CN113582689A - 一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法 - Google Patents

一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113582689A
CN113582689A CN202110994661.0A CN202110994661A CN113582689A CN 113582689 A CN113582689 A CN 113582689A CN 202110994661 A CN202110994661 A CN 202110994661A CN 113582689 A CN113582689 A CN 113582689A
Authority
CN
China
Prior art keywords
temperature
powder
ceramic
equal
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110994661.0A
Other languages
English (en)
Other versions
CN113582689B (zh
Inventor
张博
阴伏星
李佳
蔡东
严伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Huitong West Electronic Co ltd
Original Assignee
Chengdu Huitong West Electronic Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Huitong West Electronic Co ltd filed Critical Chengdu Huitong West Electronic Co ltd
Priority to CN202110994661.0A priority Critical patent/CN113582689B/zh
Publication of CN113582689A publication Critical patent/CN113582689A/zh
Application granted granted Critical
Publication of CN113582689B publication Critical patent/CN113582689B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法,其化学通式为aPb(Mg1/3Nb2/3)‑bPb(Sb1/2Nb1/2)‑cPb(Zn1/ 3Nb2/3)‑dPb(Zr0.52Ti0.48)+x%LiF+y%MuOv+z%SrCO3,其中0.03≤a≤0.06;0.01≤b≤0.03;0.005≤c≤0.03;0.80≤d≤0.95,0<x≤0.2,0<y≤1,0<z≤0.2。通过调整陶瓷配方以及添加组合掺杂剂,可以将陶瓷的烧结温度从1200℃降至850~950℃,并能获得大的压电常数(d33≥500pC/N)、大的机电耦合系数(kp≥0.65)、以及较高居里点(Tc>250℃)及适中的介电常数(εr=2000~4000),可以满足叠层压电致动器共烧工艺对陶瓷材料的应用要求。

Description

一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法
技术领域
本发明属于无机非金属电子材料技术领域,涉及一种压电陶瓷材料的制备方法,具体涉及一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法。
背景技术
压电叠层致动器广泛应用于精密机械加工、微笑振动控制、微电子技术、光学校准等需要精确定位的高新技术领域。而这些应用领域需要压电陶瓷器件向小体积、低驱动、大位移、可集成等方向发展。压电叠层器件需要满足灵敏度高、静态输出力矩大、温度稳定性好等特点,而作为核心的压电驱动材料配方必须具备:高的压电常数以实现低电压驱动和大的输出力;高的机电耦合系数以便具有较宽的工作频率和较高的转换效率;较高的居里点从而改善器件的温度稳定性,才可以适应恶劣应用环境以及避免器件工作过程中产生的热量导致器件性能蜕化;适中的介电常数ε,避免交变电场下的发热和较高输入阻抗。
Pb(Mg1/3Nb2/3)-Pb(Zr0.52Ti0.48)(PMN-PZT)是一种典型的三元体系钙钛矿压电陶瓷材料,它具有高的压电常数、高的机电耦合系数以及较高的居里温度,是叠层致动器的关键材料。但该体系压电陶瓷烧结温度一般在1200℃以上,较高的烧结温度会导致材料中的铅挥发,污染环境的同时会导致陶瓷材料中化学计量比的偏离。这不仅会产生杂相,导致钙钛矿结构的变化,同时会恶化陶瓷的压电性能,还会影响产品批量生产的一致性。降低压电陶瓷烧结温度的方法有:1)改进制备工艺如化学方法制粉,提高粉体活性,降低陶瓷烧结温度,但该方法工艺复杂成本较高;2)添加玻璃粉或低熔点氧化物烧结助剂,在烧结过程中,玻璃或者低熔点氧化物形成液相,易于传质,有利于气孔的排除和陶瓷的致密化,降温效果非常明显,但陶瓷晶界容易聚集非铁电第二相,导致材料性能急剧恶化,不利于高性能水平的应用领域;
3)固溶或掺杂氧化物,形成过渡液相烧结,在烧结前期形成液相促进传质降低烧结温度,在烧结后期液相进入晶格,减少杂相的生成,避免了陶瓷性能的恶化。兼顾压电陶瓷的低温烧结以及高水平的压电性能是压电陶瓷低温烧结研究的难点。
电子科技大学的李元勋,研究了添加Sm2O3及玻璃助烧剂LBBS和LMZBS对于PZT烧结温度及压电性能的影响,烧结温度降低至850~900℃,但陶瓷的压电性能存在一定程度的下降,d33为260~330pC/N[郑阳.PZT基压电陶瓷的低温烧结及其应用[D].电子科技大学,2018.]。杭州应用声学研究所的胡望峰,研究了不同LiF助烧剂添加量对PZT压电陶瓷晶体结构、微观形貌、压电性能和烧结过程的影响,可以将陶瓷的烧结温度降低至1100℃,且能保持较好的压电性能(d33为416pC/N,Kp=71%,εr=1848)[赵世言,胡望峰.LiF/Li2CO3对PZT陶瓷低温烧结及压电性能的影响[J].压电与声光,2020,v.42;No.255(06):82-87.]。压电陶瓷材料中提高材料的压电性能的同时,有可能会导致材料的居里温度降低(<300℃),这对压电驱动器的应用不利。因此,进一步降低压电驱动材料烧结温度和改善其综合压电性能,满足纯银内电极的低温共烧,降低制作成本提高器件的成品率,是压电陶瓷低温烧结研究领域亟待解决的问题。Pb(Sb,Nb)O3及Pb(Zn,Nb)O3是俩种典型的PZT压电陶瓷软性改性添加体系,PMN-PZT中引入此俩种材料,通过改善多元材料组元的比例、控制PZT晶体结构中A、B位离子的空位比例,并采用微量元素掺杂的方法,从而达到降低烧结温度,获得一种低烧结温度、高压电常数、高居里温度及低介电损耗的高性能压电陶瓷材料。
发明内容
针对现有问题,本发明的目的在于提供一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法。为了解决现有的压电陶瓷烧结温度过高导致的铅极易挥发,污染环境,以及现有低温配方压电性能下降,陶瓷居里温度低从而影响叠层致动器寿命可靠性的问题。
为实现本发明的目的,本发明提供如下技术方案:
为达到上述目的,本发明采用了以下技术方案。
1)化学通式为aPb(Mg1/3Nb2/3)-bPb(Sb1/2Nb1/2)-cPb(Zn1/3Nb2/3)-dPb(Zr0.52Ti0.48)+x%LiF+y%MuOv+z%SrCO3,简写为PMN-PSN-PZN-PZT,式中M为第一过渡系金属元素,其中0.03≤a≤0.06;0.01≤b≤0.03;0.005≤c≤0.03;0.80≤d≤0.95,0<x≤0.2,0<y≤1,0<z≤0.2。PMN-PSN-PZN-PZT为基体陶瓷粉体,LiF、MuOv、SrCO3为陶瓷材料配方中的辅料,x%、y%、z%分别表示对应的化合物占基体陶瓷粉体的质量百分比,u和v的数值取决于金属元素M的化合价,且u和v为整数,M为金属元素Fe、Co、Ni中的一种;
2)提供了一种用于叠层致动器的低温烧结压电陶瓷材料配方的制备方法,包括以下步骤:
步骤1:将Pb3O4、MgO、Nb2O5三种原料粉体混合预烧后得到Pb(Mg1/3Nb2/3),简称PMN陶瓷先驱体粉体;将Pb3O4、Sb2O5、Nb2O5三种原料粉体混合预烧后得到Pb(Sb1/2Nb1/2),简称PSN陶瓷先驱体粉体。
步骤2:根据1)中化学通式中的化学计量比计算称量步骤1中所述的PMN陶瓷先驱体粉体,以及Pb3O4、ZnO、Nb2O5、ZrO2、TiO2、等原料粉体,得到混合粉体A。将混合粉体A球磨均匀后预烧,预烧粉料按照质量百分比加入LiF、MuOv、SrCO3以及PSN陶瓷先驱体粉体等原料粉体,混合均匀后得到混合粉体B,混合粉体B经过球磨、烘干、等静压、烧结、切片等工艺获得所述的压电陶瓷材料。
所述步骤1中2种陶瓷先驱体粉体的预烧温度均为900~1000℃,保温时间为2~4h。
所述步骤2中混合粉体A的预烧温度为1000~1050℃,保温时间为1~2h。
所述步骤2中混合粉体A预烧后再按化学计量比加入PSN陶瓷先驱体粉体及辅料。
所述步骤2中混合粉体B不需要造粒,球磨烘干后,直接等静压成型为棒料,棒料在铅气氛中密封烧结,所述烧结温度为850~950℃,保温时间为2~3h。
所述步骤2中烧结、切片工艺后还包括陶瓷片被银以及极化工艺:在所述陶瓷片表面丝网印刷银浆,被银后的陶瓷片烧银后进行极化。
所述烧银温度为820~870℃,保温时间为20~30min;所述极化的条件包括:极化温度为100~140℃,极化电压为3~5kV/mm,极化时间为20~40min。
本发明的有益效果体现在:
1)本发明制备的低温烧结压电陶瓷材料配方在降低烧结温度的同时(850~950℃),压电性能无明显下降(d33=500pC/N),且居里温度较高(Tc>250℃),可以提升叠层致动器的可靠性及寿命,同时也降低对于环境的污染;
2)本发明制备的压电陶瓷材料配方及其制备方法,不需要对陶瓷进行造粒,简化工艺的同时也提升了陶瓷的致密度,有利于提升陶瓷的压电性能;
3)本发明制备工艺简单,操作方便,原料易得,制备成本较低。
附图说明
为了更清楚的说明本申请文件实施例或现有技术中的技术方案,下面将对实施例或现有技术的描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅是对本申请文件中一些实施例的参考,对于本领域技术人员来讲,在不付出创造性劳动的情况下,还可以根据这些附图得到其它的附图。
图1为本发明实施例1、2、3、4制备的压电陶瓷的XRD图谱;
图2为本发明实施例5制备的压电陶瓷断面SEM图谱;
图3为本发明实施例5制备的压电性能图;
图4为本发明实施例5制备的介电温谱图。
具体实施方式
下面结合实施例对本发明作进一步的描述,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。基于本发明中的实施例,本领域的普通技术人员在没有做出创造性劳动前提下所获得的其他所用实施例,都属于本发明的保护范围。
实施例1:
1)化学通式为0.06Pb(Mg1/3Nb2/3)-0.03Pb(Sb1/2Nb1/2)-0.01Pb(Zn1/3Nb2/3)-0.9Pb(Zr0.52Ti0.48)
,简写为0.06PMN-0.03PSN-0.01PZN-0.9PZT添加0.1%LiF+1%NiO+0.1%SrCO3
2)按1)中的化学通式将Pb3O4、MgO、Nb2O5三种原料粉体混合在900℃预烧2h得到Pb(Mg1/3Nb2/3),简称PMN陶瓷先驱体粉体;将Pb3O4、Sb2O5、Nb2O5三种原料粉体混合在950℃预烧2h后得到Pb(Sb1/2Nb1/2),简称PSN陶瓷先驱体粉体;
3)根据1)中化学通式中的化学计量比计算称量步骤2)中所述的PMN陶瓷先驱体粉体,以及Pb3O4、ZnO、Nb2O5、ZrO2、TiO2、等原料粉体,得到混合粉体A。将混合粉体A球磨均匀后在1000℃预烧2h,预烧粉料按照质量百分比加入LiF、NiO、SrCO3以及PSN陶瓷先驱体粉体等原料粉体,混合均匀后得到混合粉体B。
4)混合粉体B经过球磨、烘干、等静压、在Pb气氛中850℃保温2h后,将烧结后的陶瓷切片得到压电陶瓷片,采用丝网印刷工艺在陶瓷片上制备Ag电极,将刷好Ag电极的陶瓷片置于烧银炉中烧银,烧银温度820℃,保温20min。
5)将烧银后的陶瓷片置于高温硅油中,按照100℃,3kV/mm,20min等工艺极化获得所述的压电陶瓷材料。
实施例2:
1)化学通式为0.05Pb(Mg1/3Nb2/3)-0.03Pb(Sb1/2Nb1/2)-0.02Pb(Zn1/3Nb2/3)-0.9Pb(Zr0.52Ti0.48)
,简写为0.05PMN-0.03PSN-0.02PZN-0.9PZT添加0.1%LiF+0.5%Fe2O3+0.1%SrCO3
2)按1)中的化学通式将Pb3O4、MgO、Nb2O5三种原料粉体混合在900℃预烧4h得到Pb(Mg1/3Nb2/3),简称PMN陶瓷先驱体粉体;将Pb3O4、Sb2O5、Nb2O5三种原料粉体混合在1000℃预烧4h后得到Pb(Sb1/2Nb1/2),简称PSN陶瓷先驱体粉体;
3)根据1)中化学通式中的化学计量比计算称量步骤2)中所述的PMN陶瓷先驱体粉体,以及Pb3O4、ZnO、Nb2O5、ZrO2、TiO2、等原料粉体,得到混合粉体A。将混合粉体A球磨均匀后在1000℃预烧1h,预烧粉料按照质量百分比加入LiF、Fe2O3、SrCO3以及PSN陶瓷先驱体粉体等原料粉体,混合均匀后得到混合粉体B。
4)混合粉体B经过球磨、烘干、等静压、在Pb气氛中850℃保温3h后,将烧结后的陶瓷切片得到压电陶瓷片,采用丝网印刷工艺在陶瓷片上制备Ag电极,将刷好Ag电极的陶瓷片置于烧银炉中烧银,烧银温度830℃,保温20min。
5)将烧银后的陶瓷片置于高温硅油中,按照110℃,4kV/mm,20min等工艺极化获得所述的压电陶瓷材料。
实施例3:
1)化学通式为0.05Pb(Mg1/3Nb2/3)-0.02Pb(Sb1/2Nb1/2)-0.03Pb(Zn1/3Nb2/3)-0.9Pb(Zr0.52Ti0.48)
,简写为0.05PMN-0.02PSN-0.03PZN-0.9PZT添加0.1%LiF+1%NiO+0.2%SrCO3
2)按1)中的化学通式将Pb3O4、MgO、Nb2O5三种原料粉体混合在1000℃预烧2h得到Pb(Mg1/3Nb2/3),简称PMN陶瓷先驱体粉体;将Pb3O4、Sb2O5、Nb2O5三种原料粉体混合在950℃预烧2h后得到Pb(Sb1/2Nb1/2),简称PSN陶瓷先驱体粉体;
3)根据1)中化学通式中的化学计量比计算称量步骤2)中所述的PMN陶瓷先驱体粉体,以及Pb3O4、ZnO、Nb2O5、ZrO2、TiO2、等原料粉体,得到混合粉体A。将混合粉体A球磨均匀后在1050℃预烧1h,预烧粉料按照质量百分比加入LiF、NiO、SrCO3以及PSN陶瓷先驱体粉体等原料粉体,混合均匀后得到混合粉体B。
4)混合粉体B经过球磨、烘干、等静压、在Pb气氛中900℃保温2h后,将烧结后的陶瓷切片得到压电陶瓷片,采用丝网印刷工艺在陶瓷片上制备Ag电极,将刷好Ag电极的陶瓷片置于烧银炉中烧银,烧银温度840℃,保温20min。
5)将烧银后的陶瓷片置于高温硅油中,按照120℃,3kV/mm,30min等工艺极化获得所述的压电陶瓷材料。
实施例4:
1)化学通式为0.06Pb(Mg1/3Nb2/3)-0.01Pb(Sb1/2Nb1/2)-0.03Pb(Zn1/3Nb2/3)-0.9Pb(Zr0.52Ti0.48)
,简写为0.06PMN-0.01PSN-0.03PZN-0.9PZT添加0.1%LiF+0.5%Co2O3+0.2%SrCO3
2)按1)中的化学通式将Pb3O4、MgO、Nb2O5三种原料粉体混合在1000℃预烧2h得到Pb(Mg1/3Nb2/3),简称PMN陶瓷先驱体粉体;将Pb3O4、Sb2O5、Nb2O5三种原料粉体混合在1000℃预烧2h后得到Pb(Sb1/2Nb1/2),简称PSN陶瓷先驱体粉体;
3)根据1)中化学通式中的化学计量比计算称量步骤2)中所述的PMN陶瓷先驱体粉体,以及Pb3O4、ZnO、Nb2O5、ZrO2、TiO2、等原料粉体,得到混合粉体A。将混合粉体A球磨均匀后在1000℃预烧2h,预烧粉料按照质量百分比加入LiF、Co2O3、SrCO3以及PSN陶瓷先驱体粉体等原料粉体,混合均匀后得到混合粉体B。
4)混合粉体B经过球磨、烘干、等静压、在Pb气氛中950℃保温2h后,将烧结后的陶瓷切片得到压电陶瓷片,采用丝网印刷工艺在陶瓷片上制备Ag电极,将刷好Ag电极的陶瓷片置于烧银炉中烧银,烧银温度840℃,保温20min。
5)将烧银后的陶瓷片置于高温硅油中,按照130℃,4kV/mm,20min等工艺极化获得所述的压电陶瓷材料。
实施例5:
1)化学通式为0.04Pb(Mg1/3Nb2/3)-0.03Pb(Sb1/2Nb1/2)-0.03Pb(Zn1/3Nb2/3)-0.9Pb(Zr0.52Ti0.48)
,简写为0.04PMN-0.03PSN-0.03PZN-0.9PZT添加0.1%LiF+1%Co2O3+0.1%SrCO3
2)按1)中的化学通式将Pb3O4、MgO、Nb2O5三种原料粉体混合在1000℃预烧4h得到Pb(Mg1/3Nb2/3),简称PMN陶瓷先驱体粉体;将Pb3O4、Sb2O5、Nb2O5三种原料粉体混合在1000℃预烧4h后得到Pb(Sb1/2Nb1/2),简称PSN陶瓷先驱体粉体;
3)根据1)中化学通式中的化学计量比计算称量步骤2)中所述的PMN陶瓷先驱体粉体,以及Pb3O4、ZnO、Nb2O5、ZrO2、TiO2、等原料粉体,得到混合粉体A。将混合粉体A球磨均匀后在1050℃预烧2h,预烧粉料按照质量百分比加入LiF、Co2O3、SrCO3以及PSN陶瓷先驱体粉体等原料粉体,混合均匀后得到混合粉体B。
4)混合粉体B经过球磨、烘干、等静压、在Pb气氛中950℃保温3h后,将烧结后的陶瓷切片得到压电陶瓷片,采用丝网印刷工艺在陶瓷片上制备Ag电极,将刷好Ag电极的陶瓷片置于烧银炉中烧银,烧银温度870℃,保温20min。
5)将烧银后的陶瓷片置于高温硅油中,按照140℃,5kV/mm,30min等工艺极化获得所述的压电陶瓷材料。
图1为本发明实施例5制备的压电陶瓷表面XRD图谱,由图1可以看出,压电陶瓷无杂相产生,为钙钛矿结构,且陶瓷结晶度较好。
图2为本发明实施例5制备的压电陶瓷断面SEM图谱,从图2可以看出,陶瓷晶粒尺寸在1~2μm,晶粒大小均匀,气孔少,陶瓷具有较高的致密度。
图3为本发明实施例5制备的压电陶瓷压电性能图,d33均>500pC/N,性能公差±10%。
图4为本发明实施例5制备的压电陶瓷居里温度图,Tc>250℃。
本发明的低温烧结压电陶瓷材料通过调整陶瓷配方以及添加组合掺杂剂,可以将陶瓷的烧结温度从1200℃降至850~950℃,并能获得大的压电常数(d33≥500pC/N)、大的机电耦合系数(kp≥0.65)、以及较高居里点(Tc>250℃)及适中的介电常数(εr=2000~4000),可以满足叠层压电致动器共烧工艺对陶瓷材料的应用要求。而压电陶瓷材料烧结温度的降低,有利于降低叠层压电驱动器件的制作成本,提高器件制作的成品率,有利于低温烧结压电陶瓷材料的工业化推广使用;同时可以降低叠层器件中Ag-Pd内电极中Pd的含量,从而降低器件制作成本,综上所述本发明具有重要意义。
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。

Claims (8)

1.一种用于叠层致动器的低温共烧压电陶瓷材料,其特征在于:其化学通式为aPb(Mg1/3Nb2/3)-bPb(Sb1/2Nb1/2)-cPb(Zn1/3Nb2/3)-dPb(Zr0.52Ti0.48)+x%LiF+y%MuOv+z%SrCO3,式中M为第一过渡系金属元素,其中0.03≤a≤0.06;0.01≤b≤0.03;0.005≤c≤0.03;0.80≤d≤0.95,0<x≤0.2,0<y≤1,0<z≤0.2。PMN-PSN-PZN-PZT为基体陶瓷粉体,LiF、MuOv、SrCO3为陶瓷材料配方中的辅料,x%、y%、z%分别表示对应的化合物占基体陶瓷粉体的质量百分比,u和v的数值取决于金属元素M的化合价,且u和v为整数,M为金属元素Fe、Co、Ni中的一种。
2.一种用于叠层致动器的低温共烧压电陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤1:将Pb3O4、MgO、Nb2O5三种原料粉体混合预烧后得到Pb(Mg1/3Nb2/3),即PMN陶瓷先驱体粉体;将Pb3O4、Sb2O5、Nb2O5三种原料粉体混合预烧后得到Pb(Sb1/2Nb1/2),即PSN陶瓷先驱体粉体,备用;
步骤2:按照化学通式,根据化学计量比计算称量步骤1中所述的PMN陶瓷先驱体粉体,以及Pb3O4、ZnO、Nb2O5、ZrO2、TiO2、等原料粉体,得到混合粉体A;将混合粉体A球磨均匀后预烧,预烧粉料按照质量百分比加入LiF、MuOv、SrCO3以及PSN陶瓷先驱体粉体等原料粉体,混合均匀后得到混合粉体B,混合粉体B经过球磨、烘干、等静压、烧结、切片工艺获得所述的压电陶瓷材料。
3.如权利要求2中所述的用于叠层致动器的低温共烧压电陶瓷材料的制备方法,其特征在于,在步骤1中所述的PMN陶瓷先驱体粉体和PSN陶瓷先驱体粉体的预烧温度均为900~1000℃,保温时间为2~4h。
4.如权利要求2中所述的用于叠层致动器的低温共烧压电陶瓷材料的制备方法,其特征在于,在步骤2中混合粉体A的预烧温度为1000~1050℃,保温时间为1~2h,且混合粉体A预烧后再按化学计量比加入PSN陶瓷先驱体粉体及辅料。
5.如权利要求2中所述的用于叠层致动器的低温共烧压电陶瓷材料的制备方法,其特征在于,在步骤2中混合粉体B不需要造粒,球磨烘干后,直接等静压成型为棒料,棒料在铅气氛中密封烧结,所述烧结温度为850~950℃,保温时间为2~3h。
6.如权利要求2中所述的用于叠层致动器的低温共烧压电陶瓷材料的制备方法,其特征在于,在步骤2中烧结、切片工艺后还包括陶瓷片被银以及极化工艺:在所述陶瓷片表面丝网印刷银浆,被银后的陶瓷片烧银后进行极化。
7.如权利要求6所述的用于叠层致动器的低温共烧压电陶瓷材料的制备方法,其特征在于,所述烧银温度为820~870℃,保温时间为20~30min。
8.如权利要求6所述的用于叠层致动器的低温共烧压电陶瓷材料的制备方法,其特征在于,所述极化的条件包括:极化温度为100~140℃,极化电压为3~5kV/mm,极化时间为20~40min。
CN202110994661.0A 2021-08-27 2021-08-27 一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法 Active CN113582689B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110994661.0A CN113582689B (zh) 2021-08-27 2021-08-27 一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110994661.0A CN113582689B (zh) 2021-08-27 2021-08-27 一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113582689A true CN113582689A (zh) 2021-11-02
CN113582689B CN113582689B (zh) 2022-08-16

Family

ID=78239741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110994661.0A Active CN113582689B (zh) 2021-08-27 2021-08-27 一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113582689B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133243A (zh) * 2021-12-17 2022-03-04 中国船舶重工集团公司第七一五研究所 一种高介电常数高压电应变发射型压电陶瓷材料及制备方法
CN115321978A (zh) * 2022-08-01 2022-11-11 苏州思若梅克电子科技有限公司 一种多层铅基压电陶瓷及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067437A (ja) * 2002-08-06 2004-03-04 Nec Tokin Corp 圧電磁器組成物
CN1484624A (zh) * 2000-12-28 2004-03-24 ��ʽ���粩������ϵͳ 陶瓷材料及使用它的压电元件
CN1803708A (zh) * 2006-01-19 2006-07-19 湖北大学 低温烧结五元系铌镁锰锑锆钛酸铅压电陶瓷材料及其制备方法
KR100667256B1 (ko) * 2005-10-07 2007-01-10 충주대학교 산학협력단 압전 트랜스포머용 고효율 psn-pmn-pzt압전세라믹
CN101429022A (zh) * 2008-12-12 2009-05-13 同济大学 具有低烧结温度特性的铁电压电陶瓷组分、制备和应用
CN102850050A (zh) * 2012-08-31 2013-01-02 华中科技大学 一种低温烧结压电陶瓷材料及其制备方法
CN103964846A (zh) * 2014-04-29 2014-08-06 常州市斯威芙特制针科技有限公司 压电双晶片用压电陶瓷材料及其制备方法
US20140375174A1 (en) * 2012-02-01 2014-12-25 Virginia Tech Intellectual Properties, Inc. Low-temperature co-firing of multilayer textured piezoelectric ceramics with inner electrodes
CN106083039A (zh) * 2016-05-31 2016-11-09 天津大学 La掺杂PSN‑PNN‑PZT压电陶瓷及其制备方法
CN107986782A (zh) * 2017-11-21 2018-05-04 歌尔股份有限公司 掺杂改性锆钛酸铅压电陶瓷及其制备方法
CN108002832A (zh) * 2017-12-13 2018-05-08 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) 一种低温共烧压电陶瓷材料及其制备方法
CN109320244A (zh) * 2018-09-12 2019-02-12 华中科技大学 一种低温烧结压电陶瓷材料及其制备方法
CN109503157A (zh) * 2018-12-17 2019-03-22 贵州振华红云电子有限公司 一种高致密度高压电常数的压电陶瓷

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484624A (zh) * 2000-12-28 2004-03-24 ��ʽ���粩������ϵͳ 陶瓷材料及使用它的压电元件
JP2004067437A (ja) * 2002-08-06 2004-03-04 Nec Tokin Corp 圧電磁器組成物
KR100667256B1 (ko) * 2005-10-07 2007-01-10 충주대학교 산학협력단 압전 트랜스포머용 고효율 psn-pmn-pzt압전세라믹
CN1803708A (zh) * 2006-01-19 2006-07-19 湖北大学 低温烧结五元系铌镁锰锑锆钛酸铅压电陶瓷材料及其制备方法
CN101429022A (zh) * 2008-12-12 2009-05-13 同济大学 具有低烧结温度特性的铁电压电陶瓷组分、制备和应用
US20140375174A1 (en) * 2012-02-01 2014-12-25 Virginia Tech Intellectual Properties, Inc. Low-temperature co-firing of multilayer textured piezoelectric ceramics with inner electrodes
CN102850050A (zh) * 2012-08-31 2013-01-02 华中科技大学 一种低温烧结压电陶瓷材料及其制备方法
CN103964846A (zh) * 2014-04-29 2014-08-06 常州市斯威芙特制针科技有限公司 压电双晶片用压电陶瓷材料及其制备方法
CN106083039A (zh) * 2016-05-31 2016-11-09 天津大学 La掺杂PSN‑PNN‑PZT压电陶瓷及其制备方法
CN107986782A (zh) * 2017-11-21 2018-05-04 歌尔股份有限公司 掺杂改性锆钛酸铅压电陶瓷及其制备方法
CN108002832A (zh) * 2017-12-13 2018-05-08 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) 一种低温共烧压电陶瓷材料及其制备方法
CN109320244A (zh) * 2018-09-12 2019-02-12 华中科技大学 一种低温烧结压电陶瓷材料及其制备方法
CN109503157A (zh) * 2018-12-17 2019-03-22 贵州振华红云电子有限公司 一种高致密度高压电常数的压电陶瓷

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴浩等: "PSN-PZN-PZT四元系压电陶瓷的研究", 《天津理工大学学报》 *
褚涛等: "耐高温PNN-PSN-PMN-PZT压电陶瓷的制备及器件性能研究", 《材料保护》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133243A (zh) * 2021-12-17 2022-03-04 中国船舶重工集团公司第七一五研究所 一种高介电常数高压电应变发射型压电陶瓷材料及制备方法
CN115321978A (zh) * 2022-08-01 2022-11-11 苏州思若梅克电子科技有限公司 一种多层铅基压电陶瓷及其制备方法
CN115321978B (zh) * 2022-08-01 2023-08-25 苏州思若梅克电子科技有限公司 一种多层铅基压电陶瓷及其制备方法

Also Published As

Publication number Publication date
CN113582689B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
CN113582689B (zh) 一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法
EP1857425A1 (en) Piezoelectric ceramic composition and method for producing same
CN102850050B (zh) 一种低温烧结压电陶瓷材料及其制备方法
JPWO2006117952A1 (ja) 圧電体磁器組成物、及び圧電セラミック電子部品
EP2610233B1 (en) Piezoelectric ceramic and piezoelectric device
JP2518703B2 (ja) 積層型複合圧電体およびその製造方法
WO2002053514A1 (fr) Matériau céramique et élément piézo-électrique ainsi constitué
CN110330332B (zh) 一种无烧结助剂低温烧结压电陶瓷材料及其制备方法
CN101265081B (zh) 具有低温烧结特性的铁电陶瓷、工艺方法及应用
JP2002255644A (ja) セラミック材料及びそれを用いた圧電素子
US20120112607A1 (en) Ceramic composition for piezoelectric actuator and piezoelectric actuator including the same
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
KR20120077160A (ko) 압전 액츄에이터용 세라믹 조성물, 그 제조방법 및 이를 이용하여 제조된 압전 액츄에이터
JP2007258301A (ja) 積層型圧電素子及びその製造方法
CN115536392A (zh) 高温叠层压电驱动器用压电陶瓷片及其制备方法
EP1224154A1 (en) Piezoelectric ceramic compositions and methods for production thereof
JP2010215418A (ja) 圧電セラミック電子部品の製造方法
CN111704461B (zh) 一种高居里点低温共烧压电陶瓷配方及制备方法
CN105645957B (zh) 一种高机电耦合性能锆钛酸铅细晶压电陶瓷及其制备方法
JP4462438B2 (ja) 圧電磁器組成物、積層型圧電素子及び積層型圧電素子の製造方法
CN111875374A (zh) 一种低温烧结铌镍-锆钛酸铅压电陶瓷材料及其制备方法
CN103539447B (zh) 一种低温烧结的压电陶瓷材料及其制备方法
JP2007230843A (ja) 圧電磁器組成物及び積層型圧電素子
JP2006193414A (ja) 圧電磁器の製造方法および圧電素子の製造方法
JP4930676B2 (ja) 圧電磁器組成物、積層型圧電素子及び積層型圧電素子の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant