CN106756833B - 一种高硬度TiCrN/TiSiN纳米多层结构涂层及其制备方法 - Google Patents

一种高硬度TiCrN/TiSiN纳米多层结构涂层及其制备方法 Download PDF

Info

Publication number
CN106756833B
CN106756833B CN201611235550.7A CN201611235550A CN106756833B CN 106756833 B CN106756833 B CN 106756833B CN 201611235550 A CN201611235550 A CN 201611235550A CN 106756833 B CN106756833 B CN 106756833B
Authority
CN
China
Prior art keywords
ticrn
tisin
target
matrix
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611235550.7A
Other languages
English (en)
Other versions
CN106756833A (zh
Inventor
李伟
孙明达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI DOESUN ENERGY TECHNOLOGY Co Ltd
University of Shanghai for Science and Technology
Original Assignee
SHANGHAI DOESUN ENERGY TECHNOLOGY Co Ltd
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI DOESUN ENERGY TECHNOLOGY Co Ltd, University of Shanghai for Science and Technology filed Critical SHANGHAI DOESUN ENERGY TECHNOLOGY Co Ltd
Priority to CN201611235550.7A priority Critical patent/CN106756833B/zh
Publication of CN106756833A publication Critical patent/CN106756833A/zh
Application granted granted Critical
Publication of CN106756833B publication Critical patent/CN106756833B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种高硬度TiCrN/TiSiN纳米多层结构涂层,由多个TiCrN层和TiSiN层构成,TiCrN层和TiSiN层依次交替沉积在基体上,靠近基体的一层为TiCrN层。本发明还提供了上述涂层的制备方法,先将基体表面抛光处理,经超声波清洗和离子清洗后,首先沉积TiCr过渡层,再采用反应溅射法在基体上交替溅射TiSiN层和TiCrN层。当TiSiN中Si含量在8~16 at.%之间时,TiCrN/TiSiN纳米多层涂层可获得较高的硬度,其最高硬度值达到37.5GPa。本发明的涂层可作为保护性涂层应用在刀具、模具等承受摩擦磨损载荷的零件表面,从而提高零件的使用寿命。

Description

一种高硬度TiCrN/TiSiN纳米多层结构涂层及其制备方法
技术领域
本发明属于材料学领域,涉及一种新型保护性涂层,具体来说是一种高硬度TiCrN/TiSiN纳米多层结构涂层及其制备方法。
背景技术
科技的进步伴随着生产工具的不断革新,在先进制造业方面,即体现在对材料表面的硬度、耐磨、耐腐蚀和耐高温等性能要求的不断提高。在材料表面涂覆一层保护性硬质涂层是提高材料表面性能的一种经济实用的有效途径,保护性涂层在机械加工工具中应用很广。它的发展适应了现代制造业对金属切削刀具的高技术要求,可被广泛应用于机械制造、汽车工业、地质钻探、模具工业等领域。然而,随着高速切削、干式切削等先进切削技术的不断发展,对刀具涂层的性能也提出了更高的要求,传统的刀具涂层,如TiN、TiCN、CrN、TiAlN涂层已逐渐不能满足要求,因此迫切需要开发新型的保护性涂层材料。
随着涂层技术的不断革新,纳米多层涂层逐渐应用到机械生产中。纳米多层涂层是由两种成分不同的纳米级材料在垂直于涂层表面的方向上呈相互交替生长而生成的多层材料,每两个相邻成分不同的材料组成一个基本单元,其厚度称之为“调制周期”,在力学性能方面,一些调制周期小于100nm的纳米多层涂层,呈现出弹性模量与硬度异常升高的超模效应与超硬效应,因此,纳米多层涂层是硬质涂层的重点研究方向。
通过查文献可知,纳米多层涂层目前已经通过多种方法成功制得,也取得了很多优秀成果。通过查询,检索到如下有关制备纳米多层涂层的中国专利:
申请号为201110054870.3的专利涉及了一种AlN/ZrN纳米多层膜制备工艺,采用脉冲电源溅射Zr靶与Al靶,在N2/Ar混合气体中反应溅射获得AlN层与ZrN层,通过改变各靶溅射功率和基体在靶前停留时间获得AlN/ZrN纳米多层膜。本发明采用脉冲反应磁控溅射,通过调整AlN层与ZrN层单层厚度改变薄膜硬度与抗氧化性,本发明所沉积的AlN/ZrN纳米多层膜具有高的硬度和抗氧化温度。
申请号为200610029135.6的专利涉及了一种AlN/SiO2纳米多层硬质薄膜,属于陶瓷薄膜领域。本发明由AlN层和SiO2层交替沉积在金属或陶瓷基底上形成,AlN层的厚度为3~6nm,SiO2层厚为0.4~1.2nm。本发明AlN/SiO2纳米多层硬质薄膜具有SiO2被晶化并与AlN形成共格外延生长的超晶格柱状晶的结构特征。本发明的AlN/SiO2纳米多层硬质薄膜不但具有优良的高温抗氧化性,而且具有较高的硬度;其硬度高于28GPa,最高硬度可达32GPa。本发明作为高速切削刀具及其它在高温条件下服役耐磨工件的涂层,具有很高的应用价值。
申请号为201110316033.3的专利涉及了一种TiN/Ni纳米多层薄膜的制备方法,涉及陶瓷/金属纳米多层薄膜制备方法,包括以下制备步骤:选用钢材为基体,基体表面经砂纸研磨并抛光后,分别用丙酮、酒精和去离子水超声波清洗、烘干后装入真空室;用直流反应磁控共溅射镀膜系统,纯金属钛靶和纯金属镍靶同时对准上方中心处的基体,沉积多层薄膜前先将真空室抽真空至6.0×10-4Pa,然后通入高纯氩气,在基体上沉积一层厚度为30~100nm的金属钛层;通过计算机精确控制靶材上挡板的打开时间进行交替沉积TiN/Ni纳米多层薄膜;镀膜结束后样品随炉冷却至室温即可。该薄膜可应用于切削刀具、模具的表面或作为装饰薄膜应用于钟表、首饰等产品。
专利号为200410022552.9的专利涉及了TiN-TiAlN系列硬质纳米结构多层膜镀层属于纳米新材料,将其镀制在材料表面用作表面改性。本发明利用物理气相沉积技术在材料表面交叉进行纳米尺寸的TiN膜和TiAlN膜的沉积,因纳米尺寸效应使镀层性能最佳化,可显著提高工具、模具、零部件等的表面性能。例如,镀层的维氏硬度(HV)要显著高于TiN和TiAlN的值,HV≥3200。本发明可以显著提高材料的耐磨、硬度、耐热和抗腐蚀等性能,提高其使用性能、延长使用寿命等。
专利号为200610131675.5的专利涉及了一种纳米多层膜材料及提高多层膜结构高温稳定性的方法属薄膜 材料技术领域。其构成是在Ti/TiN或CrN/TiN的两层膜之间镀有Si3N4非晶层,Si3N4非晶层的厚度是0.6~1.0nm。采用在多层膜中加入的Si3N4非晶层的方法,能有效限制多层膜层间扩散,达到提高多层膜结构高温稳定性的目的。可以利用多靶磁控溅射技术在基底上交替沉积得到纳米多层膜材料。本发明的方法可使涂层的硬度、弹性模量和断裂强度等力学性能在很大程度上得到提高。
虽然上述研究取得了一些有益成果。然而,上述研究涉及的各类涂层仍存在着硬度、摩擦磨损性能、沉积效率以及成本无法兼顾的问题,需要发展一种具有高硬度、高弹性模量和抗摩擦磨损性能的新型结构涂层及其工艺简单、沉积速度快、成本低、环境友好的制备工艺。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种高硬度TiCrN/TiSiN纳米多层结构涂层及其制备方法,所述的这种高硬度TiCrN/TiSiN纳米多层结构涂层及其制备方法要解决现有技术中的各类涂层存在着硬度、摩擦磨损性能、沉积效率以及成本无法兼顾的技术问题。
本发明提供了一种高硬度TiCrN/TiSiN纳米多层结构涂层,所述涂层由多个TiCrN层和TiSiN层构成,所述的TiCrN层和TiSiN层依次交替沉积在基体上,靠近基体的一层为所述的TiCrN层,所述基体为金属、硬质合金或陶瓷中的任意一种。
进一步的,所述的TiCrN/TiSiN纳米多层结构涂层的总厚度为2-4μm。
进一步的,当所述TiSiN层厚度小于1.2nm时,TiSiN调制层在面心立方结构的TiCrN层的作用下转化为面心立方结构。
本发明还提供了上述的一种高硬度TiCrN/TiSiN纳米多层结构涂层的制备方法,包括如下步骤:
1)一个清洗基体的步骤,先将经抛光处理后的基体送入超声波清洗机,依次在丙酮和无水酒精中利用15~30kHz的超声波分别清洗5~10min;然后进行离子清洗,即将基体装进真空室,抽真空到4×10-4Pa~8×10-4Pa后通入Ar气,维持真空度在2-4Pa,用中频对基体进行为时20~40min的离子轰击,功率为80-100W;
2)一个沉积TiCr过渡层的步骤,将离子轰击后的基片放进溅射室内,采用TiCr合金靶进行反应溅射,所述的TiCr合金靶中,Ti和Cr元素的原子比为50%:50%,通过直流电源控制合金靶,功率为120~150W,通过Ar流量为35~40sccm,沉积时间为5min;
3)一个通过多靶磁控溅射仪交替溅射TiSiN层和TiCrN层的步骤,通过转动基片架,让基片依次正对TiSi靶和TiCr靶进行反应溅射,所述的TiSi靶中,Ti和Si素的原子比为68~84%:16~32%,所述的TiCr靶中,Ti和Cr元素的原子比为50%:50%, Ar气流量为40sccm;N2气流量为10sccm;基体在TiCr靶上方停留时间为20s;基体在TiSi靶上方停留时间为8s,沉积涂层的厚度为2-4μm。
进一步的,步骤3)中,所述通过多靶磁控溅射仪溅射过程的工艺控制参数为:
直流电源控制TiCr靶,射频电源控制TiSi靶;
TiCrN层溅射功率150W,时间20s;
TiCrN层溅射功率300W,时间8s;
靶基距为5-7cm;
总气压范围0.2-0.6Pa;
溅射温度为室温-300℃。
本发明将TiCrN和具有纳米复合结构的TiSiN依次交替沉积在基体上,形成具有纳米多层结构的新型涂层。该涂层分别利用面心立方结构的TiCrN层作为模板层和具有纳米复合结构的TiSiN作为调制层,使TiSiN层在面心立方结构的TiCrN层的模板作用下转变为面心立方结构,并与TiCrN层之间形成共格外延生长。该共格生长界面对位错运动有较强的抑制作用,从而使TiCrN/TiSiN纳米多层涂层得到有效的强化。该涂层的最高硬度值达到37.5GPa,并且制备过程具有生产效率高、能耗低、对设备要求较低等优点,该涂层可作为保护性涂层应用在刀具、模具等承受摩擦磨损载荷的零件表面,从而提高零件的使用寿命。
本发明先沉积TiCr过渡层以提高涂层与基体的结合强度。然后通过依次交替沉积TiSiN层和TiCrN层,在基体上形成一种新型的具有纳米多层结构的新型超硬涂层。涂层的调制周期是由精确控制基体在TiCr靶和TiSi靶前的停留时间来实现。通过调整TiSiN中Si含量的变化,得到了不同Si含量的TiCrN/TiSiN纳米结构涂层。结果表明:当TiSiN中Si含量在8~16 at.%之间时,TiCrN/TiSiN纳米多层涂层可获得较高的硬度,其最高硬度值达到37.5GPa。该涂层可作为保护性涂层应用在刀具、模具等承受摩擦磨损载荷的零件表面,从而提高零件的使用寿命。
本发明和已有技术相比,其技术进步是显著的。本发明提升了刀具、模具等被涂覆零件的表面性能,从而提高零件的使用寿命。而且本发明的制备工艺具有成本低、工艺简单可控、沉积速率高和对环境无污染等优点。
具体实施方式
下面通过具体实施例对本发明作进一步的详细说明,但并不限制本发明。
本发明所用的制备、表征和测量仪器:
JGP-450型磁控溅射系统,中科院沈阳科学仪器研制中心有限公司
D8 Advance型X射线衍射仪,德国Bruker公司
NANO Indenter G200型纳米压痕仪,美国安捷伦科技公司
Tecnai G2 20型高分辨透射电子显微镜,美国FEI公司
Quanta FEG450型扫描电子显微镜(附带Oxford能谱仪),美国FEI公司
实施例1
本发明还提供了上述的一种高硬度TiCrN/TiSiN纳米多层结构涂层的制备方法,包括如下步骤:
1)一个清洗基体的步骤,先将经抛光处理后的基体送入超声波清洗机,依次在丙酮和无水酒精中利用15~30kHz的超声波分别清洗5~10min;然后进行离子清洗,即将基体装进真空室,抽真空到4×10-4Pa~8×10-4Pa后通入Ar气,维持真空度在2-4Pa,用中频对基体进行为时20~40min的离子轰击,功率为80-100W;
2)一个沉积TiCr过渡层的步骤,将离子轰击后的基片放进溅射室内,采用TiCr合金靶进行反应溅射,所述的TiCr合金靶中,Ti和Cr元素的原子比为50%:50%,通过直流电源控制合金靶,功率为120~150W,通过Ar流量为35~40sccm,沉积时间为5min;
3)一个通过多靶磁控溅射仪交替溅射TiSiN层和TiCrN层的步骤,通过转动基片架,让基片依次正对TiSi靶和TiCr靶进行反应溅射,所述的TiSi靶中,Ti和Si素的原子比为92%:8%,所述的TiCr靶中,Ti和Cr元素的原子比为50%:50%, Ar气流量为40sccm; N2气流量为10sccm;总气压为0.4Pa;TiSiN溅射功率300W,时间8s;TiCrN溅射功率150W,时间20s;基体温度为室温。
经检测,此工艺下TiCrN/TiSiN纳米结构保护性涂层的硬度为32.8GPa。
实施例2
采用和实施例1一样的方法,步骤3)的工艺调整为:Ar气流量为40sccm,N2气流量为10sccm;TiSiN中Si含量在10 at.%;总气压为0.2Pa;TiSiN溅射功率300W,时间8s;TiCrN溅射功率150W,时间20s;基体温度为200℃。
经检测,此工艺下TiCrN/TiSiN纳米结构保护性涂层的硬度为35.2GPa。
实施例3
采用和实施例1一样的方法,步骤3)的工艺调整为:Ar气流量为40sccm,N2气流量为10sccm;TiSiN中Si含量在12 at.%;总气压为0.4Pa;TiSiN溅射功率300W,时间8s;TiCrN溅射功率120W,时间20s;基体温度为100℃。
经检测,此工艺下TiCrN/TiSiN纳米结构保护性涂层的硬度为37.5GPa。
实施例4
采用和实施例1一样的方法,步骤3)的工艺调整为:Ar气流量为40sccm,N2气流量为10sccm;TiSiN中Si含量在14 at.%;总气压为0.6Pa;TiSiN溅射功率300W,时间8s;TiCrN溅射功率120W,时间20s;基体温度为300℃。
经检测,此工艺下TiCrN/TiSiN纳米结构保护性涂层的硬度为33.1GPa。
实施例5
采用和实施例1一样的方法,步骤3)的工艺调整为:Ar气流量为40sccm,N2气流量为10sccm;TiSiN中Si含量在16 at.%;总气压为0.4Pa;TiSiN溅射功率300W,时间8s;TiCrN溅射功率120W,时间20s;基体温度为100℃。
经检测,此工艺下TiCrN/TiSiN纳米结构保护性涂层的硬度为34.0GPa。

Claims (3)

1.一种高硬度TiCrN/TiSiN纳米多层结构涂层,其特征在于:所述涂层由多个TiCrN层和TiSiN层构成,所述的TiCrN层和TiSiN层依次交替沉积在基体上,靠近基体的一层为所述的TiCrN层,所述基体为金属、硬质合金或陶瓷中的任意一种,所述的TiCrN/TiSiN纳米多层结构涂层的总厚度为2-4μm,所述的TiSiN层厚度小于1.2nm,所述的TiCrN层和TiSiN层均为面心立方结构。
2.权利要求1所述的一种高硬度TiCrN/TiSiN纳米多层结构涂层的制备方法,其特征在于包括如下步骤:
1)一个清洗基体的步骤,先将经抛光处理后的基体送入超声波清洗机,依次在丙酮和无水酒精中利用15~30kHz的超声波分别清洗5~10min;然后进行离子清洗,即将基体装进真空室,抽真空到4×10-4Pa~8×10-4Pa后通入Ar气,维持真空度在2-4Pa,用中频对基体进行为时20~40min的离子轰击,功率为80-100W;
2)一个沉积TiCr过渡层的步骤,将离子轰击后的基片放进溅射室内,采用TiCr合金靶进行反应溅射,所述的TiCr合金靶中,Ti和Cr元素的原子比为50%:50%,通过直流电源控制合金靶,功率为120~150W,通过Ar流量为35~40sccm,沉积时间为5min;
3)一个通过多靶磁控溅射仪交替溅射TiSiN层和TiCrN层的步骤,通过转动基片架,让基片依次正对TiSi靶和TiCr靶进行反应溅射,所述的TiSi靶中,Ti和Si素的原子比为68~84%:16~32%,所述的TiCr靶中,Ti和Cr元素的原子比为50%:50%, Ar气流量为40sccm; N2气流量为10sccm;基体在TiCr靶上方停留时间为20s;基体在TiSi靶上方停留时间为8s,沉积涂层的厚度为2-4μm。
3.如权利要求2所述的一种高硬度TiCrN/TiSiN纳米多层结构涂层的制备方法,其特征在于:步骤3)中,所述通过多靶磁控溅射仪溅射过程的工艺控制参数为:
直流电源控制TiCr靶,射频电源控制TiSi靶;
TiCrN层溅射功率150W,时间20s;
TiSiN层溅射功率300W,时间8s;
靶基距为5-7cm;
总气压范围0.2-0.6Pa;
溅射温度为室温-300℃。
CN201611235550.7A 2016-12-28 2016-12-28 一种高硬度TiCrN/TiSiN纳米多层结构涂层及其制备方法 Active CN106756833B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611235550.7A CN106756833B (zh) 2016-12-28 2016-12-28 一种高硬度TiCrN/TiSiN纳米多层结构涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611235550.7A CN106756833B (zh) 2016-12-28 2016-12-28 一种高硬度TiCrN/TiSiN纳米多层结构涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN106756833A CN106756833A (zh) 2017-05-31
CN106756833B true CN106756833B (zh) 2019-02-15

Family

ID=58924631

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611235550.7A Active CN106756833B (zh) 2016-12-28 2016-12-28 一种高硬度TiCrN/TiSiN纳米多层结构涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN106756833B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604332B (zh) * 2017-09-14 2020-05-08 艾瑞森表面技术(苏州)股份有限公司 一种纳米复合涂层结构及其制备方法
CN108468028B (zh) * 2018-04-28 2020-02-21 广东工业大学 一种周期性多层结构AlTiYN/AlCrSiN硬质涂层及其制备方法和应用
CN111041417A (zh) * 2019-12-10 2020-04-21 上海离原环境科技有限公司 一种用于加工特种材料刀具的TiAISiN复合涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105296949A (zh) * 2015-11-23 2016-02-03 上海理工大学 一种具有超高硬度的纳米结构涂层及其制备方法
CN105483584A (zh) * 2014-09-15 2016-04-13 南昌大学 一种提高TiCrN多元多层复合涂层硬质合金的硬度的方法
CN105861997A (zh) * 2016-06-15 2016-08-17 济宁学院 TiCrN/MoS2多元减摩润滑涂层刀具及其制备工艺
CN106048525A (zh) * 2016-07-15 2016-10-26 沈阳大学 一种连续变化的钛铬金属氮化物复合硬质膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483584A (zh) * 2014-09-15 2016-04-13 南昌大学 一种提高TiCrN多元多层复合涂层硬质合金的硬度的方法
CN105296949A (zh) * 2015-11-23 2016-02-03 上海理工大学 一种具有超高硬度的纳米结构涂层及其制备方法
CN105861997A (zh) * 2016-06-15 2016-08-17 济宁学院 TiCrN/MoS2多元减摩润滑涂层刀具及其制备工艺
CN106048525A (zh) * 2016-07-15 2016-10-26 沈阳大学 一种连续变化的钛铬金属氮化物复合硬质膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nanostructured TiCrN thin films by Pulsed Magnetron Sputtering for cutting tool applications;V.V. Anusha Thampi et al;《Ceramics International》;20160316;第9940-9948页

Also Published As

Publication number Publication date
CN106756833A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN108754415B (zh) 一种周期性多层纳米结构AlTiN/AlCrSiN硬质涂层及其制备方法和应用
CN102653855B (zh) 耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法
CN104928637B (zh) 高硬度CrAlSiN纳米复合结构保护性涂层及其制备方法
CN104002516B (zh) 一种具有高硬度和低摩擦系数的CrAlN/MoS2多层涂层及其制备方法
CN105296949B (zh) 一种具有超高硬度的纳米结构涂层及其制备方法
CN104087898B (zh) 一种具有超高硬度、低摩擦系数的TiSiCN纳米复合涂层及制备方法
CN103757597B (zh) 一种TiN/CrAlSiN纳米复合多层涂层及其制备方法
CN104805408B (zh) 高硬度TiSiBN纳米复合结构保护性涂层及其制备方法
CN106835037A (zh) 一种高硬度、高弹性模量的多组元氮化物涂层及其制备方法
Zhang et al. Effect of bias voltages on microstructure and properties of (TiVCrNbSiTaBY) N high entropy alloy nitride coatings deposited by RF magnetron sputtering
CN102011091A (zh) 高硬度高弹性模量CrAlN保护涂层及其制备方法
CN106191772B (zh) 一种含有多相AlCrN纳米插入层的高硬度CrAlN涂层及其制备方法
CN106756833B (zh) 一种高硬度TiCrN/TiSiN纳米多层结构涂层及其制备方法
CN101157289B (zh) A1N/Si3N4纳米多层硬质涂层及其制备方法
CN103510061A (zh) 一种高硬度、高弹性模量TiSiN保护涂层的制备方法
CN108468028A (zh) 一种周期性多层结构AlTiYN/AlCrSiN硬质涂层及其制备方法和应用
CN107190243A (zh) 一种TiB2/AlTiN复合涂层及其制备方法与应用
CN107190233A (zh) 一种具有超高硬度的Si掺杂纳米复合涂层的制备工艺
CN109097743A (zh) 一种超硬W-Cr-Al-Ti-N纳米梯度多层膜及其制备方法
CN103305789B (zh) 一种CrAlN/ZrO2纳米涂层及其制备方法
CN107190229B (zh) 一种自组装纳米氧氮化物耐高温涂层及其制备方法
CN105441945B (zh) 一种高硬度低摩擦系数的纳米涂层及其制备方法
CN104152857A (zh) 一种高硬度TiAlZrN/CrN纳米多层涂层及其制备方法
CN110484881A (zh) 一种致密二硼化钛涂层及其制备方法和应用
CN102409309B (zh) 一种共格/半共格结构的Al/W 多层膜制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant