CN115321978B - 一种多层铅基压电陶瓷及其制备方法 - Google Patents

一种多层铅基压电陶瓷及其制备方法 Download PDF

Info

Publication number
CN115321978B
CN115321978B CN202210916559.3A CN202210916559A CN115321978B CN 115321978 B CN115321978 B CN 115321978B CN 202210916559 A CN202210916559 A CN 202210916559A CN 115321978 B CN115321978 B CN 115321978B
Authority
CN
China
Prior art keywords
ceramic
multilayer
piezoelectric
piezoelectric ceramic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210916559.3A
Other languages
English (en)
Other versions
CN115321978A (zh
Inventor
郇宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Simeike Electronic Technology Co ltd
Original Assignee
Suzhou Simeike Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Simeike Electronic Technology Co ltd filed Critical Suzhou Simeike Electronic Technology Co ltd
Priority to CN202210916559.3A priority Critical patent/CN115321978B/zh
Publication of CN115321978A publication Critical patent/CN115321978A/zh
Application granted granted Critical
Publication of CN115321978B publication Critical patent/CN115321978B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明属于多层压电陶瓷技术领域,具体涉及一种多元素掺杂的四元系铅基压电粉体与Ag/Pd内电极共烧多层压电陶瓷及其制备方法与应用。所述铅基压电陶瓷粉体化学式为xPb(Mg1/ 3Nb2/3)O3‑yPb(Zn1/3Nb2/3)O3‑(1‑x‑y)Pb(ZrzTi1‑z)O3‑a mol%MnCO3‑b mol%La2O3‑c mol%CeO2‑d mol%CuO。所述多层压电陶瓷通过铅基压电陶瓷粉料制备,陶瓷浆料制备,流延烘干,陶瓷生坯膜带制备,丝网印刷金属内电极,后经叠片、温水等静压、切割后制备成多层陶瓷生坯,然后经排胶处理,两段式烧结方法在空气中完成烧结。本发明所制备的单层厚度约40微米的、九层的压电陶瓷单程位移可达到1515nm,压电常数最高达到4880pC/N,电容可达到283nF,介电损耗不高于0.06。

Description

一种多层铅基压电陶瓷及其制备方法
发明领域
本发明属于多层压电陶瓷技术领域,具体涉及一种多元素掺杂的四元系铅基压电粉体与Ag/Pd内电极共烧多层陶瓷及其制备方法与应用。
背景技术
压电陶瓷具有正压电效应和逆压电效应,可以实现电能与机械能之间相互转换,压电陶瓷制备的换能器、传感器、振荡器、驱动器等原件,具有结构简单和尺寸小(不需要磁铁等)、无噪声、能耗低、响应速度快(可到10μs)等诸多优点。目前发展成熟、性能良好的铅基压电陶瓷仍然占据主要市场。
但是压电陶瓷片存在压电系数低、位移行程小等确定,无法满足当前微电子元件片式化、集成化、高性能化等使用需求。共烧技术制备的多层压电陶瓷是解决上述问题的有效方法,即将陶瓷粉与有机溶剂混合流延成厚度均匀且致密的生坯瓷带,丝网印刷电路图形、叠压后将瓷带与内电极一次烧结而成。多层陶瓷与金属内电极交错堆叠,电介质层与层之间通过叉指电极实现电学并联、机械串联,陶瓷的压电系数和场致应变的数值可以随着堆叠层数的增加而成倍的增加。因此多层压电陶瓷成为目前的铅基陶瓷器件的主要发展方向。
流延成型技术是将预烧后的压电陶瓷粉体与一定比例的有机溶剂混合职称一定粘度的浆料,然后将浆料流延后得到具有一定强度和韧性的生坯片,丝网印刷金属内电极浆料后,随后再经过叠层、热压、排胶、陶瓷与金属内电极共烧等工艺最终得到具有一定厚度和堆叠层数的陶瓷生坯。多层压电陶瓷中陶瓷生坯要与金属内电极实现共烧,对陶瓷的组分设计与浆料制备提出了更高的要求。
发明内容
本发明的目的在于提供一种高性能四元系铅基压电陶瓷xPb(Mg1/3Nb2/3)O3-yPb(Zn1/3Nb2/3)O3-(1-x-y)Pb(ZrzTi1-z)O3-amol%MnCO3-bmol%La2O3-c mol%CeO2-d mol%CuO与Ag/Pd内电极共烧而成的多层压电陶瓷及其制备方法,所制备的单层厚度约40微米的、总层数为九层的压电陶瓷单程位移可达到1515nm,压电常数最高达到4880pC/N,电容可达到283nF,介电损耗不高于0.06。
为了实现上述目的,本发明的技术方案为:
首先,本发明提供一种多层铅基压电陶瓷,所述多层压电陶瓷具体由四元系铅基压电粉体与Ag/Pd内电极共烧而成。
进一步地,所述四元系铅基压电粉体的化学式为xPb(Mg1/3Nb2/3)O3-yPb(Zn1/ 3Nb2/3)O3-(1-x-y)Pb(ZrzTi1-z)O3-amol%MnCO3-bmol%La2O3-c mol%CeO2-d mol%CuO,其中x在0-0.15,y在0-0.15,z在0.5-0.55,a在0.1-0.5,b在0.1-0.5,c在0.1-0.5,d在2-5。
进一步地,所述Ag/Pd内电极中二者的摩尔比为60:40。
其次,本发明提供一种所述多层铅基压电陶瓷的制备方法,包括以下步骤:
(1)分别称取PbO,TiO2,MgO,La2O3,CeO2,ZnO,Nb2O5,ZrO2和MnCO3
(2)将步骤(1)称取好的混合原料依次进行一次球磨、预烧、二次球磨、二次预烧后,加入CuO原料混合,进行三次球磨,制备出陶瓷粉体;
(3)将步骤(2)中的陶瓷粉体与有机溶剂、分散剂、粘结剂、塑化剂混合,通过球磨制备粘度适中、稳定的陶瓷浆料;
(4)将步骤(3)得到的陶瓷浆料真空除泡后,流延烘干制备厚度均匀陶瓷膜带;
(5)将Ag/Pd内电极浆料通过丝网印刷技术涂覆在步骤(4)中的陶瓷膜带上,叠层、温水等静压、切割得多层陶瓷生坯,排胶共烧后即得到多层压电陶瓷。
进一步地,步骤(1)所述的PbO,MgO,Nb2O5,ZnO,ZrO2,TiO2,MnCO3,La2O3和CeO2摩尔比为1:0-0.05:0-0.20:0-0.025:0.35-0.55:0.315-0.5:0.001-0.005:0.0005-0.0025:0.001-0.005。
进一步地,步骤(2)中所述的添加CuO的摩尔比为2%~5%。
进一步地,步骤(2)中所述的一次球磨过程为:将称取好的原料放入尼龙球磨罐中,球磨罐中放入适量氧化锆球,加入适量球磨介质超纯水,其中原料、锆球、超纯水的质量比为1:10-15:3-6,将混合物置于行星球磨机上球磨混料8-20小时。
进一步地,步骤(2)中所述的预烧和二次预烧的预烧温度为850-1000℃,保温时间3-6小时。
进一步地,步骤(3)中所述的有机溶剂为乙醇、丁醇、乙酸乙酯的混合溶液,体积比为3:6:1。
进一步地,步骤(3)中所述的分散剂为三油酸甘油酯;粘结剂为聚乙烯醇缩丁醛;塑化剂为邻苯二甲酸丁基丁苄酯和聚乙二醇,二者质量比为1:1。
进一步地,步骤(3)中所述的陶瓷粉体与溶剂、分散剂、粘结剂、塑化剂的质量比为45-55:30-40:1-3:4-9:2-5。
进一步地,步骤(4)中所述的陶瓷膜带的制备过程为:通过千分尺调节流延机前方圆筒刮刀高度20-100微米,浆料流程成型后进入烘干区,烘干区温度为70-90℃,时间为10-30分钟即得陶瓷膜带。
进一步地,步骤(5)中所述的金属内电极Ag/Pd的摩尔比为60:40。
进一步地,步骤(5)中所述的多层陶瓷生坯的制备过程为:将印刷了电极的陶瓷膜带进行叠层,层数为3-100层,每层厚度5-100微米;叠层的多层陶瓷生坯进行温水等静压,温度为60-80℃,压力为8000-15000psi;切割后即可得到多层陶瓷生坯。
进一步地,步骤(5)中所述的排胶烧结过程为:将多层陶瓷生坯以1-5℃/min的升温速度至400-600℃保温3-6小时进行排胶处理,然后以1-5℃/min升温速度升温至1200-1350℃,保温1-5分钟,然后以10-20℃/min降温速度迅速降温至1100-1180℃,保温5-12小时,烧结全程在空气气氛中进行,烧结采用马弗炉。
更进一步地,所述多层铅基压电陶瓷的制备方法,具体的操作步骤包括:
(1)原料预处理:原料选用分析纯的PbO,MgO,Nb2O5,ZnO,ZrO2,TiO2,MnCO3,La2O3,CeO2,CuO;所有原料在真空干燥箱内干燥5~10小时,干燥温度为80-100℃,并按照化学计量比称取;
(2)制备陶瓷粉体:
一次球磨:将称取好的原料放入尼龙球磨罐中,球磨罐中放入适量氧化锆球,加入适量球磨介质超纯水,其中原料、锆球、超纯水的质量比为1:10-15:3-6,将混合物置于行星球磨机上球磨混料8-20小时;
预烧:将步骤(2)中的混合料烘干后,在马弗炉中预烧合成铅基压电陶瓷粉末,预烧温度为850-1000℃,保温时间3-6小时;
二次球磨:将预烧后的铅基粉末再次放入球磨罐中,加入适量球磨介质超纯水,置于行星球磨机上球磨混料8-20小时;
二次预烧:将步骤(4)中的混合料烘干后,在马弗炉中二次预烧合成铅基粉末,预烧温度为850-1000℃,保温时间3-6小时;
三次球磨:将完成二次预烧后的铅基粉末再次放入球磨罐中,加入CuO原料和适量球磨介质超纯水,置于行星球磨机上球磨混料8-20小时即得混合陶瓷粉料;
(3)制备陶瓷浆料:按化学计量比称取混合陶瓷粉料,按质量比加入有机溶剂、分散剂、粘结剂、塑化剂,球磨混合10-20小时即得陶瓷浆料;
(4)制备陶瓷膜带:通过千分尺调节流延机前方圆筒刮刀高度20-100微米,浆料流程成型后进入烘干区,烘干区温度为70-90℃,时间为10-30分钟即得陶瓷膜带;
(5)成品制备:
印刷电极:通过丝网印刷机印刷Ag/Pd金属内电极至陶瓷膜带上,印刷电极厚度为4~6微米,金属内电极的烘干温度为70-90℃,时间为5-20分钟;
制备多层陶瓷生坯:将印刷了电极的陶瓷膜带进行叠层,层数为3-100层,每层厚度5-100微米;叠层的多层陶瓷生坯进行温水等静压,温度为60-80℃,压力为8000-15000psi;切割后即可得到多层陶瓷生坯;
排胶烧结:将多层陶瓷生坯以1-5℃/min的升温速度至400-600℃保温3-6小时进行排胶处理,然后以1-5℃/min升温速度升温至1200-1350℃,保温1-5分钟,然后以10-20℃/min降温速度迅速降温至1100-1180℃,保温5-12小时,烧结全程在空气气氛中进行,烧结采用马弗炉。
另外,本发明提供一种所述多层铅基压电陶瓷的应用,所述应用为制备压电陶瓷器件;具体的包括压电陶瓷制备的换能器、传感器、振荡器、驱动器等。
有益效果
本发明的将高性能四元系铅基压电陶瓷xPb(Mg1/3Nb2/3)O3-yPb(Zn1/3Nb2/3)O3-(1-x-y)Pb(ZrzTi1-z)O3-amol%MnCO3-bmol%La2O3-cmol%CeO2-dmol%CuO与Ag/Pd(摩尔比为60/40)内电极共烧制备了多层压电陶瓷,所制备的单层厚度约40微米的、九层的压电陶瓷单程位移可达到1515nm,压电常数最高达到4880pC/N,电容可达到283nF,介电损耗不高于0.06。
附图说明
图1为实施例1中制备的多层压电陶瓷的扫描电子显微镜(SEM)照片。
图2为实施例1中制备的多层压电陶瓷的电滞回线。
图3为实施例1中制备的多层压电陶瓷的位移电场曲线。
图4为为实施例2中制备的多层压电陶瓷的扫描电子显微镜(SEM)照片。
图5为实施例2中制备的多层压电陶瓷位移电场曲线。
具体实施方式
下面将以实施例的方式对本申请作进一步的详细描述,以使本领域技术人员能够实践本申请。应当理解,可以采用其他实施方式,并且可以做出适当的改变而不偏离本申请的精神或范围。为了避免对于使本领域技术人员能够实践本申请来说不必要的细节,说明书可能省略了对于本领域技术人员来说已知的某些信息。因此,以下详细描述不应以限制性的意义来理解,且本发明的范围仅由所附权利要求界定。以下的实施例便于更好地理解本申请,但并不用来限制本申请的范围。
以下实施例1-2中所制备的多元素掺杂铅基压电陶瓷的铁电、压电、介电性能根据中华人民共和国国家标准压电陶瓷材料性能测试方法纵向压电应变常d33的静态测试(GB/T 3389.2-1999);《铁电陶瓷材料电滞回线的准静态测试方法》(GB/T 6426-1999);《介电晶体介电性能的试验方法》(GB/T 16822-1997);《压电陶瓷材料性能测试方法电场应变特性的测试》(GB/T 16304-2008);《压电陶瓷材料性能测试方法柱体纵向长度伸缩振动模式》(GB/T 3389.5-1995);《压电陶瓷材料性能测试方法性能参数的测试》(GB/T 3389-2008)所公开的方法进行测试。
实施例1
0.1Pb(Mg1/3Nb2/3)O3-0.05Pb(Zn1/3Nb2/3)O3-0.85Pb(ZrzTi1-z)O3-0.2mol%MnCO3-0.2mol%La2O3-0.1mol%CeO2-2mol%CuO与Ag/Pd(摩尔比为60/40)内电极共烧而成的多层陶瓷:
该实施例具体制备流程包括以下步骤:
(1)根据上述按化学通式的化学计量比称取原料取PbO,TiO2,MgO,La2O3,CeO2,ZnO,Nb2O5,ZrO2和MnCO3,所有原料在真空干燥箱内干燥10小时,干燥温度为100℃;上述原料与氧化锆球和超纯水共同加入到尼龙球磨罐中,置于行星球磨机上球磨混料12小时;其中原料、锆球、超纯水的质量比为1:15:6;
(2)将球磨后的混合料烘干后,置于马弗炉内在950℃预烧4小时;
(3)将预烧后粉体再次球磨12小时烘干后,重复步骤(2),然后加入2mol%CuO并进行第三次球磨,置于行星球磨机上球磨混料12小时;
(4)称取步骤(3)获得的混合陶瓷粉料,加入有机溶剂、分散剂、粘结剂、塑化剂,陶瓷粉体与溶剂、分散剂、粘结剂、塑化剂的质量比为50:37:1.5:8:3.5,球磨混合20小时,获得陶瓷浆料;
(5)陶瓷浆料真空除泡5小时后,放置到压力罐中,通过千分尺调节流延机前方圆筒刮刀高度50微米,流延成陶瓷膜带,随后膜带进入烘干区,烘干区温度为80℃,时间为30分钟;
(6)通过丝网印刷机在步骤(5)获得的烘干陶瓷膜带上印刷金属内电极,印刷电极厚度为5微米,金属内电极的烘干温度为90℃,时间为20分钟;
(7)将步骤(6)获得的印刷了电极的陶瓷膜带进行叠层,层数为9层;叠层的多层陶瓷生坯进行温水等静压,温度为80℃,压力为10000psi;切割后即可得到多层陶瓷生坯;
(8)排胶烧结:将步骤(7)得到的多层陶瓷生坯以5℃/min的升温速度至500℃保温6小时进行排胶处理,然后以5℃/min升温速度升温至1350℃,保温1分钟,然后以10℃/min降温速度迅速降温至1150℃,保温8小时,烧结全程在空气气氛中进行,烧结采用马弗炉;
(9)将烧结后的多层陶瓷两端刷高温铂浆,连通内电极,在600℃下烘烤0.5小时。然后置于70℃的硅油中,在电场强度为4kV/mm直流电场下极化30分钟,静置24小时后进行电学性能测试。
本实施例制备的多层陶瓷的SEM照片如图1所示,可以看出,陶瓷烧结致密,无明显气孔;电极连续,导电性良好;陶瓷与电极的界面清晰,无明显内电极扩散现象。对本实施例所制备的陶瓷进行铁电、压电、介电性能测试,从图2的电滞回线看出多层,陶瓷具有良好的铁电性能;从图3的单极位移电场曲线可以看出,陶瓷的单程位移达到1515nm。其他的电学性能分别为:压电常数d33=4880pC/N;电容C=283nF,介电损耗tanδ=0.05。
实施例2
0.05Pb(Mg1/3Nb2/3)O3-0.05Pb(Zn1/3Nb2/3)O3-0.9Pb(ZrzTi1-z)O3-0.1mol%MnCO3-0.1mol%La2O3-0.2mol%CeO2-5mol%CuO与Ag/Pd(摩尔比为60/40)内电极共烧而成的多层陶瓷:
该实施例具体制备流程包括以下步骤:
(1)根据上述按化学通式的化学计量比称取原料取PbO,TiO2,MgO,La2O3,CeO2,ZnO,Nb2O5,ZrO2和MnCO3,所有原料在真空干燥箱内干燥10小时,干燥温度为100℃;上述原料与氧化锆球和超纯水共同加入到尼龙球磨罐中,置于行星球磨机上球磨混料12小时;其中原料、锆球、超纯水的质量比为1:15:6;
(2)将球磨后的混合料烘干后,置于马弗炉内在950℃预烧4小时;
(3)将预烧后粉体再次球磨12小时烘干后,重复步骤(2),然后加入5mol%CuO并进行第三次球磨,置于行星球磨机上球磨混料12小时;
(4)称取步骤(3)获得的混合陶瓷粉料,加入有机溶剂、分散剂、粘结剂、塑化剂,陶瓷粉体与溶剂、分散剂、粘结剂、塑化剂的质量比为50:37:2:7.5:3.5,球磨混合20小时,获得陶瓷浆料;
(5)陶瓷浆料真空除泡5小时后,放置到压力罐中,通过千分尺调节流延机前方圆筒刮刀高度50微米,流延成陶瓷膜带,随后膜带进入烘干区,烘干区温度为80℃,时间为30分钟;
(6)通过丝网印刷机在步骤(5)获得的烘干陶瓷膜带上印刷金属内电极,印刷电极厚度为5微米,金属内电极的烘干温度为90℃,时间为20分钟;
(7)将步骤(6)获得的印刷了电极的陶瓷膜带进行叠层,层数为9层;叠层的多层陶瓷生坯进行温水等静压,温度为80℃,压力为10000psi;切割后即可得到多层陶瓷生坯;
(8)排胶烧结:将步骤(7)得到的多层陶瓷生坯以5℃/min的升温速度至500℃保温6小时进行排胶处理,然后以5℃/min升温速度升温至1300℃,保温5分钟,然后以10℃/min降温速度迅速降温至1100℃,保温12小时,烧结全程在空气气氛中进行,烧结采用马弗炉;
(9)将烧结后的多层陶瓷两端刷高温铂浆,连通内电极,在600℃下烘烤0.5小时。然后置于70℃的硅油中,在电场强度为4kV/mm直流电场下极化30分钟,静置24小时后进行电学性能测试。
本实施例制备的多层陶瓷的SEM照片如图4所示,可以看出,陶瓷烧结致密,无明显气孔;电极连续,导电性良好;陶瓷与电极的界面清晰,无明显内电极扩散现象。对本实施例所制备的陶瓷进行电学性能测试,从图5的单极位移电场曲线可以看出,陶瓷的单程位移达到1350nm。其他的电学性能分别为:压电常数d33=4020pC/N;电容C=264nF,介电损耗tanδ=0.06。

Claims (4)

1.一种多层铅基压电陶瓷的制备方法,所述多层压电陶瓷具体由四元系铅基压电粉体与Ag/Pd内电极共烧而成;所述四元系铅基压电粉体的化学式为xPb(Mg1/3Nb2/3)O3-yPb(Zn1/3Nb2/3)O3-(1-x-y)Pb(ZrzTi1-z)O3- amol%MnCO3-bmol% La2O3-c mol%CeO2-d mol%CuO,其中x在0-0.15,y在0-0.15,z在0.5-0.55,a在0.1-0.5,b在0.1-0.5,c在0.1-0.5,d在2-5;所述Ag/Pd内电极中二者的摩尔比为x:(1-x),其中x在0-80之间;
所述制备方法包括以下步骤:
(1)分别称取PbO,TiO2,MgO,La2O3,CeO2,ZnO,Nb2O5,ZrO2和MnCO3
(2)将步骤(1)称取好的混合原料依次进行一次球磨、预烧、二次球磨、二次预烧后,加入CuO原料混合,进行三次球磨,制备出陶瓷粉体;所述CuO的摩尔量为2%-5%;
(3)将步骤(2)中的陶瓷粉体与有机溶剂、分散剂、粘结剂、塑化剂混合,通过球磨制备粘度适中、稳定的陶瓷浆料;所述陶瓷粉体与有机溶剂、分散剂、粘结剂、塑化剂的质量比为45-55:30-40:1-3:4-9:2-5;
(4)将步骤(3)得到的陶瓷浆料真空除泡后,流延烘干制备厚度均匀陶瓷膜带;
(5)将Ag/Pd内电极浆料通过丝网印刷技术涂覆在步骤(4)中的陶瓷膜带上,叠层、温水等静压、切割得多层陶瓷生坯,排胶共烧后,即得到多层压电陶瓷;所述多层陶瓷生坯的制备过程为:将印刷了电极的陶瓷膜带进行叠层,层数为3-100层,每层厚度5-100微米;叠层的多层陶瓷生坯进行温水等静压,温度为60-80℃,压力为8000-15000psi;切割后即可得到多层陶瓷生坯。
2.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述分散剂为三油酸甘油酯;粘结剂为聚乙烯醇缩丁醛;塑化剂为邻苯二甲酸丁基丁苄酯和聚乙二醇,二者质量比为1:1。
3.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,所述陶瓷膜带的制备过程为:通过千分尺调节流延机前方圆筒刮刀高度20-100微米,浆料流程成型后进入烘干区,烘干区温度为70-90℃,时间为10-30分钟即得陶瓷膜带。
4.一种权利要求1-3任一项所述的方法制备的多层铅基压电陶瓷的应用,其特征在于,所述应用为制备压电陶瓷器件;具体的包括压电陶瓷制备的换能器、传感器、振荡器、驱动器。
CN202210916559.3A 2022-08-01 2022-08-01 一种多层铅基压电陶瓷及其制备方法 Active CN115321978B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210916559.3A CN115321978B (zh) 2022-08-01 2022-08-01 一种多层铅基压电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210916559.3A CN115321978B (zh) 2022-08-01 2022-08-01 一种多层铅基压电陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN115321978A CN115321978A (zh) 2022-11-11
CN115321978B true CN115321978B (zh) 2023-08-25

Family

ID=83919145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210916559.3A Active CN115321978B (zh) 2022-08-01 2022-08-01 一种多层铅基压电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN115321978B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063076B (zh) * 2023-02-01 2024-02-27 济南大学 一种多层无铅压电陶瓷及其制备方法和应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151264A (ja) * 1994-09-29 1996-06-11 Toto Ltd 磁器組成物
CN1460093A (zh) * 2001-03-30 2003-12-03 Tdk株式会社 压电陶瓷及其制造方法以及压电元件
CN1475457A (zh) * 2002-05-30 2004-02-18 Tdk��ʽ���� 压电陶瓷的制造方法和压电元件的制造方法
CN1765825A (zh) * 2005-09-09 2006-05-03 中国科学院上海硅酸盐研究所 镧掺杂铌锌锆钛酸铅压电陶瓷材料及其制备方法
CN103467089A (zh) * 2013-09-09 2013-12-25 天津大学 一种铌锌铌镍锆钛酸铅压电陶瓷
CN103641475A (zh) * 2013-11-29 2014-03-19 苏州衡业新材料科技有限公司 低温共烧多层压电陶瓷及其制备方法
CN103693960A (zh) * 2013-12-11 2014-04-02 上海师范大学 一种具有高电致应变的铌锌酸铅-锆钛酸铅基压电陶瓷材料及其制备方法和应用
CN108101537A (zh) * 2017-12-22 2018-06-01 北京工业大学 一种纳米压电陶瓷能量收集材料及其制备方法
CN108358629A (zh) * 2018-01-27 2018-08-03 天津大学 低温共烧自支撑pzt基多层压电厚膜的制备
CN109650888A (zh) * 2018-12-27 2019-04-19 哈尔滨工业大学 一种低温织构高电学性能三元系钛酸铅基弛豫铁电取向陶瓷及其制备方法和应用
CN113582689A (zh) * 2021-08-27 2021-11-02 成都汇通西电电子有限公司 一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法
CN113716957A (zh) * 2021-08-04 2021-11-30 深圳麦克韦尔科技有限公司 陶瓷及其制备方法、陶瓷粉体、压电陶瓷和雾化装置
CN114133243A (zh) * 2021-12-17 2022-03-04 中国船舶重工集团公司第七一五研究所 一种高介电常数高压电应变发射型压电陶瓷材料及制备方法
CN115321979A (zh) * 2022-08-01 2022-11-11 苏州思若梅克电子科技有限公司 一种多元素掺杂的铅基压电陶瓷及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151264A (ja) * 1994-09-29 1996-06-11 Toto Ltd 磁器組成物
CN1460093A (zh) * 2001-03-30 2003-12-03 Tdk株式会社 压电陶瓷及其制造方法以及压电元件
CN1475457A (zh) * 2002-05-30 2004-02-18 Tdk��ʽ���� 压电陶瓷的制造方法和压电元件的制造方法
CN1765825A (zh) * 2005-09-09 2006-05-03 中国科学院上海硅酸盐研究所 镧掺杂铌锌锆钛酸铅压电陶瓷材料及其制备方法
CN103467089A (zh) * 2013-09-09 2013-12-25 天津大学 一种铌锌铌镍锆钛酸铅压电陶瓷
CN103641475A (zh) * 2013-11-29 2014-03-19 苏州衡业新材料科技有限公司 低温共烧多层压电陶瓷及其制备方法
CN103693960A (zh) * 2013-12-11 2014-04-02 上海师范大学 一种具有高电致应变的铌锌酸铅-锆钛酸铅基压电陶瓷材料及其制备方法和应用
CN108101537A (zh) * 2017-12-22 2018-06-01 北京工业大学 一种纳米压电陶瓷能量收集材料及其制备方法
CN108358629A (zh) * 2018-01-27 2018-08-03 天津大学 低温共烧自支撑pzt基多层压电厚膜的制备
CN109650888A (zh) * 2018-12-27 2019-04-19 哈尔滨工业大学 一种低温织构高电学性能三元系钛酸铅基弛豫铁电取向陶瓷及其制备方法和应用
CN113716957A (zh) * 2021-08-04 2021-11-30 深圳麦克韦尔科技有限公司 陶瓷及其制备方法、陶瓷粉体、压电陶瓷和雾化装置
CN113582689A (zh) * 2021-08-27 2021-11-02 成都汇通西电电子有限公司 一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法
CN114133243A (zh) * 2021-12-17 2022-03-04 中国船舶重工集团公司第七一五研究所 一种高介电常数高压电应变发射型压电陶瓷材料及制备方法
CN115321979A (zh) * 2022-08-01 2022-11-11 苏州思若梅克电子科技有限公司 一种多元素掺杂的铅基压电陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Effects of CuO addition on the electrical responses of the low-temperature sintered Pb(Zr0.52Ti0.48)O3–Pb(Mg1/3Nb2/3)O3–Pb(Zn1/3Nb2/3)O3 ceramics;Xiaolian Chao等;《Journal of Alloys and Compounds》;第491卷(第1-2期);第698-702页 *

Also Published As

Publication number Publication date
CN115321978A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
KR100463776B1 (ko) 도전성 페이스트, 적층 세라믹 전자부품의 제조방법 및적층 세라믹 전자부품
JP4111006B2 (ja) 誘電体セラミックおよびその製造方法ならびに積層セラミックコンデンサ
KR100557520B1 (ko) 세라믹 재료 및 이를 이용한 압전소자
US9065011B2 (en) Thermoelectric conversion element, thermoelectric conversion module, method for producing thermoelectric conversion element
US7498725B2 (en) Piezoelectric ceramic composition and laminated piezoelectric element
CN113213930B (zh) 一种多元素掺杂铌酸钾钠基压电陶瓷及其制备方法
JPWO2008068999A1 (ja) 誘電体セラミックおよびそれを用いた積層セラミックコンデンサ
WO2006114914A1 (ja) 誘電体セラミック組成物及び積層セラミックコンデンサ
US7507347B2 (en) Piezoelectric ceramic composition and laminated piezoelectric element
CN104003711B (zh) 电介质陶瓷组合物以及电子部件
US9054274B2 (en) Thermoelectric conversion element, method for manufacturing same, and communication device
CN115321978B (zh) 一种多层铅基压电陶瓷及其制备方法
JP3812936B2 (ja) セラミック材料及びそれを用いた圧電素子
CN112979308A (zh) 电介质组合物及电子部件
CN106129242A (zh) 一种大应变多层无铅压电致动器及其制备方法
CN113582689B (zh) 一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法
US20120112607A1 (en) Ceramic composition for piezoelectric actuator and piezoelectric actuator including the same
CN105355777A (zh) 氧化铝基板上pnn-pzn-pzt多层并联压电厚膜的制备方法
JP2007258301A (ja) 積層型圧電素子及びその製造方法
CN112759390A (zh) 一种具有高kp值的PSN-PZT压电陶瓷及其制备方法
CN114890789B (zh) 匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷、其制备方法及其制品
KR100492813B1 (ko) 적층형 압전 세라믹 소자의 제조방법
CN107915486A (zh) 一种提高pmn‑pt居里温度、压电性及热稳定性的方法
CN116063076B (zh) 一种多层无铅压电陶瓷及其制备方法和应用
JP5196091B2 (ja) 圧電磁器組成物及び圧電素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant