CN115233158B - 一种内燃机气门杆件表层用复合涂层及其制备方法 - Google Patents

一种内燃机气门杆件表层用复合涂层及其制备方法 Download PDF

Info

Publication number
CN115233158B
CN115233158B CN202210719169.7A CN202210719169A CN115233158B CN 115233158 B CN115233158 B CN 115233158B CN 202210719169 A CN202210719169 A CN 202210719169A CN 115233158 B CN115233158 B CN 115233158B
Authority
CN
China
Prior art keywords
power supply
parts
target
tial
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210719169.7A
Other languages
English (en)
Other versions
CN115233158A (zh
Inventor
郑军
丁继成
蔡辉
刘兴光
赵栋才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN202210719169.7A priority Critical patent/CN115233158B/zh
Publication of CN115233158A publication Critical patent/CN115233158A/zh
Application granted granted Critical
Publication of CN115233158B publication Critical patent/CN115233158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0042Controlling partial pressure or flow rate of reactive or inert gases with feedback of measurements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于内燃机零件表面处理技术领域,更具体地,涉及一种内燃机气门杆件表层用复合涂层及其制备方法,气门杆基体的表面由内到外依次包括Ti金属结合层、TiAlN中间支撑层、TiAl‑DLC梯度工作层及耐腐涂层;所述TiAl‑DLC梯度工作层按照成分梯度设计由下至上TiAl元素含量依次减少,使涂层结构从纳米复合过渡到无定形结构;本发明所制备的复合涂层不仅能有效降低其与气门导管之间的摩擦,提高了杆件表面耐磨性;而且复合涂层本身还具有良好的耐蚀性及强抗氧化性,能有效提高气门的耐蚀性及耐高温特性,从而显著提升气门零件的使用寿命。

Description

一种内燃机气门杆件表层用复合涂层及其制备方法
技术领域
本发明属于内燃机零件表面处理技术领域,更具体地涉及一种内燃机气门杆件表层用复合涂层及其制备方法。
背景技术
随着内燃机高功率密度化和环保要求的逐步提高,对组成内燃机关键零部件的质量提出了更高的要求。气门作为内燃机燃烧室内的门户,是配气机构中的重要组成零件,其质量将直接对汽车油耗寿命及扭矩等性能产生影响,因此,内燃机气门需具备良好的耐磨性、耐腐蚀性、耐热性以及耐冲击性能。气门主要包括头部和杆部,其中气门杆成圆柱形,在气门导管中不断进行往复运动,这就要求气门杆件更应具有低摩擦、耐磨损特性;同时,由于发动机在高温下长时间工作,容易引起润滑油的氧化聚合和分解,在气门杆部形成沉积物,使气门密封面腐蚀,导致气门漏气。传统的电镀手段和液体润滑保护技术均难以实现环境友好,且也难以满足高承载、低摩擦、耐腐蚀和耐磨损性的要求。物理气相沉积(简称PVD)技术作为一种绿色制造的表面改性方法,是在真空条件下,通过等离子体过程在工件表面沉积具有某种特殊功能的涂层,所制备的涂层具有高硬度、低摩擦系数、耐磨损、耐高温、与基体结合牢固等特点。
基于上述所提出的技术问题,并结合PVD绿色制造表面改性方法和有机涂层耐腐蚀性特点,本发明提出了一种内燃机气门杆件表层用复合涂层及其制备方法,即在气门杆件表面制备具有多层梯度结构的TiAl-DLC耐磨减磨涂层和耐腐蚀表面层,有效降低其与气门导管之间的摩擦,提高了杆件表面耐磨性和耐蚀性,从而显著提升气门零件的使用寿命!
发明内容
本发明的目的在于提供一种内燃机气门杆件表层用复合涂层及其制备方法,所制备的复合涂层不仅能有效降低其与气门导管之间的摩擦,提高了杆件表面耐磨性;而且复合涂层本身还具有良好的耐蚀性及强抗氧化性,能有效地减小气门杆与导管之间的摩擦力和提高气门在复杂工况下的承载性,从而显著提升气门零件的使用寿命。
为实现上述目的,本发明提供如下技术方案:
一种内燃机气门杆件表层用复合涂层;气门杆基体的表面由内到外依次包括Ti金属结合层、TiAlN中间支撑层、TiAl-DLC梯度工作层及耐腐涂层;所述TiAl-DLC梯度工作层按照成分梯度设计由下至上TiAl元素含量依次减少,使涂层结构从纳米复合过渡到无定形结构;且所述气门杆基体选用钛合金、钛铝合金或者铁基合金材料。
更进一步地,所述TiAl-DLC梯度工作层是以Ti金属靶材、TiAl合金靶以及石墨单质靶为原料,通过多靶磁控溅射在气门杆件表面上依次溅射沉积形成;且所述TiAl合金靶材的成分为Ti:40at.%,Al:60at.%。
更进一步地,所述耐腐涂层所用涂料按重量份数计,由以下组分组成:
40~80份环氧改性有机硅树脂、20~70份双酚A型环氧树脂、8~13份协效抗氧剂、4~8份磷酸锌、2~4份聚酰胺蜡、15~23份聚酰胺、6~10份硅藻土、3~8份珠光粉、6~10份纳米气相二氧化硅、0.8~2.6份OP-10分散剂、0.3~0.8份BYK333流平剂、0.4~1份BYK085消泡剂、300~470份乙酸乙酯。
更进一步地,所述协效抗氧剂的制备方法包括以下步骤:
步骤一、无机载体的制备;
Ⅰ、将浓度为0.8~15mg/mL的氧化石墨烯水浆料超声处理30~50min后将之pH调节至9.5~10.8;所得氧化石墨烯浆液保存、备用;
Ⅱ、将石蜡油与四氯甲烷按8~12:1的体积比混合,然后想所得混合液中加入质量为其1.5~4.5%的聚氧乙烯脱水山梨醇单油酸酯,混合搅拌均匀后,将所得混合样液保存、备用;
Ⅲ、将混合样液与氧化石墨烯浆液按3~6的体积比混合,并在50~90℃的温度下以2500~4500r/min的速率下搅拌40~90min,待搅拌均匀后向所得乳液中加入质量为氧化石墨烯20~45%的己二胺,在60~90℃及600~900r/min的速率下保温搅拌反应5~8h;待反应完毕后,依次对其进行过滤、洗涤及干燥处理,所得固体物料即为无机载体成品;
步骤二、协效抗氧剂的制备;
按0.005~0.012g/mL的固液比,将适量的无机载体分散在混合组分中,在氮气气氛的保护下混合搅拌30~40min;然后向其中依次加入质量为无机载体130~150倍的甲基丙烯酸二乙氨基乙酯及65~80%的过硫酸钾,混合搅拌均匀后将所得反应液的温度升至60~85℃,并在此条件下保温反应40~65h;待反应完毕后,所得生成物组分依次经沉淀、离心、洗涤及干燥处理后,所得即为协效抗氧剂成品;
其中,所述混合组分由N,N-二甲基甲酰胺及去离子水按体积比3~5:1混合均匀后所得的混合溶剂及质量分别为混合溶剂8~12%的四[β-(3’,5’-二叔丁基-4’-羟基苯基)丙酸]季戊四醇酯、2~4.2%的辛基苯酚聚氧乙烯醚超声分散20~30min后制成。
一种内燃机气门杆件表层用复合涂层的制备方法,包括如下具体步骤:
A)超声波清洗:将经抛光处理后的零部件置于超声波清洗槽中,依次用丙酮、无水乙醇分别对其进行超声清洗10~20min,然后再用去离子水超声清洗5~10min,而后用干燥的压缩空气对其表面进行干燥处理;
B)辉光清洗:将清洗干燥后的零部件装夹在镀膜腔室的零部件转架上,然后对其进行抽真空处理,当真空度≤5~7×10-3Pa时,开启加热器开始加热除气,并将其温度控制为200~300℃;零部件转架自传速度控制在2~5rpm;然后将真空度调至1~5×10-3Pa,通入Ar气,开偏压电源至-800~-1500V,并在真空度为0.6~0.8Pa的条件下对零部件进行辉光清洗15~30min;
C)金属结合层沉积:辉光清洗结束后,关闭偏压,调节Ar气进气量使真空室气压稳定在0.5~0.8Pa,设置基体和转架参数,开启电源并设置电源参数,挡板分别置于Ti靶、TiAl靶和石墨靶前,起辉,预溅射10~20min后,关闭TiAl靶和石墨靶电源,打开Ti靶前面档板,再次调节偏压到-1000V,通过HiPIMS工艺制备Ti离子轰击植入层,沉积时间为10~15min;而后降低偏压至-100V,沉积Ti金属结合层,沉积时间为10~20min;
D)支撑层沉积:打开TiAl靶前挡板,打开N2气阀,调节Ar与N2的进气量,控制真空室的气压为0.5~0.8Pa,偏压为-100V;然后打开电源并设置电源参数,沉积TiAlN中间支撑层,沉积时间为60~120min;待沉积完毕后,得到厚度为1~3μm的纳米复合TiAlN中间支撑层;
E)工作层沉积:打开石墨靶前挡板,关闭N2并调节Ar进气量,控制真空室气压为0.5~0.6Pa,维持偏压-100V,开启石墨靶电源,调整好电源参数进行沉积DLC复合层,同时控制TiAl靶电源功率从大到小梯度降低,沉积时间为45~90min;待沉积完毕后,获得厚度为1~3μm的TiAl-DLC梯度工作层;
F)沉积结束:关闭靶电源和偏压电源及Ar和N2气进气阀,待腔室温度冷却至指定温度后,开门取出零部件并在其表面喷涂耐腐涂层,即完成了其表面改性工艺全过程。
更进一步地,所述步骤C)中所述基体转架参数设置为:转架自转转速为2~5rpm,公转转速为3~5rpm,沉积温度为200℃;所述电源参数设置为:HiPIMS电源功率1~3kW,占空比为3~8%;脉冲直流电源功率为3~5kW,占空比为60~80%。
更进一步地,所述步骤C)中所述Ti金属结合层厚度为100~300nm;
更进一步地,所述步骤D)中所述电源参数设置为:HiPIMS电源2~3kW,占空比为5~10%;沉积温度为200℃。
更进一步地,所述步骤E)中沉积DLC电源参数设置为:脉冲直流电源3~4kW,占空比为60~80%;同时,TiAl靶,HiPIMS电源功率由2kW向0.1kW从大到小梯度降低,且占空比为5~10%,沉积温度为200℃。
更进一步地,所述步骤F)中的指定温度≤50℃。
与现有技术相比,本发明的优点和积极效果在于:
1、普通DLC涂层存在高残余应力、膜基结合弱、抗冲击韧性不足及摩擦性能不稳等问题,限制了其作为耐磨减磨薄膜的应用,本发明采用复合磁控溅射技术并结合TiAlN涂层承载性高及抗高温氧化特性,设计了具有多层梯度结构的TiAl-DLC涂层。TiAl-DLC涂层不仅改善了气门杆件表面性能,而且还有效地提高了其使用寿命、能源使用效率及可靠性。
本发明中通过设计Ti金属结合层,并通过HiPIMS轰击基体表面,活化其表面形成混合区促进涂层与基体的结合。TiAlN中间支撑层3用来提高涂层承载量及涂层整体抗氧化性能;通过成分梯度的设计制备出TiAl-DLC功能梯度层,其一方面增强与支撑层间的界面结合,另一方面掺入的Ti元素可以形成碳化物纳米颗粒相,有效地提高了DLC涂层硬度和韧性,掺入的Al元素可以促进石墨碳相的偏析,形成低剪切强度的石墨摩擦层,进一步减小DLC涂层的摩擦系数。同时适温下,涂层表面可以形成耐高温的Al2O3保护层,增强涂层抗氧化性。所以本发明所设计的涂层整体具有自润滑、高韧性、强抗氧化性和稳定的低摩擦磨损特性,进而减小气门杆与气门导管之间的摩擦力,延长气门杆件使用寿命。
2、本发明中以氧化石墨烯浆液、混合样液及己二胺为反应原料,在己二胺的作用下使得石墨烯依靠氢键或范德华力完成组装,最终制备出具有球形多孔结构的无机载体成品。然后以无机载体为原料,并将之分散在含有四[β-(3’,5’-二叔丁基-4’-羟基苯基)丙酸]季戊四醇酯及辛基苯酚聚氧乙烯醚的混合组分中,经混合搅拌均匀后使得四[β-(3’,5’-二叔丁基-4’-羟基苯基)丙酸]季戊四醇酯均匀地分散在无机载体微球的孔隙及其表面,然后在过硫酸钾的作用下使得无机载体与甲基丙烯酸二乙氨基乙酯之间发生化学反应而成键,最终在无机载体的表面及其内壁的孔隙中形成三维网络结构,对其孔隙及表面上四[β-(3’,5’-二叔丁基-4’-羟基苯基)丙酸]季戊四醇酯进行有效地固定,最终在无机载体及四[β-(3’,5’-二叔丁基-4’-羟基苯基)丙酸]季戊四醇酯的协同配合下有效地提高了耐腐蚀涂层的抗氧化性能。另外,耐腐涂层的存在也在一定程度上改善了内燃机气门杆件的耐腐蚀性能,有效地延长了其使用寿命。
3、本发明用复合磁控溅射技术获得的多层梯度TiAl-DLC涂层,各层界面结合良好,涂层具有较好的韧性、抗摩擦磨损性以及耐温性。此外,表层的耐腐蚀涂层与整个膜层结合紧密,分布均匀,有效提高了气门杆的耐温及耐蚀性能。所制备的涂层整体复合硬度高,摩擦系数低、工艺重复性高,可以使气门杆满足复杂工况的要求,有巨大的市场潜力和使用价值。
附图说明
图1是本发明中所得的多层梯度涂层结构示意图;
图2是实施1中所得的TiAl-DLC涂层SEM表面图。
附图中,各标号所代表的部件列表如下:
1:气门杆基体;2:Ti金属结合层;3:TiAlN中间支撑层;4:TiAl-DLC梯度工作层;5:耐腐涂层。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
一种内燃机气门杆件表层用复合涂层;气门杆基体1的表面由内到外依次包括Ti金属结合层2、TiAlN中间支撑层3、TiAl-DLC梯度工作层4及耐腐涂层5;所述TiAl-DLC梯度工作层4按照成分梯度设计由下至上TiAl元素含量依次减少,使涂层结构从纳米复合过渡到无定形结构;且气门杆基体选用钛合金、钛铝合金或者铁基合金材料。
TiAl-DLC梯度工作层4是以Ti金属靶、TiAl合金靶以及石墨单质靶为原料,通过多靶磁控溅射在气门杆件表面上依次溅射沉积形成。TiAl合金靶材的成分为Ti:40at.%,Al:60at.%。
耐腐涂层所用涂料按重量份数计,由以下组分组成:40份环氧改性有机硅树脂、20份双酚A型环氧树脂、8份协效抗氧剂、4份磷酸锌、2份聚酰胺蜡、15份聚酰胺、6份硅藻土、3份珠光粉、6份纳米气相二氧化硅、0.8份OP-10分散剂、0.3份BYK333流平剂、0.4份BYK085消泡剂、300份乙酸乙酯。
协效抗氧剂的制备方法包括以下步骤:
步骤一、无机载体的制备;
Ⅰ、将浓度为0.8mg/mL的氧化石墨烯水浆料超声处理30min后将之pH调节至9.5;所得氧化石墨烯浆液保存、备用;
Ⅱ、将石蜡油与四氯甲烷按8:1的体积比混合,然后想所得混合液中加入质量为其1.5%的聚氧乙烯脱水山梨醇单油酸酯,混合搅拌均匀后,将所得混合样液保存、备用;
Ⅲ、将混合样液与氧化石墨烯浆液按3的体积比混合,并在50℃的温度下以2500r/min的速率下搅拌40min,待搅拌均匀后向所得乳液中加入质量为氧化石墨烯20%的己二胺,在60℃及600r/min的速率下保温搅拌反应5h;待反应完毕后,依次对其进行过滤、洗涤及干燥处理,所得固体物料即为无机载体成品;
步骤二、协效抗氧剂的制备;
按0.005g/mL的固液比,将适量的无机载体分散在混合组分中,在氮气气氛的保护下混合搅拌30min;然后向其中依次加入质量为无机载体130倍的甲基丙烯酸二乙氨基乙酯及65%的过硫酸钾,混合搅拌均匀后将所得反应液的温度升至60℃,并在此条件下保温反应40h;待反应完毕后,所得生成物组分依次经沉淀、离心、洗涤及干燥处理后,所得即为协效抗氧剂成品;
其中,混合组分由N,N-二甲基甲酰胺及去离子水按体积比3:1混合均匀后所得的混合溶剂及质量分别为混合溶剂8%的四[β-(3’,5’-二叔丁基-4’-羟基苯基)丙酸]季戊四醇酯、2%的辛基苯酚聚氧乙烯醚超声分散20~30min后制成。
一种内燃机气门杆件表层用复合涂层的制备方法,包括如下具体步骤:
A)超声波清洗:将经抛光处理后的钛合金零部件置于超声波清洗槽中,依次用丙酮、无水乙醇分别对其进行超声清洗10min,然后再用去离子水超声清洗5min,而后用干燥的压缩空气对其表面进行干燥处理;
B)辉光清洗:将清洗干燥后的零部件装夹在镀膜腔室的零部件转架上,然后对其进行抽真空处理,当真空度为5×10-3Pa时,开启加热器开始加热除气,并将其温度控制为200℃;零部件转架自传速度控制在2rpm;然后将真空度调至1×10-3Pa,通入Ar气,开偏压电源至-800V,并在真空度为0.6Pa的条件下对零部件进行辉光清洗15min;
C)金属结合层沉积:辉光清洗结束后,关闭偏压,调节Ar气进气量使真空室气压稳定在0.5Pa,设置基体和转架参数,开启电源并设置电源参数,挡板分别置于Ti靶、TiAl靶和石墨靶前,起辉,预溅射10min后,关闭TiAl靶和石墨靶电源,打开Ti靶前面档板,再次调节偏压到-1000V,通过HiPIMS工艺制备Ti离子轰击植入层,沉积时间为10min;而后降低偏压至-100V,沉积Ti金属结合层2,沉积时间为10min;
其中,转架参数设置为:转架自转转速为2rpm,公转转速为3rpm,沉积温度为200℃;电源参数设置为:HiPIMS电源功率1kW,占空比为3%;脉冲直流电源功率为3kW,占空比为60%;Ti金属结合层2厚度为100nm;
D)支撑层沉积:打开TiAl靶前挡板,打开N2气阀,调节Ar与N2的进气量,控制真空室的气压为0.5Pa,偏压为-100V;然后打开电源并设置电源参数,沉积TiAlN中间支撑层3,沉积时间为60min;待沉积完毕后,得到厚度为2μm的纳米复合TiAlN中间支撑层3;其中,电源参数设置为:HiPIMS电源功率为2kW,占空比为5%;沉积温度为200℃;
E)工作层沉积:打开石墨靶前挡板,关闭N2并调节Ar进气量,控制真空室气压为0.5Pa,维持偏压-100V,开启石墨靶电源,调整好电源参数进行沉积DLC复合层,同时控制TiAl靶电源功率从大到小梯度降低,沉积时间为60min;待沉积完毕后,获得厚度为2μm的TiAl-DLC梯度工作层4;
其中,沉积DLC电源参数设置为:脉冲直流电源3kW,占空比为60%;同时,TiAl靶,HiPIMS电源功率由2kW向0.1kW从大到小梯度降低,且占空比为5%,沉积温度为200℃;
F)沉积结束:关闭靶电源和偏压电源及Ar和N2气进气阀,待腔室温度冷却至50℃后,开门取出零部件并在其表面喷涂耐腐涂层5,即完成了其表面改性工艺全过程。
实施例2
本实施例与实施例1基本相同,两者具体区别为制备复合涂层时所用的技术参数不尽相同,且耐腐涂层所用涂料的具体配比也不尽相同,具体区别如下:
所述耐腐涂层所用涂料按重量份数计,由以下组分组成:60份环氧改性有机硅树脂、50份双酚A型环氧树脂、10份协效抗氧剂、6份磷酸锌、3份聚酰胺蜡、20份聚酰胺、8份硅藻土、5份珠光粉、8份纳米气相二氧化硅、1.8份OP-10分散剂、0.5份BYK333流平剂、0.7份BYK085消泡剂、400份乙酸乙酯。
一种内燃机气门杆件表层用复合涂层的制备方法,包括如下具体步骤:
A)超声波清洗:将经抛光处理后的零部件置于超声波清洗槽中,依次用丙酮、无水乙醇分别对其进行超声清洗15min,然后再用去离子水超声清洗8min,而后用干燥的压缩空气对其表面进行干燥处理;
B)辉光清洗:将清洗干燥后的钛铝合金零部件装夹在镀膜腔室的零部件转架上,然后对其进行抽真空处理,当真空度为6×10-3Pa时,开启加热器开始加热除气,并将其温度控制为250℃;零部件转架自传速度控制在3rpm;然后将真空度调至2×10-3Pa,通入Ar气,开偏压电源至-1200V,并在真空度为0.7Pa的条件下对零部件进行辉光清洗25min;
C)金属结合层沉积:辉光清洗结束后,关闭偏压,调节Ar气进气量使真空室气压稳定在0.6Pa,设置基体和转架参数,开启电源并设置电源参数,挡板分别置于Ti靶、TiAl靶和石墨靶前,起辉,预溅射15min后,关闭TiAl靶和石墨靶电源,打开Ti靶前面档板,再次调节偏压到-1000V,通过HiPIMS工艺制备Ti离子轰击植入层,沉积时间为12min;而后降低偏压至-100V,沉积Ti金属结合层2,沉积时间为15min;
其中,转架参数设置为:转架自转转速为3rpm,公转转速为4rpm,沉积温度为200℃;电源参数设置为:HiPIMS电源功率2kW,占空比为5%;脉冲直流电源功率为4kW,占空比为70%;Ti金属结合层2厚度为200nm;
D)支撑层沉积:打开TiAl靶前挡板,打开N2气阀,调节Ar与N2的进气量,控制真空室的气压为0.6Pa,偏压为-100V;然后打开电源并设置电源参数,沉积TiAlN中间支撑层3,沉积时间为120min;待沉积完毕后,得到厚度为3μm的纳米复合TiAlN中间支撑层3;其中,电源参数设置为:HiPIMS电源功率为2kW,占空比为8%;沉积温度为200℃;
E)工作层沉积:打开石墨靶前挡板,关闭N2并调节Ar进气量,控制真空室气压为0.55Pa,维持偏压-100V,开启石墨靶电源,调整好电源参数进行沉积DLC复合层,同时控制TiAl靶电源功率从大到小梯度降低,沉积时间为45min;待沉积完毕后,获得厚度为1.5μm的TiAl-DLC梯度工作层4;
其中,沉积DLC电源参数设置为:脉冲直流电源4kW,占空比为70%;同时,TiAl靶,HiPIMS电源功率由2kW向0.1kW从大到小梯度降低,且占空比为7%,沉积温度为200℃;
F)沉积结束:关闭靶电源和偏压电源及Ar和N2气进气阀,待腔室温度冷却至45℃后,开门取出零部件并在其表面喷涂耐腐涂层5,即完成了其表面改性工艺全过程。
实施例3
本实施例与实施例1基本相同,两者具体区别为制备复合涂层时所用的技术参数不尽相同,且耐腐涂层所用涂料的具体配比也不尽相同,具体区别如下:
所述耐腐涂层所用涂料按重量份数计,由以下组分组成:80份环氧改性有机硅树脂、70份双酚A型环氧树脂、13份协效抗氧剂、8份磷酸锌、4份聚酰胺蜡、23份聚酰胺、10份硅藻土、8份珠光粉、10份纳米气相二氧化硅、2.6份OP-10分散剂、0.8份BYK333流平剂、1份BYK085消泡剂、470份乙酸乙酯。
一种内燃机气门杆件表层用复合涂层的制备方法,包括如下具体步骤:
A)超声波清洗:将经抛光处理后的铁基合金零部件置于超声波清洗槽中,依次用丙酮、无水乙醇分别对其进行超声清洗20min,然后再用去离子水超声清洗10min,而后用干燥的压缩空气对其表面进行干燥处理;
B)辉光清洗:将清洗干燥后的零部件装夹在镀膜腔室的零部件转架上,然后对其进行抽真空处理,当真空度为7×10-3Pa时,开启加热器开始加热除气,并将其温度控制为300℃;零部件转架自传速度控制在5rpm;然后将真空度调至5×10-3Pa,通入Ar气,开偏压电源至-1500V,并在真空度为0.8Pa的条件下对零部件进行辉光清洗30min;
C)金属结合层沉积:辉光清洗结束后,关闭偏压,调节Ar气进气量使真空室气压稳定在0.8Pa,设置基体和转架参数,开启电源并设置电源参数,挡板分别置于Ti靶、TiAl靶和石墨靶前,起辉,预溅射20min后,关闭TiAl靶和石墨靶电源,打开Ti靶前面档板,再次调节偏压到-1000V,通过HiPIMS工艺制备Ti离子轰击植入层,沉积时间为15min;而后降低偏压至-100V,沉积Ti金属结合层2,沉积时间为20min;
其中,转架参数设置为:转架自转转速为5rpm,公转转速为5rpm,沉积温度为200℃;电源参数设置为:HiPIMS电源功率3kW,占空比为8%;脉冲直流电源功率为5kW,占空比为80%;Ti金属结合层2厚度为300nm;
D)支撑层沉积:打开TiAl靶前挡板,打开N2气阀,调节Ar与N2的进气量,控制真空室的气压为0.8Pa,偏压为-100V;然后打开电源并设置电源参数,沉积TiAlN中间支撑层3,沉积时间为90min;待沉积完毕后,得到厚度为1μm的纳米复合TiAlN中间支撑层3;其中,电源参数设置为:HiPIMS电源3kW,占空比为10%;沉积温度为200℃。
E)工作层沉积:打开石墨靶前挡板,关闭N2并调节Ar进气量,控制真空室气压为0.6Pa,维持偏压-100V,开启石墨靶电源,调整好电源参数进行沉积DLC复合层,同时控制TiAl靶电源功率从大到小梯度降低,沉积时间为120min;待沉积完毕后,获得厚度为4μm的TiAl-DLC梯度工作层4;
其中,沉积DLC电源参数设置为:脉冲直流电源4kW,占空比为80%;同时,TiAl靶,HiPIMS电源功率由2kW向0.1kW从大到小梯度降低,且占空比为10%,沉积温度为200℃;
F)沉积结束:关闭靶电源和偏压电源及Ar和N2气进气阀,待腔室温度冷却至40℃后,开门取出零部件并在其表面喷涂耐腐涂层5,即完成了其表面改性工艺全过程。
对比例1、本实施例与实施例1不同之处在于:所述气门杆基体的表面不含TiAl-DLC梯度工作层;
对比例2、本实施例与实施例1不同之处在于:所述气门杆基体的表面不含耐腐涂层;
对比例3、本实施例与实施例1不同之处在于:采用等量的无机载体代替协效抗氧剂;
性能测试:分别对实施例1~3所提供的复合涂层进行性能测试,所得测试数据记录于下表:
通过对比及分析表格中的相关数据可以看出,所制备的复合涂层由于其独特的结构设计导致涂层综合性能的提升,不仅能有效降低其与气门导管之间的摩擦,提高了杆件表面耐磨性;而且复合涂层本身还具有强抗氧化性和耐腐蚀性能,能有效减轻气门工作中所受热载荷的冲击和腐蚀介质的破坏,从而显著提升气门零件的使用寿命。由此可知,本发明制备的复合涂层具有更广阔的市场前景,更适宜推广。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (8)

1.一种内燃机气门杆件表层用复合涂层,其特征在于:气门杆基体的表面由内到外依次包括Ti金属结合层、TiAlN中间支撑层、TiAl-DLC梯度工作层及耐腐涂层;所述TiAl-DLC梯度工作层按照成分梯度设计由下至上TiAl元素含量依次减少,使涂层结构从纳米复合过渡到无定形结构;且所述气门杆基体选用钛合金、钛铝合金或者铁基合金材料;
所述Ti金属结合层的沉积工艺为,辉光清洗结束后,关闭偏压,调节Ar气进气量使真空室气压稳定在0.5~0.8Pa,设置基体和转架参数,开启电源并设置电源参数,挡板分别置于Ti靶、TiAl靶和石墨靶前,起辉,预溅射10~20min后,关闭TiAl靶和石墨靶电源,打开Ti靶前面档板,再次调节偏压到-1000V,通过HiPIMS工艺制备Ti离子轰击植入层,沉积时间为10~15min;而后降低偏压至-100V,沉积Ti金属结合层,沉积时间为10~20min;
所述TiAlN中间支撑层的沉积工艺为,打开TiAl靶前挡板,打开N2气阀,调节Ar与N2的进气量,控制真空室的气压为0.5~0.8Pa,偏压为-100V;然后打开电源并设置电源参数,沉积TiAlN中间支撑层,沉积时间为60~120min;待沉积完毕后,得到厚度为1~3μm的纳米复合TiAlN中间支撑层;
所述TiAl-DLC梯度工作层的沉积工艺为,打开石墨靶前挡板,关闭N2并调节Ar进气量,控制真空室气压为0.5~0.6Pa,维持偏压-100V,开启石墨靶电源,调整好电源参数进行沉积DLC复合层,同时控制TiAl靶电源功率从大到小梯度降低,沉积时间为45~90min;待沉积完毕后,获得厚度为1~3μm的TiAl-DLC梯度工作层;
所述耐腐涂层所用涂料按重量份数计,由以下组分组成:
40~80份环氧改性有机硅树脂、20~70份双酚A型环氧树脂、8~13份协效抗氧剂、4~8份磷酸锌、2~4份聚酰胺蜡、15~23份聚酰胺、6~10份硅藻土、3~8份珠光粉、6~10份纳米气相二氧化硅、0.8~2.6份OP-10分散剂、0.3~0.8份BYK333流平剂、0.4~1份BYK085消泡剂、300~470份乙酸乙酯;
所述协效抗氧剂的制备方法包括以下步骤:
步骤一、无机载体的制备;
Ⅰ、将浓度为0.8~15mg/mL的氧化石墨烯水浆料超声处理30~50min后将之pH调节至9.5~10.8;所得氧化石墨烯浆液保存、备用;
Ⅱ、将石蜡油与四氯甲烷按8~12:1的体积比混合,然后向所得混合液中加入质量为其1.5~4.5%的聚氧乙烯脱水山梨醇单油酸酯,混合搅拌均匀后,将所得混合样液保存、备用;
Ⅲ、将混合样液与氧化石墨烯浆液按3~6:1的体积比混合,并在50~90℃的温度下以2500~4500r/min的速率下搅拌40~90min,待搅拌均匀后向所得乳液中加入质量为氧化石墨烯20~45%的己二胺,在60~90℃及600~900r/min的速率下保温搅拌反应5~8h;待反应完毕后,依次对其进行过滤、洗涤及干燥处理,所得固体物料即为无机载体成品;
步骤二、协效抗氧剂的制备;
按0.005~0.012g/mL的固液比,将适量的无机载体分散在混合组分中,在氮气气氛的保护下混合搅拌30~40min;然后向其中依次加入质量为无机载体130~150倍的甲基丙烯酸二乙氨基乙酯及65~80%的过硫酸钾,混合搅拌均匀后将所得反应液的温度升至60~85℃,并在此条件下保温反应40~65h;待反应完毕后,所得生成物组分依次经沉淀、离心、洗涤及干燥处理后,所得即为协效抗氧剂成品;
其中,所述混合组分由N,N-二甲基甲酰胺及去离子水按体积比3~5:1混合均匀后所得的混合溶剂及质量分别为混合溶剂8~12%的四[β-(3’,5’-二叔丁基-4’-羟基苯基)丙酸]季戊四醇酯、2~4.2%的辛基苯酚聚氧乙烯醚超声分散20~30min后制成。
2.根据权利要求1所述的一种内燃机气门杆件表层用复合涂层,其特征在于:所述TiAl-DLC梯度工作层是以Ti金属靶材、TiAl合金靶以及石墨单质靶为原料,通过多靶磁控溅射在气门杆件表面上依次溅射沉积形成;且所述TiAl合金靶的成分为Ti:40at.%,Al:60at.%。
3.根据权利要求1~2中任一项所述的一种内燃机气门杆件表层用复合涂层的制备方法,其特征在于,包括如下具体步骤:
A)超声波清洗:将经抛光处理后的零部件置于超声波清洗槽中,依次用丙酮、无水乙醇分别对其进行超声清洗10~20min,然后再用去离子水超声清洗5~10min,而后用干燥的压缩空气对其表面进行干燥处理;
B)辉光清洗:将清洗干燥后的零部件装夹在镀膜腔室的零部件转架上,然后对其进行抽真空处理,当真空度≤5~7×10-3Pa时,开启加热器开始加热除气,并将其温度控制为200~300℃;零部件转架自传速度控制在2~5rpm;然后将真空度调至1~5×10-3Pa,通入Ar气,开偏压电源至-800~-1500V,并在真空度为0.6~0.8Pa的条件下对零部件进行辉光清洗15~30min;
C)金属结合层沉积:辉光清洗结束后,关闭偏压,调节Ar气进气量使真空室气压稳定在0.5~0.8Pa,设置基体和转架参数,开启电源并设置电源参数,挡板分别置于Ti靶、TiAl靶和石墨靶前,起辉,预溅射10~20min后,关闭TiAl靶和石墨靶电源,打开Ti靶前面档板,再次调节偏压到-1000V,通过HiPIMS工艺制备Ti离子轰击植入层,沉积时间为10~15min;而后降低偏压至-100V,沉积Ti金属结合层,沉积时间为10~20min;
D)支撑层沉积:打开TiAl靶前挡板,打开N2气阀,调节Ar与N2的进气量,控制真空室的气压为0.5~0.8Pa,偏压为-100V;然后打开电源并设置电源参数,沉积TiAlN中间支撑层,沉积时间为60~120min;待沉积完毕后,得到厚度为1~3μm的纳米复合TiAlN中间支撑层;
E)工作层沉积:打开石墨靶前挡板,关闭N2并调节Ar进气量,控制真空室气压为0.5~0.6Pa,维持偏压-100V,开启石墨靶电源,调整好电源参数进行沉积DLC复合层,同时控制TiAl靶电源功率从大到小梯度降低,沉积时间为45~90min;待沉积完毕后,获得厚度为1~3μm的TiAl-DLC梯度工作层;
F)沉积结束:关闭靶电源和偏压电源及Ar和N2气进气阀,待腔室温度冷却至指定温度后,开门取出零部件并在其表面喷涂耐腐涂层,即完成了其表面改性工艺全过程。
4.根据权利要求3中所述的一种内燃机气门杆件表层用复合涂层的制备方法,其特征在于,所述步骤C)中所述基体转架参数设置为:转架自转转速为2~5rpm,公转转速为3~5rpm,沉积温度为200℃;所述电源参数设置为:HiPIMS电源功率1~3kW,占空比为3~8%;脉冲直流电源功率为3~5kW,占空比为60~80%。
5.根据权利要求3中所述的一种内燃机气门杆件表层用复合涂层的制备方法,其特征在:所述步骤C)中所述Ti金属结合层厚度为100~300nm。
6.根据权利要求3中所述的一种内燃机气门杆件表层用复合涂层的制备方法,其特征在于:所述步骤D)中所述电源参数设置为:HiPIMS电源2~3kW,占空比为5~10%;沉积温度为200℃。
7.根据权利要求3中所述的一种内燃机气门杆件表层用复合涂层的制备方法,其特征在于:所述步骤E)中沉积DLC电源参数设置为:脉冲直流电源3~4kW,占空比为60~80%;同时,TiAl靶,HiPIMS电源功率由2kW向0.1kW从大到小梯度降低,且占空比为5~10%,沉积温度为200℃。
8.根据权利要求3中所述的一种内燃机气门杆件表层用复合涂层的制备方法,其特征在于:所述步骤F)中的指定温度≤50℃。
CN202210719169.7A 2022-06-23 2022-06-23 一种内燃机气门杆件表层用复合涂层及其制备方法 Active CN115233158B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210719169.7A CN115233158B (zh) 2022-06-23 2022-06-23 一种内燃机气门杆件表层用复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210719169.7A CN115233158B (zh) 2022-06-23 2022-06-23 一种内燃机气门杆件表层用复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN115233158A CN115233158A (zh) 2022-10-25
CN115233158B true CN115233158B (zh) 2023-12-26

Family

ID=83670060

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210719169.7A Active CN115233158B (zh) 2022-06-23 2022-06-23 一种内燃机气门杆件表层用复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN115233158B (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10061436A1 (de) * 2000-12-09 2002-06-27 Plasmotec Gmbh & Co Kg Umformwerkzeug und Verfahren zu seiner Herstellung
EP1394285A1 (de) * 2002-08-27 2004-03-03 Sulzer Markets and Technology AG Substrat mit Funktionsschicht
CN101020769A (zh) * 2007-03-15 2007-08-22 上海交通大学 聚乙烯-醋酸乙烯酯基热可塑性木塑复合材料的制备方法
CN101798679A (zh) * 2010-03-31 2010-08-11 北京科技大学 一种用于气浮轴承的复合涂层制备方法
CN102092166A (zh) * 2009-12-09 2011-06-15 中国科学院兰州化学物理研究所 铝合金活塞多层梯度类金刚石纳米复合涂层及其制备方法
CN102101638A (zh) * 2009-12-18 2011-06-22 中国科学院兰州化学物理研究所 一种纳米复合薄膜的制备方法
CN106349779A (zh) * 2016-08-26 2017-01-25 明岐铝轮毂仪征有限公司 一种轮毂用涂料的制备方法
CN107190243A (zh) * 2017-05-15 2017-09-22 广东工业大学 一种TiB2/AlTiN复合涂层及其制备方法与应用
CN108424677A (zh) * 2018-04-03 2018-08-21 集美大学 一种石墨烯防腐涂料
CN110273127A (zh) * 2019-07-22 2019-09-24 上海妙壳新材料科技有限公司 一种刀具涂层及其生产设备
CN111005002A (zh) * 2020-01-08 2020-04-14 中国航空制造技术研究院 一种压气机叶片耐冲蚀防腐蚀自洁涂层的制备方法
CN111423800A (zh) * 2019-01-10 2020-07-17 沈阳化工研究院有限公司 一种石墨烯防腐涂层材料及其制备方法
CN111748789A (zh) * 2020-07-10 2020-10-09 哈尔滨工业大学 一种石墨阴极弧增强辉光放电沉积纯dlc的装置及其方法
CN113293048A (zh) * 2021-03-01 2021-08-24 安徽联亚新材料有限公司 一种高抗氧化性耐磨润滑油及其制备工艺
CN114293148A (zh) * 2022-01-04 2022-04-08 广东工业大学 一种钛合金表面修复与强化功能涂层一体化的涂层材料及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2452190B (en) * 2006-05-17 2011-12-28 G & H Technologies Llc Wear resistant depositied coating, method of coating deposition and applications therefor
KR20130095390A (ko) * 2012-02-20 2013-08-28 현대자동차주식회사 다층의 코팅층을 갖는 자동차용 피스톤링

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10061436A1 (de) * 2000-12-09 2002-06-27 Plasmotec Gmbh & Co Kg Umformwerkzeug und Verfahren zu seiner Herstellung
EP1394285A1 (de) * 2002-08-27 2004-03-03 Sulzer Markets and Technology AG Substrat mit Funktionsschicht
CN101020769A (zh) * 2007-03-15 2007-08-22 上海交通大学 聚乙烯-醋酸乙烯酯基热可塑性木塑复合材料的制备方法
CN102092166A (zh) * 2009-12-09 2011-06-15 中国科学院兰州化学物理研究所 铝合金活塞多层梯度类金刚石纳米复合涂层及其制备方法
CN102101638A (zh) * 2009-12-18 2011-06-22 中国科学院兰州化学物理研究所 一种纳米复合薄膜的制备方法
CN101798679A (zh) * 2010-03-31 2010-08-11 北京科技大学 一种用于气浮轴承的复合涂层制备方法
CN106349779A (zh) * 2016-08-26 2017-01-25 明岐铝轮毂仪征有限公司 一种轮毂用涂料的制备方法
CN107190243A (zh) * 2017-05-15 2017-09-22 广东工业大学 一种TiB2/AlTiN复合涂层及其制备方法与应用
CN108424677A (zh) * 2018-04-03 2018-08-21 集美大学 一种石墨烯防腐涂料
CN111423800A (zh) * 2019-01-10 2020-07-17 沈阳化工研究院有限公司 一种石墨烯防腐涂层材料及其制备方法
CN110273127A (zh) * 2019-07-22 2019-09-24 上海妙壳新材料科技有限公司 一种刀具涂层及其生产设备
CN111005002A (zh) * 2020-01-08 2020-04-14 中国航空制造技术研究院 一种压气机叶片耐冲蚀防腐蚀自洁涂层的制备方法
CN111748789A (zh) * 2020-07-10 2020-10-09 哈尔滨工业大学 一种石墨阴极弧增强辉光放电沉积纯dlc的装置及其方法
CN113293048A (zh) * 2021-03-01 2021-08-24 安徽联亚新材料有限公司 一种高抗氧化性耐磨润滑油及其制备工艺
CN114293148A (zh) * 2022-01-04 2022-04-08 广东工业大学 一种钛合金表面修复与强化功能涂层一体化的涂层材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Characteristics of TiAl-doped DLC/TiAlN/TiN Multilayered Coatings Synthesized by Cathodic Arc Evaporation;Chi-Lung Chang;《Solid State Phenomena》;第第118卷卷;第247-256页 *

Also Published As

Publication number Publication date
CN115233158A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
CN111224121B (zh) 一种质子交换膜燃料电池不锈钢双极板表面复合改性层原位制备方法
CN106939404B (zh) 一种纳米α-氧化铝/氧化铬复合涂层及其制备方法
CN104141138A (zh) 一种镁合金表面微弧氧化-复合化学镀镍涂层的制备方法
CN115233158B (zh) 一种内燃机气门杆件表层用复合涂层及其制备方法
CN114717516A (zh) 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法
CN114231906A (zh) 一种船用燃气轮机高压涡轮叶片的热障涂层及其制备方法
CN116288141A (zh) 一种类气门盘复杂型面表面梯度陶瓷层及其制备方法
CN108411262B (zh) 一种低温反应溅射沉积纳米α-Al2O3涂层的方法
US8367162B2 (en) Pretreatment method for improving antioxidation of steel T91/P91 in high temperature water vapor
CN103045998B (zh) 一种含有CrNiTiAlN五元涂层的制品的制备方法
CN116606572B (zh) 一种改性纳米碳化硼/二硫化钼增强聚四氟乙烯自润滑复合涂层及其制备方法
CN103695905B (zh) 一种在镁合金微弧氧化膜表面制备复合镀镍层的方法
CN117107311A (zh) 一种Pt改性的叶片叶尖防护涂层及其制备方法
CN109487214A (zh) 一种镁合金表面镀膜方法及由其制备的抗腐蚀镁合金
CN1804101A (zh) 精纺机钢领的表面处理方法
CN113278973B (zh) 一种具有镍改性的硅基防护涂层的钛基合金件及其制备方法
CN114875359A (zh) 一种在钛合金表面形成耐磨抗氧化复合涂层的处理方法
CN109136839A (zh) 一种具有铝掺杂二硼化钛涂层的工件及其制备方法
CN103112212B (zh) 一种具有涂层的钛合金紧固件及其制造方法
CN115029662B (zh) 一种高温耐磨自润滑复合涂层及其制备方法
CN111304661A (zh) 铝硅镁镀层及其制备方法
CN118563256A (zh) 一种增强钛合金与碳基薄膜结合强度的纳米多层过渡层及其制备方法
CN108977765A (zh) 一种WSx/Me/a-C/Me纳米多层结构固体润滑膜及其制备方法
CN116535884B (zh) 镁锂合金表面致密防腐耐磨SWF/LDHs复合涂层及制备方法
CN115233153B (zh) 海洋环境用钛合金表面涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant