CN115159985B - 一种llzo固体电解质粉体干法混料烧结工艺 - Google Patents

一种llzo固体电解质粉体干法混料烧结工艺 Download PDF

Info

Publication number
CN115159985B
CN115159985B CN202210798615.8A CN202210798615A CN115159985B CN 115159985 B CN115159985 B CN 115159985B CN 202210798615 A CN202210798615 A CN 202210798615A CN 115159985 B CN115159985 B CN 115159985B
Authority
CN
China
Prior art keywords
mixing
source
solid electrolyte
powder
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210798615.8A
Other languages
English (en)
Other versions
CN115159985A (zh
Inventor
请求不公布姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Boyue New Energy Technology Co ltd
Shenzhen Boyue New Material Technology Co ltd
Original Assignee
Guangdong Boyue New Energy Technology Co ltd
Shenzhen Boyue New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Boyue New Energy Technology Co ltd, Shenzhen Boyue New Material Technology Co ltd filed Critical Guangdong Boyue New Energy Technology Co ltd
Priority to CN202210798615.8A priority Critical patent/CN115159985B/zh
Publication of CN115159985A publication Critical patent/CN115159985A/zh
Application granted granted Critical
Publication of CN115159985B publication Critical patent/CN115159985B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种LLZO固体电解质粉体干法混料烧结工艺,按比例将指定粒径规格的锂盐、镧源、锆源和掺杂化合物用机械混合设备混匀,获得混合前驱粉末;将混匀后的混合前驱粉末装入匣钵烧结;待保温后的混合前驱粉末冷却至室温,即获得LLZO固体电解质粉体。本申请制备LLZO固体电解质粉体为干法混料后烧结,无任何低沸点有机溶剂的使用,更为安全、环保;本申请的方法仅使用普通的机械混料设备便可达到元素混合的要求,无需使用砂磨机、干燥机、溶剂回收储存设备等高投资高能耗设备,前期设备成本投入明显降低;虽然本申请的原料成本高于湿法球磨工艺,但是当将纳米镧源或纳米锆源替换为微米级原料时,原料成本能进一步下降。

Description

一种LLZO固体电解质粉体干法混料烧结工艺
技术领域
本发明涉及固体电解质领域,具体涉及一种LLZO固体电解质粉体干法混料烧结工艺。
背景技术
锂镧锆氧固体电解质(LLZO)具有离子电导率高、对锂稳定性高、大气稳定性好等特点,目前已成为重要的电解质材料之一。LLZO目前主流的制备工艺包括热固相烧结、溶胶凝胶、共沉淀法等工艺,其中的热固相烧结更适用于产业化工艺开发。热固相烧结过工艺基本流程是:a、称量各原料;b、利用湿法球磨或者砂磨混合并细化各原料;c、溶剂烘干;d、过筛烧结。
由于需要同时保证元素的均匀分布和提高反应活性,故而工艺中采用了球磨混料来同时达到这两种效果。若采用球磨工艺,就必须引入助磨剂,即低沸点有机溶剂。例如CN111732432A公开了一种《球形锂镧锆氧粉体材料及其制备的复合固态电解质》记载了该电解质的制备方法“(2)依次向所述非球形锂镧锆氧粉体中加入溶剂、分散剂和球磨介质,混匀后依次进行球磨分散处理和过筛处理,得到非球形锂镧锆氧浆料;(3)将所述非球形锂镧锆氧浆料进行喷雾造粒处理,得到球形锂镧锆氧粉体前驱体;并将所述球形锂镧锆氧粉体前驱体进行排胶后处理。”但是有机溶剂的使用需要消耗更多的材料成本,增加了干燥工艺和干燥能耗,同时安全环境风险也较高;湿法砂磨更适合小规模实验室使用,当无法满足大规模批量生产需要。因此市面上急需一种低安环风险,低能耗的LLZO加工制备方法。
发明内容
针对上述问题,本发明旨在提供一种能耗低、污染小的LLZO固体电解质粉体干法混料烧结工艺。
为实现该技术目的,本发明的方案是:一种LLZO固体电解质粉体干法混料烧结工艺,具体步骤如下:
S1、配料混料,按比例将指定粒径规格的锂盐、镧源、锆源和掺杂化合物用机械混合设备混匀,获得混合前驱粉末;
S2、烧结,将混匀后的混合前驱粉末装入匣钵,在900-1000℃下保温6-12h;
S3、表征,待保温后的混合前驱粉末冷却至室温,即获得LLZO固体电解质粉体。
作为优选,所述掺杂化合物为掺杂元素M的氧化物、碳酸盐和氢氧化物中的一种或多种;掺杂化合物中的掺杂元素M为Al、Ga、Nb、Ta元素中的一种或几种
作为优选,所述LLZO固体电解质粉体的化学式组成为Li7-3x-yMxLa3Zr2-yO12,3≥x≥0,1≥y≥0。
作为优选,步骤S1混合完成后,混合前驱粉末的表层、中层、底部的锂含量偏差在±0.04%以内。
作为优选,所述锂盐为碳酸锂、氢氧化锂、单水氢氧化锂、氧化锂中的一种或多种组合;
所述镧源为La2O3、La(OH)3、La2(CO3)3、La2O2CO3中的一种或多种组合;
所述锆源为ZrO2、Zr(OH)2、Zr(CO3)2、Zr(CHCOO)4中的一种或多种组合。
作为优选,所述机械混合设备为高速混料机、VC混料机、V型混料机、斜混机、滚筒球磨机中的一种或多种。
作为优选,当镧源、锆源和掺杂化合物的原料等级均为纳米级;
所述掺杂化合物的原始粒径为20nm-200nm;
所述锆源和镧源的原始粒径为20nm-200nm。
作为优选,当掺杂化合物的原料等级为纳米级,所述镧源或锆源中仅有一个的原料等级为纳米级;
所述掺杂化合物的原始粒径为20nm-200nm;
所述锆源和镧源至少有一个的原始粒径为20nm-200nm。
作为优选,所述步骤S2保温前,将混合前驱粉末装钵后进行打孔切块,保持钵内混合前驱粉末的透气面积>30%。
作为优选,所述锂盐状态为微粉,锂盐的粒径D50不大于10μm。
本发明的有益效果,本申请的制备工艺为干法过程,无需使用任何低沸点有机溶剂,更为安全、环保;本申请的方法仅使用普通的机械混料设备便可达到元素混合的要求,无需使用砂磨机、干燥机、溶剂回收储存设备等高投资高能耗设备,前期设备成本投入明显降低;虽然本申请的原料成本高于湿法球磨工艺,但是当将纳米镧源或纳米锆源替换为微米级原料时,原料成本能进一步下降,综合生产成能够持平甚至低于传统的湿法球磨工艺。
附图说明
图1为本发明实施例1-4、对比例2的工艺流程图;
图2为本发明对比例1、对比例3的工艺流程图;
图3为本发明的X光绕射图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细说明。
如图1-3所示,本发明所述的具体实施例为一种LLZO固体电解质粉体干法混料烧结工艺,具体步骤如下:
S1、配料混料,步骤S1中La源中La、Zr源中Zr、掺杂化合物中掺杂元素M按摩尔比=3:2-y:x进行配料,锂源中Li、La源中La按摩尔比Li/La=((7-3x-y)/3)*n进行配料,n为配料系数,n的取值范围为0.9-1.0,按比例将指定粒径规格的锂盐、镧源、锆源和掺杂化合物用机械混合设备混匀,获得混合前驱粉末;所述锂盐为碳酸锂、氢氧化锂、单水氢氧化锂、氧化锂中的一种或多种组合;所述镧源为La2O3、La(OH)3、La2(CO3)3、La2O2CO3中的一种或多种组合;所述锆源为ZrO2、Zr(OH)2、Zr(CO3)2、Zr(CH COO)4中的一种或多种组合;所述掺杂化合物为M的氧化物、碳酸盐和氢氧化物中的一种或多种;掺杂化合物中的掺杂元素M能为Al、Ga、Nb、Ta元素中的一种或几种;
所述机械混合设备为高速混料机、VC混料机、V型混料机、斜混机、滚筒球磨机中的一种或多种。
当镧源、锆源和掺杂化合物的原料等级均为纳米级;所述掺杂化合物的原始粒径为20nm-200nm;所述锆源和镧源的原始粒径为20nm-200nm。当掺杂化合物的原料等级为纳米级,所述镧源或锆源中仅有一个的原料等级为纳米级;所述掺杂化合物的原始粒径为20nm-200nm;所述锆源和镧源至少有一个的原始粒径为20nm-200nm。所述锂盐状态为微粉,锂盐的粒径D50不大于10μm。
步骤S1混合完成后,混合前驱粉末的表层、中层、底部的锂含量偏差在±0.04%以内。
S2、烧结,将混匀后的混合前驱粉末装入匣钵,将混合前驱粉末装钵后进行打孔切块,保持钵内混合前驱粉末的透气面积>30%。在900-1000℃下保温6-12h;
S3、表征,待保温后的混合前驱粉末冷却至室温,即获得LLZO固体电解质粉体。
一种LLZO固体电解质粉体,所述LLZO粉体的化学式组成为Li7-3x-yMxLa3Zr2-yO12,其中掺杂元素M为Al、Ga、Nb、Ta元素中的一种或几种,3≥x≥0,1≥y≥0。
关于本申请的镧源、锆源和掺杂化合物的原料等级的粒径分布说明:(1)原料检测--纳米级:纳米级原料的一次颗粒的粒径分布采用场发射扫描电子显微镜进行表征。一次颗粒是晶粒粒径,为高倍视野下,完整、无晶界的晶粒,也叫一次粒径或原始粒径。
(2)原料检测--微米级:微米级原料的粒径分布采用马尔文3000激光粒度仪进行表征。具体测试参数为:遮光度20±5%。超声10min后测试,粉体(微粉)的复折射率由设备系统提供。
关于离子电导率的检测说明:将烧结完毕的LLZO固体电解质粉体采用滚筒球磨机破碎,将LLZO固体电解质粉体破碎至5-10μm,随后采用200MPa的压强将破碎后的粉末压制成直径为15mm,厚度为2mm的素坯。最后在1250℃下保温300min进行烧结,得到高致密度的LLZO片体。将LLZO片体打磨后,双面喷金,用Zennium Pro型电化学工作站测试片体阻抗,换算后得到LLZO的离子电导率。
关于物相的检测说明:将LLZO固体电解质粉体过200目筛,采用Bruker D8 X射线衍射仪进行表征,目标主相由PDF#80-0457对应的立方相LLNO确定。
实施例1:
称取碳酸锂(D50<10μm)2901.58g,三氧化二镧(纳米级60nm)5620.22g、二氧化锆(纳米级100nm)2834.06g、三氧化二铝(纳米级60nm)148.11g置于50L高速混料机中,开启设备冷却水,以25m/s的线速度混合10min,出料,得到混合均匀的混合前驱体粉末。将混合前驱体粉末装钵,在950℃下保温烧结8h,冷却至室温,得到立方相Al掺杂LLZO固体电解质粉体。
实施例2:
称取单水氢氧化锂(D50<10μm)2708.45g,三氧化二镧(微米级,D50=7.2μm)5620.22g、二氧化锆(纳米级100nm)2834.06g、三氧化二镓(纳米级60nm)148.11g置于50L高速混料机中,开启设备冷却水,以35m/s的线速度混合10min,出料,得到混合均匀的混合前驱体粉末。将混合前驱体粉末装钵,在950℃下保温烧结6h,冷却至室温,得到立方相Ga掺杂LLZO固体电解质粉体。
实施例3:
称取碳酸锂(D50<10μm)2901.58g,三氧化二镧((纳米级100nm))5620.22g、二氧化锆(微米级D50=5.2μm)2134.76g、五氧化二铌(纳米级60nm)544.41g置于50L高速混料机中,开启设备冷却水,以35m/s的线速度混合10min,出料,得到混合均匀的混合前驱体粉末。将混合前驱体粉末装钵,在980℃下保温烧结10h,冷却至室温,得到立方相Nb掺杂LLZO固体电解质粉体。
实施例4:
称取氢氧化锂(D50<10μm)2233.58g,三氧化二镧(纳米级60nm)5620.22g、二氧化锆(纳米级100nm)2035.77g、五氧化二钽(纳米级60nm)648.11g置于50L高速混料机中,开启设备冷却水,以25m/s的线速度混合10min,出料,得到混合均匀的混合前驱体粉末。将混合前驱体粉末装钵,在1000℃下保温烧结12h,冷却至室温,得到立方相Ta掺杂LLZO固体电解质粉体。
对比例1:
称取碳酸锂(D50<10μm)2901.58g,三氧化二镧(微米级5μm)5620.22g、二氧化锆(微米级10μm)2834.06g、三氧化二铝(纳米级60nm)148.11g,异丙醇15kg,先将异丙醇加入到砂磨机,再依次加入各称量好的所有物料,开启设备冷却水,以2000rpm的转速研磨200min,出料,在烘箱中干燥以脱除溶剂,得到混合均匀的混合前驱体粉末。将混合前驱体粉末装钵,在950℃下保温烧结8h,冷却至室温,得到立方相Al掺杂LLZO固体电解质粉体。
对比例2:
称取碳酸锂(D50<10μm)2901.58g,三氧化二镧(微米级,D50=7.2μm)5620.22g、二氧化锆(微米级,D50=5.2μm)2834.06g、三氧化二铝(纳米级50nm)148.11g置于50L高速混料机中,开启设备冷却水,以35m/s的线速度混合20min,出料,得到混合均匀的混合前驱体粉末。将混合前驱体粉末装钵,在950℃下保温烧结8h,冷却至室温,得到立方相Al掺杂LLZO固体电解质粉体。
如图1-2,实施例1和对比例1采用本申请工艺,对比例2采用传统工艺,二者在流程对比上,去除了干燥工艺,流程进一步缩短,且无需使用有机容易,环境污染更小。
表1采用不同原料粒径、或不同处理工艺的离子电导率对比表
如图3,从表1、实施例1和对比例1可以看出,当本申请的干法制备工艺采用纳米级原料进行干混时,得到的烧结物相与对比例2物相基本一致,同时离子电导率也基本一致,这说明当本申请方法采用纳米级原料干混工艺制备LLZO粉体路线能制备出与湿法砂磨同等的质量效果的LLZO固体电解质粉体。
如图3,从对比例2可以看出,当采用原料中有两种微米级原料时,采用本申请的方法得到的烧结物相较差,不仅主相峰强低,杂相也较多,出现了锆酸镧、锆酸锂、铝酸镧等杂相。同时采用两种微米级原料进行干混烧结得到的LLZO离子电导率也较低,仅为0.16mS/cm。这说明采用干混工艺制备LLZO固体电解质粉体时,掺杂化合物、锆源和镧源应尽量采用纳米级原料,微米级材料不宜大于等于2种。
如图3,从表1、实施例1-4和对比例2可以看出,当将掺杂化合物、锆源和镧源中的任一种纳米级原料直接换为微米级原料进行干混时,得到的烧结物相主相仍然和PDF#80-0457卡片一致,说明均生成了立方相LLZO,且无其他明显杂相,离子电导率也达到了相应水平,说明在本发明基础上进行的纳/微米级原料共干混工艺制备LLZO粉体路线也可行,且对于不同的元素掺杂均有效。
从表1、实施例1和实施例2可知,当采用纳米级Ga的实施例2的离子电导率远优于采用纳米级Al的实施例1。与此同时实施例2中La还是微米级,为了进一步确认实施例1和实施例2差异时由Ga引起的。故设置另一对比试验—对比例3。对比例3操作如下:单水氢氧化锂(D50<10μm)2708.45g,三氧化二镧(微米级,D50=7.2μm)5620.22g、二氧化锆(微米级10μm)2834.06g、三氧化二镓(纳米级60nm)148.11g,异丙醇15kg,先将异丙醇加入到砂磨机,再依次加入各称量好的所有物料,开启设备冷却水,以2000rpm的转速研磨200min,出料,在烘箱中干燥以脱除溶剂,得到混合均匀的混合前驱体粉末。将混合前驱体粉末装钵,在950℃下保温烧结8h,冷却至室温,得到立方相Ga掺杂的LLZO固体电解质粉体。用Zennium Pro型电化学工作站测试片体阻抗,换算后得到LLZO的离子电导率为0.98。因此对比例3与实施例2的离子电导率基本一致,这说明当本申请方法采用一种微米级原料干混工艺制备LLZO粉体路线时,也能制备出与湿法砂磨同等的质量效果的LLZO固体电解质粉体;当想获得较高的离子电导率时,原料中掺杂化合物建议使用镓的化合物。
以上所述,仅为本发明的较佳实施例,并不用以限制本发明,凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同替换和改进,均应包含在本发明技术方案的保护范围之内。

Claims (3)

1.一种LLZO固体电解质粉体干法混料烧结工艺,其特征在于,具体步骤如下:
S1、配料混料,按比例将指定粒径规格的锂盐、镧源、锆源和掺杂化合物用高速混料机混匀,开启设备冷却水,以25或35m/s的线速度混合10min,获得混合前驱粉末;
所述掺杂化合物为掺杂元素M的氧化物、碳酸盐和氢氧化物中的一种或多种;掺杂化合物中的掺杂元素M为Al、Ga、Nb、Ta元素中的一种或几种;
所述LLZO固体电解质粉体的化学式组成为Li7-3x-yMxLa3Zr2-yO12,3≥x≥0,1≥y≥0;
La源中La、Zr源中Zr、掺杂化合物中掺杂元素M按摩尔比=3:2-y:x进行配料,锂源中Li、La源中La按摩尔比Li/La=((7-3x-y)/3)*n进行配料,n为配料系数,n的取值范围为0.9-1.0;
当掺杂化合物的原料等级为纳米级,所述镧源或锆源中至少有一个的原料等级为纳米级;所述掺杂化合物的原始粒径为20nm-200nm;所述锆源和镧源至少有一个的原始粒径为20nm-500nm;所述锂盐为微米级,锂盐的粒径D50不大于10μm;
混合完成后,混合前驱粉末的表层、中层、底部各取一位置测试锂含量,锂含量偏差在±0.04%以内,如超出偏差则继续进行混合,直到偏差值控制在此范围内;
S2、烧结,将混匀后的混合前驱粉末装入匣钵,在900-1000℃下保温6-12h;
S3、表征,待保温后的混合前驱粉末冷却至室温,即获得LLZO固体电解质粉体。
2.根据权利要求1所述的LLZO固体电解质粉体干法混料烧结工艺,其特征在于:所述锂盐为碳酸锂、氢氧化锂、单水氢氧化锂、氧化锂中的一种或多种组合;
所述镧源为La2O3、La(OH)3、La2(CO3)3、La2O2CO3中的一种或多种组合;
所述锆源为ZrO2、Zr(OH)2、Zr(CO3)2中的一种或多种组合。
3.根据权利要求1所述的LLZO固体电解质粉体干法混料烧结工艺,其特征在于:所述步骤S2保温前,将混合前驱粉末装钵后进行打孔切块,保持钵内混合前驱粉末的透气面积>30%。
CN202210798615.8A 2022-07-08 2022-07-08 一种llzo固体电解质粉体干法混料烧结工艺 Active CN115159985B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210798615.8A CN115159985B (zh) 2022-07-08 2022-07-08 一种llzo固体电解质粉体干法混料烧结工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210798615.8A CN115159985B (zh) 2022-07-08 2022-07-08 一种llzo固体电解质粉体干法混料烧结工艺

Publications (2)

Publication Number Publication Date
CN115159985A CN115159985A (zh) 2022-10-11
CN115159985B true CN115159985B (zh) 2024-02-27

Family

ID=83491359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210798615.8A Active CN115159985B (zh) 2022-07-08 2022-07-08 一种llzo固体电解质粉体干法混料烧结工艺

Country Status (1)

Country Link
CN (1) CN115159985B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340378B (zh) * 2022-10-20 2023-02-03 江苏蓝固新能源科技有限公司 一种氧化物固态电解质及其制备方法以及一种锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916221A (zh) * 2012-11-07 2013-02-06 深圳华粤宝电池有限公司 一种固体电解质及其制备方法
CN103403946A (zh) * 2011-02-24 2013-11-20 丰田自动车株式会社 石榴石型固体电解质、包含石榴石型固体电解质的二次电池及制造石榴石型固体电解质的方法
CN104628381A (zh) * 2013-11-12 2015-05-20 现代自动车株式会社 制备铝替代的石榴石的方法
CN105742699A (zh) * 2014-12-30 2016-07-06 现代自动车株式会社 石榴石型固体电解质及其制备方法
CN108727025A (zh) * 2017-04-17 2018-11-02 中国科学院上海硅酸盐研究所 锂石榴石复合陶瓷、其制备方法及其用途
CN113880577A (zh) * 2021-10-13 2022-01-04 上海交通大学 一种固体电解质的干法制备工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403946A (zh) * 2011-02-24 2013-11-20 丰田自动车株式会社 石榴石型固体电解质、包含石榴石型固体电解质的二次电池及制造石榴石型固体电解质的方法
CN102916221A (zh) * 2012-11-07 2013-02-06 深圳华粤宝电池有限公司 一种固体电解质及其制备方法
CN104628381A (zh) * 2013-11-12 2015-05-20 现代自动车株式会社 制备铝替代的石榴石的方法
CN105742699A (zh) * 2014-12-30 2016-07-06 现代自动车株式会社 石榴石型固体电解质及其制备方法
CN108727025A (zh) * 2017-04-17 2018-11-02 中国科学院上海硅酸盐研究所 锂石榴石复合陶瓷、其制备方法及其用途
CN113880577A (zh) * 2021-10-13 2022-01-04 上海交通大学 一种固体电解质的干法制备工艺

Also Published As

Publication number Publication date
CN115159985A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
EP1491504B1 (en) Lithium manganese composite oxide granular secondary particle, method for production thereof and use thereof
US10981835B2 (en) “MXene” particulate material, slurry, secondary battery, transparent electrode and production process for “MXene” particulate material
JP7294371B2 (ja) スピネル材料粉体、インターコネクタ保護膜およびスピネル材料粉体の製造方法
WO2014061399A1 (ja) リチウム二次電池用正極活物質及びそれを用いた正極
CN109473652B (zh) 一种锂离子电池高镍三元材料的制备方法
JP5520210B2 (ja) 固体酸化物型燃料電池用空気極材料粉末及びその製造方法
JP6088923B2 (ja) リチウム二次電池用正極活物質又はその前駆体の製造方法
WO2020215535A1 (zh) 纳米钛酸钡粉体及其制备方法、陶瓷介电层及其制造方法
JP5830179B2 (ja) リチウム二次電池用正極活物質の製造方法及びそれに用いられる活物質前駆体粉末
US9412486B2 (en) Composite oxide powder for solid oxide fuel cell and its production method
WO2020175506A1 (ja) 活物質、それを用いた正極合剤及び固体電池
JP7194547B2 (ja) 複合酸化物粉末
CN115159985B (zh) 一种llzo固体电解质粉体干法混料烧结工艺
JP2010241659A (ja) ニオブ酸アルカリ金属塩粒子の製造方法、およびニオブ酸アルカリ金属塩粒子
JP4172024B2 (ja) リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
CN109485420B (zh) 一种提高陶瓷纳米粉体的湿法成型性及烧结性的方法
JP2014049407A (ja) リチウム二次電池用正極活物質の製造方法
CN102875143A (zh) 微波介质陶瓷材料的制备方法
Gabriel et al. Dense m-Li2ZrO3 formed by aqueous slip casting technique: Colloidal and rheological characterization
KR20220088689A (ko) 고체 전해질 및 그것을 사용한 전극 합제, 고체 전해질층, 고체 전지
EP4010287A1 (en) Method of preparation of a garnet-type inorganic material
JP2009286657A (ja) リサイクルジルコニア粉末の製造方法、リサイクルジルコニア粉末、およびそれを用いたジルコニア焼結体の製造方法
TW202021182A (zh) 固體氧化物型燃料電池用電解質材料及其前驅體的製造方法
CN115911300A (zh) 一种高电压三元正极材料及其制备方法
KR20220090504A (ko) 고체 전해질 및 그것을 사용한 전극 합제, 고체 전해질층, 고체 전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20240123

Address after: 518100, Building 9, Shui'an Garden, Ocean New World, No. 14 Shenglong Road, Shengping Community, Longcheng Street, Longgang District, Shenzhen City, Guangdong Province, China, 14B07L2

Applicant after: Shenzhen Boyue New Material Technology Co.,Ltd.

Country or region after: China

Applicant after: Guangdong Boyue New Energy Technology Co.,Ltd.

Address before: 510555 room 690, room 406, No. 1, Yichuang street, Huangpu District, Guangzhou City, Guangdong Province (Zhongxin Guangzhou Knowledge City)

Applicant before: Guangzhou Boyue New Material Technology Co.,Ltd.

Country or region before: China

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant