsCAT8及其编码基因和应用
CN106754957B (zh) OsSCAMP13基因及编码蛋白与抗逆性的应用及获取方法
CN109825510A (zh) 一种岷江百合LrWRKY2基因及应用
CN110066774A (zh) 玉米类受体激酶基因ZmRLK7及其应用
CN108570099A (zh) OsGLP2-1蛋白及其编码基因在调控种子休眠中的应用
CN114214358B (zh) 一种诱导型表达载体及其在培育哨兵作物上的应用
CN116769795A (zh) 一种甜瓜CmADF1基因及其克隆方法和应用
CN110904106B (zh) 春兰miR159b在增强植物冷敏感性中的应用
CN113234753A (zh) 玉米微丝解聚因子adf7转基因植株的培育、鉴定及应用
CN110042109B (zh) 与番茄叶片衰老相关的基因及其应用
CN112342236A (zh) 水稻组蛋白甲基转移酶在增强作物干旱抗性及改善单株产量中的应用
CN117025626A (zh) 烟草硝酸盐转运蛋白NtNPF7.4及其编码基因、基因编辑载体和应用
CN114921473B (zh) 一种负调控木薯内源水杨酸合成的基因及其应用
CN107973844B (zh) 小麦抽穗期相关蛋白Ta-Hd4A及其应用
CN114480422B (zh) 玉米ZmBES1/BZR1-9基因在培育早花植物中的应用
CN108690127B (zh) 抗逆相关蛋白TaMYB85及其编码基因与应用
CN105039279A (zh) 一个拟南芥蛋白激酶及其编码基因与应用
CN108218967B (zh) 水稻抽穗期相关蛋白及其编码基因与应用
WO2022213453A1 (zh) 一种调控植物抗铝性的铝离子受体alr1基因或蛋白的应用
CN107573411A (zh) 小麦TaZIM1‑7A蛋白在调控作物抽穗期中的应用
CN115505597A (zh) 水稻微丝解聚因子adf6转基因植株的培育、鉴定及应用
CN103898134B (zh) 水稻转录因子Os05g25910基因CDS序列的应用
CN112725355A (zh) 一种促进植物提前开花的火龙果HuNIP6;1基因及其应用
CN108103075A (zh) 一种延缓植物衰老的柳枝稷基因PvC3H29及其应用
CN110699362B (zh) Afp5基因及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20221223

WW01 Invention patent application withdrawn after publication