CN115142013B - 一种基于共格外延强韧化氮氧锆/三氧化二钒纳米多层结构涂层及其制备方法 - Google Patents

一种基于共格外延强韧化氮氧锆/三氧化二钒纳米多层结构涂层及其制备方法 Download PDF

Info

Publication number
CN115142013B
CN115142013B CN202210634125.4A CN202210634125A CN115142013B CN 115142013 B CN115142013 B CN 115142013B CN 202210634125 A CN202210634125 A CN 202210634125A CN 115142013 B CN115142013 B CN 115142013B
Authority
CN
China
Prior art keywords
zro
nano
layer
substrate
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210634125.4A
Other languages
English (en)
Other versions
CN115142013A (zh
Inventor
李伟
程文杰
刘平
王静静
马迅
马凤仓
张柯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202210634125.4A priority Critical patent/CN115142013B/zh
Publication of CN115142013A publication Critical patent/CN115142013A/zh
Application granted granted Critical
Publication of CN115142013B publication Critical patent/CN115142013B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开一种基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层及其制备方法。本发明的所述ZrOxNy/V2O3纳米多层结构涂层是在控制N2/Ar流量比为0~30:30的条件下,由Zr金属靶材和VO2粉末冶金靶材在基底上交替进行反应磁控溅射沉积形成。本发明获得的ZrOxNy/V2O3纳米多层结构涂层的硬度稳定在10.1~11GPa左右,最佳断裂韧性值为0.879MPa·m1/2,表现出较好的韧性性能。可用在切削工具、机械摩擦部件的表面防护,从而提高刀具及部件表面性能和使用寿命。其制备方法具有工艺简单、沉积速度快、成本低、结合强度高等优点。

Description

一种基于共格外延强韧化氮氧锆/三氧化二钒纳米多层结构 涂层及其制备方法
技术领域
本发明涉及一种基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层及其制备方法,属于纳米涂层技术领域。
背景技术
纳米结构薄膜由于具有高硬度、良好的热稳定性、耐磨性、耐腐蚀性等特点,被广泛应用于超硬涂层、切削工具表面保护、机械摩擦件等。然而,纳米薄膜的脆性导致了裂纹和分层缺陷,降低了设备的使用寿命。
Koehler在1970年提出了纳米多层膜的概念,它是由两种或多种材料在纳米级厚度上交替沉积形成的。作为一种具有高硬度和高韧性的新型结构涂层,纳米多层膜在过去的几十年中得到了广泛的探索,如ZrN/ZrO2、CrAlN/ZrO2、(Al50Ti50)N/ZrN、ZrN/Zr0.63Al0.37N等,表现出良好的应用前景。这些纳米薄膜可以通过化学气相沉积(CVD)、激光脉冲沉积(PLD)、电弧蒸发、等离子体增强化学气相沉积(PECVD)和物理气相沉积(PVD)等方法进行沉积。在PVD技术中,磁控溅射是制备纳米薄膜的一种常见技术。溅射是一个非热蒸发过程,它通过原子大小的高能轰击粒子的动量转移将原子从靶材表面弹出。因此,基底不会因为过高的沉积温度而变形。直流磁控溅射主要用于溅射金属材料。然而,射频磁控溅射,通过磁场将二次电子的运动限制在靶材表面附近,可以沉积几乎所有的材料,包括导体、半导体和绝缘体。
N2/Ar流量比对磁控溅射过渡金属纳米涂层的结构和性能有重要影响。Kuznetsova等人通过反应式磁控溅射方法在硬化的钢基底上沉积了厚度约为3μm的ZrN涂层。结果显示,不同的N2/Ar流量比可以控制多晶ZrN涂层的纹理、机械性能和晶粒尺寸。Yang等人基于N2注入速度(v)和振幅(Γ)的函数,通过反应性气体脉冲(RGP)溅射方法沉积了TiN涂层。观察到在Γ和v的适度范围内,薄膜的相结构保持稳定,当v较大时,TiN相的子层发生了从(111)到(200)方向的转变,而调制比σ和调制周期Λ都随着v的增加而减少。同时,随着Γ或v的增加,薄膜的电阻率ρ和纳米硬度H增加。Tian等人用射频磁控溅射技术在不同的N2/Ar流量比下制备SrHfON涂层。结果显示,由于N2/Ar流量比的增加,涂层平均泄漏电流密度首先下降,然后增加。与此相反,介电常数最初增加,然后减少。Jia等人使用射频反应磁控溅射技术,用可变的N2/Ar流量比,在硅衬底上制造了非晶态B-C-N涂层。他们发现N浓度对N2/Ar流量比的增加不敏感,而C浓度增加,B浓度减少。N2/Ar流量比的提高将分别促进C-N键含量和减少B-C键含量,涂层的硬度随着N2/Ar流动比的变化几乎是不变的。Zheng等人通过反应性磁控溅射Ti和Si,分别沉积了不同N2/Ar流动比的多晶TiN/SiNx多层涂层。结果发现,当N2/Ar流量比较低时,TiN和SiNx层的界面是尖锐的,涂层最优取向是TiN(200)。相反,当N2/Ar流量比高时,界面变得粗糙,涂层最优取向变为TiN(111)。具有TiN(111)优先取向的涂层的硬度高于TiN(200)优先取向。同时,所有的涂层都具有纳米级的断裂特征。通过反应磁控溅射技术,Nakazawa等人制备了不同N2/Ar流量比的B,N-结合的类金刚石(DLC)涂层。研究发现,B,N-结合的涂层显示出良好的耐磨性能,其具体磨损率低于未结合和B-结合的涂层。Sedov等人利用CVD技术,周期性地加入N2气体,合成了多晶金刚石涂层。结果表明,即使是最小量的N2也可以导致涂层的生长速度明显增加(超过2倍),而与不注入N2的微晶涂层相比,表面粗糙度降低了3倍以上。因此,N2/Ar的流量比对纳米涂层的特性、粗糙度、微观结构和机械性能有明显影响。
发明内容
本发明的目的是:提供一种基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层及其制备方法,提出利用反应式磁控溅射技术,通过改变N2/Ar的流量比来沉积ZrOxNy/V2O3纳米多层结构涂层,通过调节沉积参数,以解决现有纳米硬质涂层硬而脆的技术难题。
为了实现上述目的,本发明提供了一种基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层,所述纳米多层结构涂层由多个ZrOxNy层和V2O3层构成,所述的ZrOxNy层和V2O3层依次交替沉积在基体上,靠近基体的一层为所述的ZrOxNy层;所述ZrOxNy/V2O3纳米多层结构涂层是在控制N2/Ar流量比为0~30:30的条件下,由Zr金属靶材和VO2粉末冶金靶材在基底上交替进行反应磁控溅射沉积形成。
优选地,所述基底为金属、硬质合金、陶瓷或单晶Si。
优选地,所述ZrOxNy/V2O3纳米多层结构涂层的厚度为1300~1320nm,所述ZrOxNy层和V2O3层的厚度分别是3~4nm和1.8~2nm。
优选地,所述N2/Ar流量比为10:30~20:30。
本发明还提供了上述的基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层的制备方法,包括如下步骤:
步骤1:将基底依次经抛光、超声波清洗和离子清洗;
步骤2:将基底置入多靶反应磁控溅射仪并分别停留在Zr金属靶材和VO2粉末冶金靶材之前,通入Ar和N2,通过反应磁控溅射交替沉积ZrOxNy层和V2O3层,从而获得共格外延的ZrOxNy/V2O3纳米多层结构涂层;所述反应磁控溅射沉积过程中控制N2/Ar流量比为0~30:30。其中,氮气和氩气由一个单独的流量控制器引入反应腔体。
优选地,所述Zr金属靶材和VO2粉末冶金靶材为柱体靶材,直径为75mm,厚度为3mm。
优选地,所述步骤1中超声波清洗包括:依次采用无水乙醇和丙酮作为清洗溶剂进行超声清洗10~20min;所述离子清洗包括:将超声波清洗后的基底装进真空室,抽真空到4×10-3Pa后通入Ar气,维持真空度在2-4Pa,用氩离子轰击基底10min;
优选地,所述磁控溅射反应沉积过程的工艺条件为:
直流电源控制Zr金属靶材,射频电源控制VO2粉末冶金靶材;
ZrOxNy层溅射功率160W,时间15s;
V2O3层溅射功率100W,时间8s;
总沉积时间2.5h;
靶材与基底之间的距离50mm;
总气压范围0.6Pa。
优选地,所述N2/Ar流量比为10:30~20:30。
上述获得的ZrOxNy/V2O3纳米多层结构涂层具有清晰的周期性晶格条纹,调制层(V2O3层)转变成与主体层(ZrOxNy层)相同的晶体结构。涂层出现连续且结晶度良好的柱状晶粒;其中,共格外延中的晶化界面相由N2/Ar流量比调控的;上述所得的共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层,其硬度稳定在10.6GPa(N2/Ar流量比为30:30除外)左右,最佳断裂韧性值为0.879MPa·m1/2,表现出较好的强韧性性能。可应用在硬质涂层、切削刀具涂层、机械摩擦件和其它领域的保护涂层,提高刀具及部件表面性能和使用寿命。
与现有技术相比,本发明的有益效果在于:
(1)本发明在ZrOxNy/V2O3纳米多层结构涂层制备中,通过调节N2/Ar流量比,使涂层的界面形成共格外延生长形貌,使调制层(V2O3层)转变为具有模板层(ZrOxNy层)相同的晶格结构,阻碍了纳米晶粒沿晶界的滑移,因此抑制ZrOxNy/V2O3纳米多层结构涂层的微观变形,使纳米多层结构涂层进一步强化;因此本发明的一种共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层可用作为硬质涂层、切削刀具涂层、机械摩擦件和其它领域的保护涂层;
(2)本发明的制备方法具有生产效率高、成本低、能耗低、对设备要求较低等优点,适于规模化生产。
附图说明
图1为不同N2/Ar流量比的ZrOxNy/V2O3纳米多层结构涂层的XRD图谱;
图2为ZrOxNy/V2O3纳米多层结构涂层横截面HRTEM照片:(a)低倍、(b)高倍、(c)选区电子衍射图;
图3为实施例1~5中在不同N2/Ar流量比下获得的ZrOxNy/V2O3纳米多层结构涂层的硬度和弹性模量对比图;
图4为实施例1~5中在不同N2/Ar流量比下获得的ZrOxNy/V2O3纳米多层结构涂层的断裂韧性对比图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
以下实施例中,所用的制备、表征和测量仪器如下所示:
JGP-450型反应磁控溅射系统,中国科学院沈阳科学仪器研制中心有限公司;
D8 Advance型X射线衍射仪,德国Bruker公司;
Bruker TI-980型纳米压痕仪,德国Bruker公司;
Tecnai G2 20型高分辨透射电子显微镜,美国FEI公司;
Quanta FEG450型扫描电子显微镜,美国FEI公司。
实施例1
一种基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层,是采用多靶反应磁控溅射仪,由Zr金属靶材和VO2粉末冶金靶材在基底上交替进行反应磁控溅射沉积形成;(沉积ZrOxNy中的氧来源于VO2靶材分解产生的氧离子),所述的基底为单晶Si,其制备方法包括如下步骤:
(1)清洗基底
首先将经抛光处理后的基底送入超声波清洗机,依次在分析纯的无水酒精和丙酮中利用15~30kHz超声波进行清洗15min;然后进行离子清洗;所述的离子清洗即将基底装进真空室,抽真空到4×10-3Pa后通入Ar气,维持真空度在2-4Pa,用氩离子轰击靶材10min;
(2)ZrOxNy/V2O3纳米多层结构涂层的制备
将基底置入多靶反应磁控溅射仪并分别停留在Zr金属靶材和VO2粉末冶金靶材之前,通过反应磁控溅射交替沉积获得共格外延的ZrOxNy/V2O3纳米多层结构涂层;上述的磁控溅射反应沉积的工艺过程控制如下:
采用Zr金属靶材和VO2粉末冶金靶材,两靶材直径都为75mm,厚度为3mm;
Ar气流量:30sccm,N2气流量:0sccm;
直流电源控制Zr金属靶材,射频电源控制VO2粉末冶金靶材;
直流溅射功率160W,射频溅射功率100W;
基底在两个靶材前面停留时间分别是15s和8s,总沉积时间2.5h;
靶材基底距离50mm,总气压范围0.6Pa。
经检测,得到的ZrOxNy/V2O3纳米多层结构涂层的硬度为11GPa,弹性模量为175.7GPa,断裂韧性为0.583MPa·m1/2
实施例2
一种基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层,是采用多靶反应磁控溅射仪,由Zr金属靶材和VO2粉末冶金靶材在基底上交替进行反应磁控溅射沉积形成;所述的基底为单晶Si,其制备方法同实施例1,不同的是,磁控溅射反应沉积的工艺过程控制如下:
采用Zr金属靶材和VO2粉末冶金靶材,靶材直径为75mm,厚度为3mm;
Ar气流量:30sccm,N2气流量:5sccm;
直流电源控制Zr金属靶材,射频电源控制VO2粉末冶金靶材;
直流溅射功率160W,射频溅射功率100W;
基底在两个靶材上面停留时间分别是15s和8s,总沉积时间2.5h;
靶材基底距离50mm,总气压范围0.6Pa。
经检测,得到的ZrOxNy/V2O3纳米多层结构涂层的硬度为10.1GPa,弹性模量为152.3GPa,断裂韧性为0.409MPa·m1/2
实施例3
一种基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层的制备方法,是采用多靶反应磁控溅射仪,由Zr金属靶材和VO2粉末冶金靶材在基底上交替进行反应磁控溅射沉积形成;所述的基底为单晶Si,其制备方法同实施例1,不同的是,磁控溅射反应沉积的工艺过程控制如下:
采用Zr金属靶材和VO2粉末冶金靶材,靶材直径为75mm,厚度为3mm;
Ar气流量:30sccm,N2气流量:10sccm;
直流电源控制Zr金属靶材,射频电源控制VO2粉末冶金靶材;
直流溅射功率160W,射频溅射功率100W;
基底在两个靶材上面停留时间分别是15s和8s,总沉积时间2.5h;
靶材基底距离50mm,总气压范围0.6Pa。
经检测,得到的ZrOxNy/V2O3纳米多层结构涂层的硬度为10.2GPa,弹性模量为133.1GPa,断裂韧性为0.668MPa·m1/2
实施例4
一种基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层的制备方法,是采用多靶反应磁控溅射仪,由Zr金属靶材和VO2粉末冶金靶材在基底上交替进行反应磁控溅射沉积形成;所述的基底为单晶Si,其制备方法同实施例1,不同的是,磁控溅射反应沉积的工艺过程控制如下:
采用Zr金属靶材和VO2粉末冶金靶材,靶材直径为75mm,厚度为3mm;
Ar气流量:30sccm,N2气流量:20sccm;
直流电源控制Zr金属靶材,射频电源控制VO2粉末冶金靶材;
直流溅射功率160W,射频溅射功率100W;
基底在两个靶材前面停留时间分别是15s和8s,总沉积时间2.5h;
靶材基底距离50mm,总气压范围0.6Pa。
经检测,得到的ZrOxNy/V2O3纳米多层结构涂层的硬度为10.1GPa,弹性模量为137.3GPa,断裂韧性为0.879MPa·m1/2
实施例5
一种基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层的制备方法,是采用多靶反应磁控溅射仪,由Zr金属靶材和VO2粉末冶金靶材在基底上交替进行反应磁控溅射沉积形成;所述的基底为单晶Si,其制备方法同实施例1,不同的是,磁控溅射反应沉积的工艺过程控制如下:
采用Zr金属靶材和VO2粉末冶金靶材,靶材直径为75mm,厚度为3mm;
Ar气流量:30sccm,N2气流量:30sccm;
直流电源控制Zr金属靶材,射频电源控制VO2粉末冶金靶材;
直流溅射功率160W,射频溅射功率100W;
基底在两个靶材前面停留时间分别是15s和8s,总沉积时间2.5h;
靶材基底距离50mm,总气压范围0.6Pa。
经检测,得到的ZrOxNy/V2O3纳米多层结构涂层的硬度为8.6GPa,弹性模量为124.3GPa,断裂韧性为0.481MPa·m1/2
测试结果:
图1为不同N2/Ar流量比的ZrOxNy/V2O3纳米多层结构涂层的XRD图谱;从图1中可以看到ZrO2和和ZrN(N2流量不为0时)的特征衍射峰。
图2为ZrOxNy/V2O3纳米多层结构涂层横截面HRTEM照片,如图2(a)所示,纳米多层膜的厚度截面为典型的柱状晶体生长结构。图2(b)是图2(a)中选择区域的放大图像。纳米多层薄膜具有清晰的周期晶格条纹,纳米多层膜的调制周期约为5.5nm。模板层较暗,主要成分为ZrO2和ZrN,调制层较亮,主要成分为V2O3。图2(c)中连续的SAED图形证实了ZrOxNy/V2O3纳米多层膜中面心立方(FCC)多晶相的存在。
图3为实施例1~5中在不同N2/Ar流量比下获得的ZrOxNy/V2O3纳米多层结构涂层的硬度和弹性模量对比图,从图3可以看出,当N2/Ar流量比控制在0~30:30范围内(不包括N2/Ar流量比为30:30时),均可以获得具有力学性能的ZrOxNy/V2O3纳米多层结构涂层,硬度稳定在10.1~11GPa左右,弹性模量>130GPa;其中,N2/Ar流量比为30:30时,所获得的ZrOxNy/V2O3纳米多层结构涂层的力学性能略低,硬度<100GPa,弹性模量<130GPa。
图4为实施例1~5中在不同N2/Ar流量比下获得的ZrOxNy/V2O3纳米多层结构涂层的断裂韧性对比图,从图4可以看出,当N2/Ar流量比为20:30时,断裂韧性最佳,为0.879MPa·m1/2,当N2/Ar流量比为10:30时,次之,为0.668MPa·m1/2,不同N2/Ar流量比对该ZrOxNy/V2O3纳米多层结构涂层的断裂韧性影响较大。

Claims (7)

1.一种基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层,其特征在于,所述纳米多层结构涂层由多个ZrOxNy层和V2O3层构成,所述的ZrOxNy层和V2O3层依次交替沉积在基底上,靠近基底的一层为所述的ZrOxNy层;所述ZrOxNy/V2O3纳米多层结构涂层是在控制N2/Ar流量比为0~30:30的条件下,由Zr金属靶材和VO2粉末冶金靶材在基底上交替进行反应磁控溅射沉积形成。
2.如权利要求1所述的基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层,其特征在于,所述基底为金属、硬质合金、陶瓷或单晶Si。
3.如权利要求1所述的基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层,其特征在于,所述ZrOxNy/V2O3纳米多层结构涂层的厚度为1300~1320nm,所述ZrOxNy层和V2O3层的厚度分别是3~4nm和1.8~2nm。
4.权利要求1~3中任意一项所述的基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层的制备方法,其特征在于,包括如下步骤:
步骤1:将基底依次经抛光、超声波清洗和离子清洗;
步骤2:将基底置入多靶反应磁控溅射仪并分别停留在Zr金属靶材和VO2粉末冶金靶材之前,通入Ar和N2,通过反应磁控溅射交替沉积ZrOxNy层和V2O3层,从而获得共格外延的ZrOxNy/V2O3纳米多层结构涂层;所述反应磁控溅射沉积过程中控制N2/Ar流量比为0~30:30。
5.如权利要求4所述的基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层的制备方法,其特征在于,所述Zr金属靶材和VO2粉末冶金靶材为柱体靶材,直径为75mm,厚度为3mm。
6.如权利要求4所述的基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层的制备方法,其特征在于,所述步骤1中超声波清洗包括:依次采用无水乙醇和丙酮作为清洗溶剂进行超声清洗10~20min;所述离子清洗包括:将超声波清洗后的基底装进真空室,抽真空到4×10-3Pa后通入Ar气,维持真空度在2-4Pa,用氩离子轰击基底10min。
7.如权利要求4所述的基于共格外延强韧化ZrOxNy/V2O3纳米多层结构涂层的制备方法,其特征在于,所述磁控溅射反应沉积过程的工艺条件为:
直流电源控制Zr金属靶材,射频电源控制VO2粉末冶金靶材;
ZrOxNy层溅射功率160W,时间15s;
V2O3层溅射功率100W,时间8s;
总沉积时间2.5h;
靶材与基底之间的距离50mm;
总气压范围0.6Pa。
CN202210634125.4A 2022-06-07 2022-06-07 一种基于共格外延强韧化氮氧锆/三氧化二钒纳米多层结构涂层及其制备方法 Active CN115142013B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210634125.4A CN115142013B (zh) 2022-06-07 2022-06-07 一种基于共格外延强韧化氮氧锆/三氧化二钒纳米多层结构涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210634125.4A CN115142013B (zh) 2022-06-07 2022-06-07 一种基于共格外延强韧化氮氧锆/三氧化二钒纳米多层结构涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN115142013A CN115142013A (zh) 2022-10-04
CN115142013B true CN115142013B (zh) 2023-08-18

Family

ID=83407053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210634125.4A Active CN115142013B (zh) 2022-06-07 2022-06-07 一种基于共格外延强韧化氮氧锆/三氧化二钒纳米多层结构涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN115142013B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575667A (zh) * 2020-06-23 2020-08-25 上海理工大学 一种界面相为双金属的ZrNiYN纳米复合共格外延涂层及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210285109A1 (en) * 2020-03-12 2021-09-16 Kennametal Inc. Coated body and method for coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575667A (zh) * 2020-06-23 2020-08-25 上海理工大学 一种界面相为双金属的ZrNiYN纳米复合共格外延涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高速切削刀具物理气相沉积涂层研究进展;王启民 等;航空制造技术(第14期);第78-83页 *

Also Published As

Publication number Publication date
CN115142013A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CN104805408B (zh) 高硬度TiSiBN纳米复合结构保护性涂层及其制备方法
CN106835037A (zh) 一种高硬度、高弹性模量的多组元氮化物涂层及其制备方法
JP5333418B2 (ja) 硬質皮膜被覆工具の製造方法
Shah et al. Effect of sputtering pressure and temperature on DC magnetron sputtered CrN films
JP2002355704A (ja) 切削工具インサート
Shah et al. Influence of silicon content on the microstructure and hardness of CrN coatings deposited by reactive magnetron sputtering
CN111647851B (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
Gaydaychuk et al. Influence of Al-Si-N interlayer on residual stress of CVD diamond coatings
CN114703452B (zh) 一种CoCrFeNi高熵合金掺杂非晶碳薄膜及其制备方法
CN1304632C (zh) 氮化硼复合涂层切削刀具及其制备方法
CN107190233A (zh) 一种具有超高硬度的Si掺杂纳米复合涂层的制备工艺
He et al. Microstructure and mechanical properties of reactive sputtered nanocrystalline (Ti, Al) N films
CN114000115B (zh) 一种Ti-B-N纳米复合涂层及其制备方法
Liu et al. Effect of bias voltage on microstructure and nanomechanical properties of Ti films
CN115142013B (zh) 一种基于共格外延强韧化氮氧锆/三氧化二钒纳米多层结构涂层及其制备方法
CN106756833B (zh) 一种高硬度TiCrN/TiSiN纳米多层结构涂层及其制备方法
CN101021002A (zh) 磁控溅射技术合成超硬薄膜的新工艺
KR100991770B1 (ko) 입방정계 질화붕소 박막의 증착 방법
US20050016444A1 (en) Method for diamond coating substrates
JP3353239B2 (ja) ダイヤモンド類被覆部材の製造方法
CN102206808B (zh) 高硬度高弹性模量TiAlN/AlON纳米多层涂层及其制备方法
Zhang et al. Influences of nitrogen flow rate on the structures and properties of Ti and N co-doped diamond-like carbon films deposited by arc ion plating
CN102560355B (zh) 一种V-Si-N纳米复合硬质涂层及其制备方法
CN115142014B (zh) 一种高强韧氮氧锆/钇掺杂三氧化二钒纳米多层结构涂层及其制备方法
JP5614405B2 (ja) 硬質皮膜被覆工具及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant