CN115120241A - 利用漫反射校正的荧光示踪剂的非入侵监测方法 - Google Patents

利用漫反射校正的荧光示踪剂的非入侵监测方法 Download PDF

Info

Publication number
CN115120241A
CN115120241A CN202210697974.4A CN202210697974A CN115120241A CN 115120241 A CN115120241 A CN 115120241A CN 202210697974 A CN202210697974 A CN 202210697974A CN 115120241 A CN115120241 A CN 115120241A
Authority
CN
China
Prior art keywords
light
signal
detector
patient
filtered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210697974.4A
Other languages
English (en)
Inventor
金伯莉·舒尔茨
珍妮弗·凯汀
爱德华·所罗门
卡特·贝克特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medibeacon Inc
Original Assignee
Medibeacon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medibeacon Inc filed Critical Medibeacon Inc
Publication of CN115120241A publication Critical patent/CN115120241A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/20Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
    • A61B5/201Assessing renal or kidney functions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14556Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases by fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0224Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0237Adjustable, e.g. focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/32Investigating bands of a spectrum in sequence by a single detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0242Operational features adapted to measure environmental factors, e.g. temperature, pollution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • A61B2562/0242Special features of optical sensors or probes classified in A61B5/00 for varying or adjusting the optical path length in the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0271Thermal or temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1213Filters in general, e.g. dichroic, band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
    • G01J2003/516Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs with several stacked filters or stacked filter-detector pairs

Abstract

提供了一种利用漫反射校正的荧光示踪剂的非入侵监测方法,该方法包括提供测量数据集,该测量数据集包括多个测量条目,该测量条目包括在施用荧光剂之前和之后从患者获得的至少两个测量值。测量值可以包括以下一个或多个:在由来自邻近漫反射介质的第一区域的激发波长光的照射期间由未滤波光检测器检测的DRex信号;在激发波长光的照射期间由滤波光检测器检测的Flr信号;以及在发射波长光的照射期间由未滤波光检测器检测的DRem信号。该方法还包括识别测量数据集的后试剂施用部分;以及将每个Flr信号转换成表示仅由荧光剂发射的检测到的荧光强度的IF信号。

Description

利用漫反射校正的荧光示踪剂的非入侵监测方法
本申请是国际申请日2018年1月30日、国际申请号PCT/US2018/016041的国际申请于2019年7月26日进入国家阶段的申请号为201880008812.7、发明名称为“利用漫反射校正的荧光示踪剂的非入侵监测方法”的专利申请的分案申请,其全部内容结合于此作为参考。
相关申请交叉引用
本申请要求2017年1月30日提交的第62/452,025号美国临时申请的权益,其全部内容结合于此。
技术领域
本公开一般涉及在以光的散射和/或吸收为特征的介质内的荧光示踪剂的非入侵监测的方法。更具体地,本公开涉及通过监测患者体内组织内的外源性荧光示踪剂的清除来非入侵性评估肾功能的方法。
背景技术
为了最小化各种临床、生理和病理条件引起的急性肾功能衰竭的风险,在床边对患者的肾功能进行实时动态监测是非常需要的。在危重病人或受伤病人的情况下尤其重要,因为这些病人中有很大比例面临由一种或多种严重功能障碍引起的多器官衰竭(MOF)的风险,诸如:急性肺损伤(ALI)、成人呼吸窘迫综合征(ARDS)、高代谢、低血压、持续性炎症和/或脓毒症。肾功能也可能由于与施用作为手术(诸如血管造影、糖尿病、自身免疫性疾病和与肾损害相关的其它功能障碍和/或损伤)的一部分的肾毒性药物相关联的肾损害而受损。为了评估患者的状态并长期监测肾功能的严重程度和/或进展,有相当大的兴趣开发一种简单、准确和连续的方法来确定肾衰竭,优选地通过非入侵性程序。
血清肌酐浓度,肾功能的内源性标记物,典型地从血样中测量,并且与患者人口统计学因素(诸如体重、年龄和/或种族)结合使用以估计肾小球滤过率(GFR),肾小球滤过率(GFR)是肾功能的一种测量。然而,由于许多潜在因素,包括:年龄、水合状态、肾灌注、肌肉质量、膳食摄入量以及许多其他人体测量和临床变量,基于肌酐的肾功能评估可能容易出现不准确。为了补偿这些差异,已经建立了一系列基于肌酐的方程(最近扩展到半胱氨酸蛋白酶抑制剂C),其中包括诸如性别、种族和其它相关因素的因素,用于基于血清肌酐测量来估计肾小球滤过率(eGFR)。然而,这些eGFR方程没有提供补偿上述大部分变量源的任何方式,并且因此具有相对较差的精度。此外,eGFR方法通常产生比真实GFR滞后72小时的结果。
现有的测量GFR的方法已经采用诸如菊粉、邻苯二甲酸盐、51Cr-EDTA、Gd-DTPA和99mTc-DTPA的外源性标记化合物。其它内源性标记物,诸如标记邻碘马尿酸盐或99mTc-MAG3的123I和125I,已被用于其它现有的评估小管分泌过程的方法中。然而,典型的外源性标记化合物的使用可能伴随各种不期望的效果,包括将放射性材料和/或电离辐射引入患者体内,以及血液和尿液样品的费力的离体处理,使得使用这些外源性标记物的现有方法不适于患者床边的肾功能的实时监测。
在患者特定而环境可能变化的情况下,使用外源性标记物实时、准确、可重复地测量肾排泄率的可用性将表示比任何当前实践的方法的显著提升。此外,仅依赖于外源性化学实体的肾清除的方法将提供直接和连续的药动学测量,而不需要基于年龄、肌肉质量、血压等的主观解释。
附图说明
专利或申请文件包含至少一个以彩色执行的附图。本专利或专利申请出版物的复印件连同彩色附图将由办公室(Office)根据要求提供,并支付必要的费用。
当考虑其下面的详细描述时,将更好地理解本公开,并且除了上面阐述的那些之外,特征、方面和优点将变得明显。这种详细描述参照以下附图,其中:
图1是在一个方面单波长肾监测装置的示意图;
图2是在一个方面双波长肾监测系统的示意图;
图3是概括与在体内在约430nm至约650nm的光波长范围内定义的非入侵性监测外源性荧光剂相关的各种装置、材料和化合物的吸收、透射和发射光谱的曲线图;
图4是概括在约200nm至约650nm的光波长范围内定义的氧合血红蛋白(HbO2)和脱氧血红蛋白(Hb)的吸收光谱的曲线图;
图5是在一个方面与双波长肾监测系统的数据采集相关联的光脉冲周期的定时的示意图,其中每个光脉冲周期依次包括在激发波长和发射波长处产生的光脉冲;
图6是在一个方面肾功能监测系统的传感器头的侧视图;
图7是图6的传感器头的仰视图。
图8是图6的传感器头的内部俯视图,图8示出了在一个方面肾功能监测系统的传感器头的壳体内的各种电气部件的布置;
图9是图8的内部视图的放大图。
图10是在一个方面在肾功能监测系统的传感器头的接触面内形成的孔的示意图;
图11是在一个方面由传感器头的光检测器同步检测光的示意图;
图12是在一个方面由传感器头进行的光信号调制和解调的示意图;
图13是示出处理单元的子单元的框图;
图14A是示出在一个方面确定漫反射校正方程的参数的全局误差映射方法的步骤的流程图;
图14B是示出在第二方面确定漫反射校正方程的参数的全局误差映射方法的步骤的流程图;
图15A是由注射外源性荧光剂之前和之后获得的肾监测装置检测到的荧光剂(IFagent)的代表性本征荧光测量的曲线图。选定用于分析以确定校正因子的数据子集以橙色突出显示。
图15B是由注射外源性荧光剂之前和之后获得的肾监测装置检测到的荧光剂(IFagent)的代表性本征荧光测量的曲线图。通过将IFagent拟合为血浆衍生物IFagent来选定用于分析以确定校正因子的数据子集以橙色突出显示。
图16是比较校正的荧光信号测量的对数变换的单指数曲线拟合(log[Fit],黑色虚线)和在来自图15A和图15B的选定的分析区域的部分上的根据图15A和图15B的校正的荧光信号测量(IFagent,红线)的曲线图。
图17是概括了归一化均方根误差(RMSE,颜色标度)的代表性误差面的映射,归一化均方根误差(RMSE,颜色标度)是针对校正因子Kex和Kem,filtered的范围的荧光对数的线性拟合和校正的荧光信号测量之间的差值而计算的,其中最小RSME区域由覆盖在映射上的白色箭头标识;
图18是比较在注射外源性荧光剂之前和之后获得的原始(F,蓝线)荧光信号测量和校正(IF,红线)的荧光信号测量的曲线图。
图19是概括在一个方面确定漫反射校正等式的参数的线性回归模型方法的步骤的流程图;
图20是对数变换的原始荧光信号(Log(Flr))的曲线图,示出了用作投影的数据的区域适合于:用于开发数据校正算法的线性回归模型(橙色线)、用于线性回归模型的响应变量(黑色虚线)和用于训练线性回归模型的变化显著的数据的区域(蓝色线);
图21A是在注射外源性荧光剂之前和之后获得的原始荧光信号测量的曲线图。在大约13:50小时开始暴露于表示为有色区域的各种扰动期间,获得原始荧光信号的测量。各种扰动包括测试对象中血氧的变化、对测量区域施加和移除压力、对测试对象施用血压药物、冷却测量的区域以及移除/替换装置的传感器头;
图21B是图21A的校正荧光信号测量的曲线图;
图21C是与图21A的原始荧光信号测量同时测量的漫反射信号测量的曲线图。这些信号用于校正图21A的原始荧光信号测量,以产生图21B所示的校正信号;
图22A是示出一个方面预处理子单元的多个模块的框图;
图22B是示出第二方面预处理子单元的多个模块的框图;
图23是第二方面肾功能监测系统的传感器头的等轴视图;
图24是图23所示的肾功能监测系统的传感器头的仰视图;
图25是图23所示的肾功能监测系统的传感器头的等轴视图,其中移除上壳体和各种电气部件以暴露出内壳体;以及
图26是图25所示的传感器头的内壳体的分解图。
本书面描述使用示例来公开本发明,包括最佳模式,并且还使得本领域技术人员能够实践本发明,包括制造和使用任何装置或系统以及执行任何结合的方法。本发明的可专利范围由权利要求限定,并且可以包括本领域技术人员想到的其它示例。如果这些其它示例具有与权利要求的字面语言没有差异的结构元件,或者如果它们包括与权利要求的字面语言没有实质性差异的等效结构元件,则这些其它示例旨在落入权利要求的范围内。
具体实施方式
除非另有定义,否则本文使用的所有技术和科学术语具有与本公开所属领域的普通技术人员通常理解的相同的含义。尽管在本公开的实践或测试中可以使用与本文描述的那些相似或等效的任何方法和材料,但下面描述优选的材料和方法。
如本文所用,样本是指针对单个采集/遥测通道,从信号和/或遥测模数转换器(ADC)采集的单个离散数据值。
如本文所用,测量值是指通过解调或积累来自一个采集通道的样本序列而创建的单个离散数据值。
如本文所使用,测量值是指包括来自一个采集通道的解调同相、解调异相和平均测量值的集合。
如本文所用,测量值子集是指包括在单个源LED照明期间所有采集通道的所有测量值的集合。例如,采集通道的所有测量可以包括解调同相、解调异相和平均测量。
如本文所用,测量集是指包括用于每个源LED的一个测量子集的集合。
如本文所用,采集是指获取测量集的整个过程。
如本文所用,测量序列是指一个或多个测量集的序列。
如本文所用,遥测值是指从遥测ADC的单个通道采集的单个离散数据值。
如本文所用,遥测集是指包括来自每个遥测通道的一个遥测值的集合。
图1是作为非限制性示例提供的系统100的示意图,其中使用被配置为仅检测具有发射波长(λem)的那些光子的光检测器110,从患者104的受关注区域检测具有发射波长(λem)的荧光102。通常,外源性荧光剂112响应于激发事件产生荧光102,激发事件包括但不限于:在激发波长(λex)处由光106照射、酶反应的发生、局部电势的变化以及与外源性荧光剂相关联的任何其它已知激发事件。在一个方面,系统100可以包括光源108,光源108被配置为将激发波长(λex)处的光106传送到患者104。在这方面,响应于光106的照射而产生荧光102。此外,光106的激发波长(λex)和荧光102的发射波长(λem)在光谱上不同(即,λex与λem完全不同),使得光检测器110可以被配置为通过包括任何已知的光波长分离装置来选择性地仅检测荧光102,该装置包括但不限于光学滤波器。
在一些方面,可以监测荧光102中的变化以获得关于患者的生理功能或状态的信息。作为非限制性示例,可以分析在将外源性荧光剂112引入患者104的循环血管之后测量的荧光102的时间依赖性降低,以获得关于患者104的肾功能的信息。在该非限制性示例中,可以假定荧光102的降低速率与患者104的肾脏去除外源性荧光剂112的速率成比例,由此提供肾功能的测量,包括但不限于:肾衰减时间常数(RDTC)和肾小球滤过率(GFR)。
在不局限于任何特定理论的情况下,由光检测器110检测到的荧光102的强度可受多种因素中的任何一个或多个的影响,包括但不限于:在λex处传送到患者104的光106的强度或功率、在光源108和外源性荧光剂112之间穿过患者104的介入组织114的光106的散射和吸收、由光106照射的外源性荧光剂112的浓度、以及在λem处穿过外源性荧光剂112和光检测器110之间的患者104的介入组织114的荧光102的散射和吸收。
现有的方法通常假定,在系统100获得测量的整个时段期间内,介入组织114内的光学性质基本上保持不变。结果,现有方法通常在引入外源性荧光剂112之前通过患者104的介入组织114获得初始测量,并且减去这些初始测量以校正在引入外源性荧光剂112之后获得的所有后续数据。然而,在患者104的长期监测期间,由于至少一个特性的改变,可能发生介入组织114的光学特性的改变,至少一个特性包括但不限于:光检测器110到患者104的光耦合效率;由于血管扩张、收缩或压迫引起的血容量变化而引起的诸如血红蛋白的发色团的浓度;由于氧合状态的变化导致诸如血红蛋白的发色团的光学性质的变化;和诸如与浮肿有关的变化的组织结构的变化。
介入组织114的光学性质的这些动态变化可将不确定性引入荧光102的长期测量中。作为非限制性示例,介入组织114的光学性质的改变可调制照射外源性荧光剂112的光106的强度或功率,导致由外源性荧光剂112产生的荧光102的调制,该调制可被错误地解释为外源性荧光剂112的浓度的调制。作为另一个非限制性示例,介入组织114的光学性质的改变可调制到达光检测器110的荧光102的强度或功率,该调制也可被错误地解释为外源性荧光剂112的浓度的调制。对介入组织114的光学性质的变化的潜在调制可将不确定性引入荧光102的测量,特别是与荧光102的长期监测相关联的那些测量,如上所述。
在各个方面,提供了一种校正来自外源性荧光剂的荧光的体内实时测量以消除患者组织内光学性质变化的影响的方法。包含经由与荧光测量的光路分离的光路(即漫反射),穿过患者组织的光的附加测量,增强了在对来自外源性荧光剂的荧光在患者体内进行长时间监测期间组织的光学性质变化的量化。发现即使在如下所述的存在显著扰动的情况下,在各个方面将该附加测量包括在校正方法中也显著增强了荧光测量的保真度。
下面提供用于监测体内外源性荧光剂的荧光的装置以及校正荧光测量以消除患者组织内的光的漫反射的影响的方法的详细描述。
尽管下面在非入侵性光学肾功能监测器的环境中描述了这些装置和方法,但是应当理解,通过适当的修改,本文描述的校正方法可以应用于任何兼容装置,该任何兼容装置被配置为,通过经由任何散射介质从外部源传送EM辐射和/或接收通过任何散射介质传播到外部检测器的EM辐射来执行测量。EM辐射的非限制性示例包括可见光、近IR光、IR光、UV辐射和微波辐射。散射介质可以包括能够在没有限制的情况下传播至少一个EM频率的EM辐射的任何有生命或无生命材料。散射介质的至少一部分还可以包括能够反射和/或吸收EM辐射的一个或多个子结构或化合物。散射介质的非限制性示例包括:活的或死的有机体的组织,诸如哺乳动物的皮肤;气体,诸如带有或不带有附加颗粒(诸如灰尘、液滴或固体颗粒材料)的空气;流体,诸如带有或不带有附加颗粒(诸如气泡或固体颗粒材料)的水。此外,下面描述的装置和方法不限于肾功能的检测,而是可以被修改以用于检测其它生理系统的功能,包括但不限于肝脏系统或胃肠系统。
系统描述
在各个方面,校正荧光测量以消除局部皮肤特性变化的影响的方法可以结合到任何荧光监测系统中,包括但不限于,当药剂从患者体内重新消除时通过测量注射到患者体内的外源性荧光剂的荧光变化,用于实时和光学地监测体内肾功能的系统。图2是在一个方面上用于通过患者202中注射的外源性荧光剂的荧光测量,来光学监测患者202的肾功能的系统200的框图。系统200可以包括至少一个传感器头204,该传感器头204被配置为将激发波长(λex)处的光传送到患者202的第一区域206中。系统200还被配置为检测患者202的第二区域208处的发射波长(λem)处的光,以及检测患者202的第三区域210处的激发波长(λex)和/或发射波长(λem)处的光。
系统200还可以包括可操作地耦接到至少一个传感器头204的控制器212、操作单元214和显示单元216。在各个方面,控制器212被配置为控制至少一个传感器头204的操作,如下文进一步详细描述的。控制器212还被配置为接收来自至少一个传感器头204的光的测量。控制器212还被配置为根据至少一种方法校正对应于来自外源性荧光剂的荧光的光测量,包括但不限于所公开的使用光的漫反射的测量来校正荧光测量的方法。控制器212还被配置为将从至少一个传感器头204接收的荧光测量转换成表示患者202的肾功能的汇总参数。此外,控制器212被配置为从操作单元214接收表示用户输入的至少一个信号,并生成一个或多个在显示单元216上显示的形式,包括但不限于图形用户界面(GUI)。
下面提供传感器头204和控制器212的详细描述。
A.传感器头
在各个方面,传感器头204包括壳体中的至少一个光源和至少一个光检测器。图6是在一个方面用于传感器头204的壳体600的侧视图,壳体600包括连接在一起以封闭两个光源和两个光检测器的上壳体602和下壳体604。下壳体604的底表面608还包括接触面606,该接触面606被配置为使用生物相容性粘合剂材料(包括但不限于手术粘合剂)附接到患者202的皮肤。在使用中,与接触面606相对的粘合剂材料的表面可以固定到患者202的皮肤上。在各个方面,粘合剂材料可以被配置为将光通过光源透射进入患者,并且还将荧光从患者透射到光检测器。在一个方面,粘合剂材料可以是光学透明材料。在另一方面,粘合剂材料可以由非荧光材料制成,以防止粘合剂材料产生混杂荧光。
在各种其它方面,上壳体602还可以包括一个或多个开口806,开口806被配置为提供对线缆(包括但不限于USB线缆)内部的访问,和/或为包含在壳体600内的电路生成的显示(诸如指示器LED)提供窗口。
图7是图8所示壳体600的仰视图。接触面606可以包括孔板702,孔板702包括一个或多个孔704,孔704被配置为在患者皮肤与容纳在壳体600内的光源和光检测器之间透射光。在一个方面,孔板702可以环氧化到下壳体604中,以防止液体进入壳体600的内部。在各个方面,可以选择一个或多个孔704的尺寸、布置和/或间隔以增强系统200的操作的各个方面,如下文进一步详细描述的。在另一个方面,接触面606还可以包括温度传感器开口706,该温度传感器开口706被配置为提供从患者皮肤表面到附加温度传感器228的热路径,该附加温度传感器228被配置为监测患者皮肤表面处的温度。
图8是示出壳体600内的电气部件的布置的示意图。参照图8,上壳体602和下壳体604可以用螺丝802固定在一起,并且螺丝孔和两个壳体件之间的界面可以填充有防水填充材料804,防水填充材料804包括但不限于硅氧烷材料,诸如室温硫化硅氧烷(RTV),以阻止液体进入壳体600的内部。
在一个方面,壳体600还可以包括穿过上壳体602形成的线缆开口806。线缆开口806可以被配置为提供对电缆(包括但不限于USB线缆)的内部的访问。在一个方面,线缆可以能够向光源、光检测器、指示灯以及相关联的电气装置和电路供电,如下文所述。在另一个方面,线缆还可以使得控制信号能够传送到壳体中以使得壳体600内的电气部件能够操作,并且线缆还可以使数据信号能够传送,该数据信号编码由包含在壳体600内的传感器装置的一个或多个获得的测量,传感器装置包含但不限于:第一光检测器222、第二光检测器224、任何附加光检测器(诸如第一监测器光电二极管904和第二监测器二极管906)和任何附加温度传感器228(参见图9)。在一个方面,线缆可以用吸光粘合剂(包括但不限于黑色环氧树脂)附接到线缆开口806和相邻的上壳体602,并且还可以使用防水填充材料(包括但不限于RTV)密封以防止水入侵。
在另一个方面,壳体600还可以包括穿过上壳体602形成的至少一个显示开口808。在一个方面,每个显示开口808可以被配置为由包含在壳体600内的电路生成的显示(诸如指示器LED810)提供窗口。在一个方面,每个指示器LED810可以定位在电路板812上。在一个方面,光管814可以被环氧化到每个指示器LED810上方的上壳体602内的显示开口808中。每个光管814可填充有防水填充材料,诸如RTV,用于液体进入保护。在各个方面,至少一个指示器LED810可以以预定模式照射,以使得系统200的用户能够监测传感器头204的操作状态。
图9是传感器头204的内部光学区域的特写图,在一个方面示出了壳体600内的光源218/220和光检测器222/224的布置。在一个方面,光源218/220与光检测器222/224分离,并且第一光检测器222与第二光检测器224通过固定到孔板702的传感器安装件912彼此分离。在一个方面,传感器安装件912确保来自光源218/220的光在不通过患者202的皮肤耦合的情况下不会到达光检测器222/224。第一检测井908内的第一光检测器222和第二检测井910内的第二光检测器224之间的分离,确保了由患者202的组织内的外源性荧光剂产生的荧光信号与由第一光源218引入的未滤波的激发光是可区分的。
再次参照图9,可以使用对准销914将传感器安装件912对准包含光源218/220和光检测器222/224的电路板(未示出),并且使用螺丝916将传感器安装件912保持就位。在一个方面,传感器安装件912可以使用吸光粘合剂(包括但不限于黑色环氧树脂)固定到包含光源218/220和光检测器222/224的电路板上。在这方面,电路板和传感器安装件912之间的这种耐光接合抑制了光源218/220和光检测器222/224之间的光泄漏,并且还抑制了第一光检测器222和第二光检测器224之间的光泄漏。被配置为向传感器头204的接触面606下方的皮肤透射光和从传感器头204的接触面606下方的皮肤透射光的孔704,通过结构上分离的孔板702(参见图7)形成,以提供孔704与对应光源218/220和光检测器222/224的精确对准,下文将进行更详细的描述。
在各个方面,传感器安装件912还可以为传感器头204内的任何敏感电气装置(包括但不限于光检测器222/224)提供电屏蔽。在一个方面,传感器安装件912可以由导电材料(包括但不限于:铝和铝合金)构成。在这方面,传感器安装件912可使用导电螺丝916电耦接到电路板的接地。此外,位于邻近孔板702的源井902和/或检测器井908/910内的任何玻璃窗(包括但不限于如下文所述的光学滤波器244和透明玻璃246(参见图2)),可以进一步包括导电涂层。用于传感器安装件的玻璃窗的合适的导电涂层的非限制性示例,包括导电铟锡氧化物(ITO)涂层和任何其它合适的透明和导电涂层。
在不限于任何特定理论的情况下,传感器安装件912的导电材料提供部分法拉第笼,以屏蔽电敏感检测器222/224免受由患者身体产生或传导的电噪声的影响。由传感器安装件912提供的部分法拉第笼可以在源井902和/或检测器井908/910内的玻璃窗上完成导电ITO涂层。在一个方面,玻璃窗上的导电涂层,诸如ITO涂层,充分导电以提供电屏蔽,同时保持足够的透明性以将光传输到患者202的皮肤表面和从患者202的皮肤表面传输光。在另一个方面,每个玻璃窗的ITO涂层可以使用任何已知的电接地方法接地到导电传感器安装件912,该方法包括但不限于:将玻璃涂层连接到传感器安装件912的导线,该传感器安装件912在导线两端用导电环氧树脂附接,或者使用导电环氧树脂将涂覆的玻璃直接附接到玻璃配件,诸如形成在每个源井902和/或检测器井908/910内的凸缘或框架。
在各个方面,壳体600的接触面606可以使用生物相容性和粘合剂材料610(包括但不限于透明的双面医用级粘合剂)附接患者的皮肤,如图6和图7所示。如本文所述,在由系统100使用的激发波长和发射波长处,任何粘合剂材料被选择为光学透射性。粘合剂材料610可定位在接触面606上,使得粘合剂材料覆盖孔704,但暴露温度传感器开口706以确保与患者202的皮肤充分热接触。在一个方面,传感器头204可以根据需要使用一个或多个附加的生物相容性医学紧固件装置(包括但不限于:Tegaderm绷带、医学胶带或任何其它合适的生物相容性医学紧固件装置)进一步固定到患者202。
在一个方面,接触面606可位于传感器头204的前缘附近,以提供接触面606在患者皮肤的选定区域上的准确定位。在另一个方面,孔704可朝向接触面606的中心定位,以减少环境光进入。在不限于任何特定理论的情况下,由于接触面606与患者皮肤的不完全粘合和/或由于环境光穿过刚好位于接触面606的覆盖面积外部的患者暴露的皮肤传播到孔704中,环境光可以进入孔704中的一个或多个。
再次参照图6,传感器头204的底表面608远离接触面606的平面弯曲,以使得传感器头204能够附接到不同的主体类型和位置。为了将传感器头204附接至相对平坦或凹入的表面,底表面608与患者202的皮肤表面之间的任何间隙612可填充有生物相容性泡沫以确保与患者202的一致接触。
i)光源
在各个方面,每个传感器头204包括第一光源218和第二光源220,第一光源218和第二光源220被配置为将光传送到患者202的第一区域206。第一光源218被配置为以激发波长传送光,以及第二光源220被配置为以发射波长传送光。在一个方面,激发波长可以选择落在外源性荧光剂表现出相对高吸收的光谱范围内。在另一个方面,发射波长可以选择落在外源性荧光剂表现出相对高发射的光谱范围内。可以选择外源性荧光剂以相对于患者202的组织内的其它发色团来增强对比度,发色团包括但不限于红细胞内的血红蛋白和/或黑素细胞内的黑色素。在各个方面,可以选择外源性荧光剂以在使用期间在患者202的组织内的诸如血红蛋白的其它发色团的吸收变化较低的光谱范围内进行测量。
在不限于任何特定理论的情况下,血红蛋白(Hb)是患者202的组织中可见光的吸收剂,并且如果Hb吸收剂在系统200的测量时段内变化,则有可能干扰外源性荧光剂的荧光测量。因为血红蛋白(Hb)能够在几乎所有包含循环血管的组织内进行气体交换,所以由于血红蛋白浓度的波动,几乎所有组织都容易受到系统200的荧光测量的干扰。在大多数组织中,外部施加的压力可能导致血液汇集,这可能表现为皮肤表面测量到的荧光的明显衰减。皮肤表面附近的血管的周期性打开和关闭(“血管运动”)也可能引起血红蛋白浓度的波动,这可能给系统200对外源性荧光剂的荧光测量引入额外的噪声。此外,在一些患者202中,诸如那些患有肺部疾病的患者,也可以观察到Hb氧合状态的变化,由于脱氧血红蛋白(Hb)和氧合血红蛋白(HbO2)的吸收光谱的差异,导致背景皮肤吸收的额外潜在变化,如图3所示。
在一个方面,可以选择用于外源性荧光剂的激发波长和发射波长以与一对HbO2/Hb等吸光点一致,本文中定义的每一个等吸光点是以HbO2和Hb的光吸收度近似相等为特征的波长。在不限于任何特定理论的情况下,只要在系统200对荧光测量期间HbO2和Hb的组合浓度保持相对稳定,则在每个等吸光波长处进行的荧光测量对由于血红蛋白的氧合变化而引起的变化不太敏感。Hb/HbO2等吸光波长的非限制性示例包括:约390nm、约422nm、约452nm、约500nm、约530nm、约538nm、约545nm、约570nm、约584nm、约617nm、约621nm、约653nm和约805nm。
在各个方面,可以基于系统200的所选外源性荧光剂的吸收波长和发射波长来选择激发波长和发射波长。在一个方面,激发波长可以是HbO2/Hb等吸光波长,并且同时可以是外源性荧光剂的高吸收度光谱范围内的波长。在另一个方面,发射波长可以是HbO2/Hb等吸光波长,并且同时可以是由外源性荧光剂发射的光谱范围内的波长。表3提供了200nm至约1000nm光谱范围内的HbO2/Hb等吸光波长的汇总。图4是用于识别表1的HbO2/Hb等吸光波长的吸收光谱的曲线图。
表1.HbO2/Hb等吸光波长λ=200至1000nm
Figure BDA0003703466030000151
作为说明性示例,图3是在一个方面概括HbO2和Hb的吸收光谱,以及外源性荧光剂MB-102的频率光谱的吸收光谱和发射光谱的曲线图。蓝色LED光源和绿色LED光源的发射光谱也被示出叠加在图3的其它光谱上。在该方面,系统200可以包括蓝色LED作为第一光源218,并且系统200的激发波长可以是约450nm的等吸光波长。如表1所列和图3所示,Hb吸收度光谱在约420nm至约450nm的等吸光波长处明显倾斜(参见表1的第3列和第4列),表明HbO2和Hb在约450nm的等吸光波长处的相对吸收度对激发波长的微小变化敏感。然而,在高于约500nm的波长处,HbO2/Hb光谱不那么陡峭的倾斜,并且更宽带宽的光源(包括但不限于具有带通滤波器的LED)可足以用作第一光源218。
在另一个方面,可以选择激发波长以增强患者202的组织内的外源性荧光剂和发色团之间的光吸收对比度。作为非限制性示例,如图3所示,在452nm等吸光波长下,MB-102的光吸收比HbO2和Hb的光吸收高三倍以上。在不限于任何特定理论的情况下,相对于HbO2和Hb,MB-102将吸收在约450nm波长处照射患者202的组织的更高比例的光,从而增强MB-102的吸收效率并降低激发波长处的光的强度,激发波长处的光强度是引发可检测荧光信号所需的。
在各个方面,还可以选择第二等吸光波长作为系统200的发射波长。作为非限制性示例,图3示出了MB-102外源造影剂的发射光谱,其以在约550nm的波长处的发射峰为特征。在该非限制性示例中,570nm的等吸光波长可以被选择为要由第一检测器222/224和第二检测器222/224检测的发射波长。在各种其它方面,系统200的发射波长可被选择为落在患者202的组织内的发色团的相对低吸收度所表征的光谱范围内。在不限于任何特定理论的情况下,在所选择的发射波长处发色团的低吸收度可以减少由外源性荧光剂发射的光的损耗并提高荧光检测的效率。
在各个方面,第一光源218和第二光源220可以是被配置为以激发波长和发射波长传送光的任何光源。通常,第一光源218以足以穿透患者202的组织的强度将光传送到外源性荧光剂,其中剩余足够的强度以诱导外源性荧光剂在发射波长处发射光。通常,第一光源218以足以穿透患者202的组织的强度将光传送到外源性荧光剂,其中在散射和/或吸收之后剩余的强度足以由外源性荧光剂诱导发射波长处的荧光。然而,由第一光源218传送的光的强度被限制为上限值,以防止皮肤中的外源性荧光剂和/或内源性发色团(“自荧光”)的不利影响,诸如组织燃烧、细胞损伤和/或光漂白。
类似地,第二光源220以外源性荧光剂的发射波长以一强度传送光,该强度被配置为提供足够的能量以散射和吸收的方式传播通过患者的第一区域206并且以足够的剩余强度传播出第二区域208和第三区域210,第二区域208和第三区域210分别用于第一光检测器222和第二光检测器224的检测。与第一光源218一样,由第二光源220产生的光的强度被限制为上限值,以防止诸如前面描述的组织损伤或光漂白的不利影响。
在各个方面,第一光源218和第二光源220可以是适于与荧光医学成像系统和装置一起使用的任何光源。合适的光源的非限制性示例包括:LED、二极管激光器、脉冲激光器、连续摆动激光器、氙弧灯或具有激发滤波器的汞蒸气灯、激光器和超连续光源。在一个方面,第一光源218和/或第二光源220可以产生窄光谱带宽的光,该窄光谱带宽适合于使用本文所述的方法监测外源性荧光剂的浓度。在另一方面,第一光源218和第二光源220可以产生相对宽的光谱带宽的光。
在一个方面,对由系统200的第一光源218和第二光源220产生的光的强度的选择可以受到至少几个因素中的任意一个或多个的影响,包括但不限于根据诸如ANSI标准Z136.1的可应用监管标准的用于皮肤暴露于激光束的最大允许曝光(MPE)。在另一方面,可以选择用于系统200的光强度以减少患者202的组织内的外源性荧光源和/或其他发色团的光漂白的可能性,其包括但不限于:胶原、角蛋白、弹性蛋白、红细胞内的血红蛋白和/或黑素细胞内的黑色素。在又一方面,可以选择用于系统200的光强度,以便从患者202的组织内和第一光检测器222和/或第二光检测器内的外源性荧光源引发可检测的荧光信号。在又一方面,可以选择用于系统200的光强度以提供适当高的光能,同时降低功耗,抑制第一光源218和第二光源220的加热/过热,和/或减少患者皮肤暴露于来自第一光检测器222和/或第二光检测器的光的时间。
在各个方面,可以调制第一光源218和第二光源220的强度以补偿至少几个因素中的任何一个或多个,该至少几个因素包括但不限于:患者202体内发色团浓度的个体差异,诸如皮肤色素沉着的变化。在各种其它方面,可以调制光检测器的检测增益以类似地补偿皮肤特性的个体差异的变化。在一个方面,皮肤色素沉着的变化可以在两个不同的个体患者202之间,或者在同一患者202上的两个不同位置之间。在一个方面,光调制可以补偿穿过患者202的组织的光所采取的光路中的变化。光路可以由于至少几个因素中的任何一个或多个而变化,该至少几个因素包括但不限于:系统200的光源和光检测器之间的分离距离的变化;传感器头204到患者202的皮肤的牢固附接的变化;由于光源暴露于诸如热度和湿度的环境因素导致的光源的光输出的变化;由于光检测器暴露于诸如热度和湿度的环境因素导致的光检测器的灵敏度的变化;光源对照射的持续时间的调制,以及任何其他相关的可操作参数。
在各个方面,第一光源218和第二光源220可以被配置为根据上面描述的任何一个或多个因素来调制根据需要产生的光的强度。在一个方面,如果第一光源218和第二光源220是被配置为根据需要连续改变输出通量的装置,例如LED光源,则可以使用包括但不限于调制供应给第一光源218和/或第二光源220的电势、电流和/或功率的方法来电子地调制光的强度。在另一方面,可以使用光学方法来调制光的强度,该光学方法包括但不限于:使用包括但不限于虹膜、快门和/或一个或多个滤波器的光学装置来部分地或完全地遮挡离开第一光源218和第二光源220的光;使用包括但不限于透镜、反射镜和/或棱镜的光学装置,使离开第一光源218和第二光源220的光的路径偏离患者的第一区域206。
在各个方面,由第一光源218和第二光源220产生的光的强度可以经由激光通量的控制来调制,激光通量在本文被定义为所产生的光束内的能量速率。在一个方面,激光通量可限于由安全标准限定的范围,该安全标准包括但不限于用于暴露于诸如ANSI Z136.1的激光能量的ANSI标准。在不限于任何特定理论的情况下,传送到患者202的最大光通量可受多种因素的影响,该多种因素包括但不限于所传送的光的波长和暴露于光的持续时间。在各个方面,最大光通量在对于以小于约302nm的波长传送的光的约0.003J/cm2至对于以约1500nm至约1800nm的波长范围内传送的光的约1J/cm2的范围内,持续时间可达约10秒。对于在约400nm至约1400nm的波长范围内传送的光(可见光/NIR光),最大通量可为约0.6J/cm2,持续时间可达约10秒,并且约0.2J/cm2,持续时间在约10秒至约30000秒范围内。对于延长曝光,根据ANSI标准,传送的光被限制为最大功率密度(W/cm2):可见光/NIR光被限制为0.2W/cm2,并且远IR光被限制为约0.1W/cm2。在不限于特定理论的情况下,根据ANSI标准,通常不推荐对以UV波长传送的光进行延长曝光。
在另一个方面,可以调制由第一光源218产生的激发波长处的光通量,以便提供足够的能量以在没有光漂白的情况下,通过患者202的第一区域206中的皮肤传播到外源性荧光剂,并且以足够的能量照射外源性荧光剂,以在第一光检测器222和/或第二光检测器224处诱导可检测的荧光。在另一个方面,可以调制由第二光源220产生的发射波长处的光通量,以便在没有光漂白的情况下提供足够的能量来传播通过患者202的第一区域206中的皮肤以及通过第二区域208和第三区域210中的皮肤,以分别在第一光检测器222和第二光检测器224处作为可检测光出现。作为非限制性示例,光源在450nm或500nm处产生的光通量可分别限制为1.5mW/cm2和5mW/cm2,以防止光漂白。
在各个方面,在没有如本文上述限制的情况下,由第一光源218和第二光源220产生的光通量可由任何合适的系统和/或装置调制。在系统200的操作期间该调制可以在启用一次,并且因此,由第一光源218和第二光源220中的每个产生的光通量可以在系统200的整个操作期间相对恒定。在另一个方面,在系统200的操作期间该光调制可以在离散时间启用,或者在系统200的操作期间该光调制可以连续启用。
在一个方面,当系统200被配置为工程模式时,可以经由如上所述的任何电源设置和/或光学装置设置的手动调节来调制光通量。在另一方面,光通量可以经由在控制器212的光源控制单元中编码的一个或多个控制方案自动调制,如下文所述。在该方面,调制程度可至少部分地基于由设置在系统200的传感器头204中的各种传感器获得的反馈测量来指定,传感器包括但不限于附加的光检测器226和温度传感器228,如下面更详细地描述的。
在各个方面,由第一光源218和第二光源220产生的光进一步以脉冲宽度为特征,本文定义为产生的光的持续时间。虽然脉冲宽度通常用于表征以离散脉冲(诸如脉冲激光器)产生光的光源的性能,但是应当理解,本文所使用的术语“光脉冲”是指由单个光源以单个波长产生的任何离散光脉冲,以能够通过系统200获取单个荧光测量。类似地,本文所使用的术语“脉冲宽度”是指由单个光源产生的单个光脉冲的持续时间。脉冲宽度通常基于至少几个因素中的一个或多个来选择,至少几个因素包括但不限于:在没有光漂白的情况下患者202的组织内的外源性荧光剂或其它发色团,传送足够的光能以从外源性荧光剂引发可检测的荧光;对于向患者传送的光,遵守诸如ANSI标准的安全标准;以足够高的速率传送光,以能够以与实时监测肾功能兼容的速率采集数据;系统200的所选光源、光检测器和其他装置的性能能力;光源、光检测器和其他与产生和检测光能有关的装置的使用寿命的保存;以及其他相关因素。
在各个方面,由第一光源218和第二光源220产生的光的脉冲宽度可以被独立地选择为从约0.0001秒到约0.5秒范围的持续时间。在各种其他方面,由第一光源218和第二光源220产生的光的脉冲宽度可以被独立地选择为从约0.0001秒到约0.001秒范围的持续时间,从约0.0005秒到约0.005秒,从约0.001秒到约0.010秒,从约0.005秒到约0.05秒,从约0.01秒到约0.1秒,从约0.05秒到约0.15秒,从约0.1秒到约0.2秒,从约0.15秒到约0.25秒,从约0.2秒到约0.3秒,从约0.25秒到约0.35秒,从约0.3秒到约0.4秒,从约0.35秒到约0.45秒,以及从约0.4秒到约0.5秒。在一个方面,由第一光源218和第二光源220产生的光的脉冲宽度都是约0.1秒,如图5中示意性示出的。
在另一个方面,由第一光源218和第二光源220产生的光还可以由脉冲速率来表征,该脉冲速率在本文被定义为每秒由光源产生的脉冲数。虽然脉冲速率通常用于表征产生离散脉冲光的光源(诸如脉冲激光器)的性能,但是应当理解,本文所用的术语“脉冲速率”是指单个光源以单个波长产生离散光脉冲的速率,该速率与系统200采集荧光测量相关联。在各个方面,可以基于至少几个因素中的一个或多个来选择脉冲速率,至少几个因素包括但不限于:对于向患者传送光,符合诸如ANSI标准的安全标准;系统200的所选光源、光检测器和其他装置的性能能力;传送光的速率与足够快的用于实时监测肾功能的数据采集速率兼容;光源、光检测器和与产生和检测光能有关的其他装置的使用寿命的保存;以及任何其他有关因素。
在各个方面,光源被配置为在单个位置(诸如第一区域206)处将光传送到患者202的组织中,如图2示意性示出的。在一个方面,将激发波长和发射波长两者的光传送到相同的第一区域206使得两个光脉冲能够共享在第一区域206处的入口点与第二区域208和第三区域210处的检测点之间穿过患者202的组织的光路的至少一部分。如下文详细讨论的,光路的这种布置增强了由系统200产生的数据的质量。
在一个方面,第一光源218和第二光源220可操作地耦接到光传送的公共装置。在一个方面(未示出),第一光源218和第二光源220的每一个可以分别可操作地耦接到第一光纤和第二光纤,并且第一光纤和第二光纤可以连接到第三光纤,第三光纤被配置为将来自第一光纤和/或第二光纤的光引导到患者202的第一区域206中。在另一方面,第一光源218和第二光源220可操作地耦接到公共光纤或其它光学组件,公共光纤或其它光学组件被配置为将来自第一光源218和/或第二光源220的光引导到患者202的第一区域206中。在该方面,由第一光源218和第二光源220产生的光可使用包括但不限于二向色镜或旋转镜的可调节光学装置,以交替模式被引导到公共光纤或其它光学组件中。
在一个方面,系统200可以包括传感器头204,传感器头204设置有传感器安装件912,传感器安装件912配置有一个或多个井,光源218/220和光检测器222/224可以预定布置附接在该一个或多个井中。在一个方面,如图9和图10所示,第一光源218和第二光源220可以位于定位在传感器头204内的传感器安装件912的源井902内(参见图9)。在一个方面,源井902可包含以激发波长产生光的第一LED光源218和以发射波长产生光的第二LED光源220,该第一LED光源218和第二LED光源220可操作地耦接到通过孔板702形成的单个光传送孔1002(参见图10),该单个光传送孔确保两个波长的光(即激发和发射)在大致相同的位置(包括但不限于第一区域206)进入患者202的皮肤,如图2中示意性地示出的。在一个方面,源井902还包含第一监控器光电二极管904和第二监控器光电二极管906,其用于校正来自LED光源的输出功率的变化,如下面进一步详细描述的。
在一个方面,仅由LED光源产生的光能的一部分经由单个光传送孔1002传送到患者202的皮肤。在一个方面,患者202的皮肤接收由LED光源产生的光能的约1%。在各种其它方面,患者202的皮肤接收由LED光源产生的光能的约2%、约3%、约4%、约5%、约7.5%、约10%、约20%和约50%。在不限于任何特定理论的情况下,可以通过结合被配置为将来自每个LED光源的光聚焦和/或引导到光传送孔1002的附加光学元件来增加由传送到患者202的皮肤的LED光源产生的光的一部分。在另一方面,可以使用漫射器来混合光源的输出,使得在患者皮肤的表面处使光能被均匀呈现。
ii)光检测器
再次参照图2,在各个方面系统200还包括第一光检测器222和第二光检测器224。在一个方面,第一光检测器222被配置为测量在第二区域208处从患者202的组织发射的未滤波光,并且第二光检测器224被配置为测量在第三区域210处从患者202的组织发射的滤波的光。在这方面,第二光检测器224还包括光学滤波器244,光学滤波器244被配置为阻挡激发波长处的光。结果,第一光检测器222被配置为测量在激发波长和发射波长两者处接收的光,并且第二光检测器224被配置为检测仅在发射波长处接收的光。结合患者202的组织仅以激发波长的光和仅以发射波长的光以交替系类照射(参见图5),来自第一光检测器222和第二光检测器224的测量可如下文所述进行分析,以测量外源性荧光剂的荧光,并根据下文所述的校正方法通过去除光的漫反射的影响来校正荧光测量。
在各个方面,由第一光检测器222和第二光检测器224分别检测来自患者202的组织内的第二区域208和第三区域210的光,该第二区域208和第三区域210各自与第一区域206隔开标称距离,由第一光源218和第二光源220产生的光被传送到第一区域206。可以选择该标称间隔距离以平衡可能影响由光检测器检测的数据质量的两个或更多个影响。在不限于任何特定理论的情况下,随着标称间隔距离的增加,来自光检测器的总检测信号可能由于沿着光源和光检测器之间的较长光路的光散射而减少。这种影响可以通过发射波长的选择来减轻,当标称间隔距离增加时,这可以导致相对于与激发波长处检测到的光相关联的信号,检测到的荧光信号(即发射波长处的光)不太明显的减少。标称间隔距离越长,由于组织光学性质的改变,导致对信号变化的灵敏度越高。
在一个方面,标称间隔距离可在从0mm(即光源和光检测器的共定位)到约10mm的范围内。在各种其它方面,标称间隔距离可在从约1mm至约8mm、从约2mm至约6mm和从约3mm至约5mm的范围内。在各种附加方面,标称间隔距离可以是0mm、约1mm、约2mm、约3mm、约4mm、约5mm、约6mm、约8mm和约10mm。在一个方面,标称间隔距离可以是约4mm,以平衡信号的对数下降和背景信号相对于来自外源性荧光剂的信号的减小的尺寸的这些竞争效应。
再次参照图9,第一光检测器222可定位在传感器安装件912的第一检测井908内,以及第二光检测器224可定位在传感器头204内的传感器安装件912的第二检测井910内。第一光检测器222和第二光检测器224可以分别通过第一检测器孔1004和第二检测器孔1006从患者202的组织接收光。在一个方面,第一检测器孔1004、第二检测器孔1006和光传送孔1002通过本文以上公开的标称间隔距离彼此相互分离,标称间隔距离包括但不限于4mm的标称间隔距离。在一个方面,传感器安装件912的第一检测井908、第二检测井910和光源井902可以彼此光学隔离,以确保来自光源218/220的光在不通过患者202的皮肤耦合的情况下不会到达光检测器222/224。如下文详细描述的,两个检测井908/910之间的分离确保来自外源性荧光剂的检测到的荧光信号可与未滤波的激发光区分开。
在一个方面,孔板702的三个孔704(参见图7)是圆形的,具有从约0.5mm至约5mm的直径范围。在各种其它方面,孔的直径可在约0.5mm至约1.5mm、约1mm至约2mm、约1.5mm至约2.5mm、约2mm至约3mm、约2.5mm至约3.5mm、约3mm至约4mm、约3.5mm至约4.5mm和约4mm至约5mm的范围内。
在一个方面,孔板702的三个孔704是直径约为1mm的圆形孔。由于随着在传感器头204的皮肤界面处与光源的间隔距离的增加,信号的对数下降,孔的这种有限宽度可导致小于标称间隔距离的有效源-检测器分离。
在各个方面,系统200的光检测器222/224可以是任何合适的光检测装置,但不限于此。合适的光检测装置的非限制性示例包括:光电发射检测器,诸如光电倍增管、光电管和微通道板检测器;光电检测器,诸如反向偏置的LED以用作光电二极管、光电电阻器、光电二极管、光电晶体管;和任何其它合适的光检测装置。在一方面,光检测器222/224足够灵敏,以检测由患者202的组织内的外源性荧光剂发射的荧光,患者202的组织包括表皮中约1%至约40%范围的黑色素和约0.5%至约2%范围的皮肤体积的血液体积。在一方面,光检测器222/224可以是硅光电倍增管(SPM)装置。
在一方面,第一光检测器222可以被配置为检测激发频率和发射频率两者处的光,以及第二光检测器224可以被配置为仅检测发射频率处的光。在一个方面,由于第二光检测器224的传感器元件的设计和材料,第二光检测器224可以仅响应发射波长的光。在另一个方面,第二光检测器224可以响应于更宽范围的光波长,但是可以位于光学滤波器的下游,光学滤波器被配置为仅使具有发射波长的入射光的部分通过,并且还被配置为阻挡在发射波长之外的波长的光的通过。
可以选择任何合适的光学滤波器与第二光检测器224一起使用,以选择性地检测发射波长处的光。合适的光学滤波器的非限制性示例包括吸收滤波器和干涉/二向色滤波器。在不限于任何特定理论的情况下,吸收滤波器的性能不随入射光的角度显著变化,然而干涉/二向色滤波器的性能对入射光的角度敏感,并且可能需要额外的准直光学器件来有效地过滤代表从患者202的皮肤发射的光的Lambertian光分布。
在一个方面,第二光检测器224可以位于吸收性长通滤波器的下游,该吸收性长通滤波器被配置为将大于预定波长的光传递到第二光检测器224。作为非限制性示例,第二光检测器224可以位于被配置为使波长大于约530nm的光通过的长通OG530滤波器的下游。合适的滤波器的其它非限制性示例包括Hoya O54滤波器和Hoya CM500滤波器。
在各个方面,被配置为吸收激发波长光的吸收滤波器244可以位于第二光检测器224和第二检测器孔1006之间的第二检测井910内。在一方面,吸收滤波器244可以由OG530肖特玻璃构成。可以选择吸收滤波器244的厚度,以能够使光密度足以将激发光过滤大约三个数量级的幅度。在一个方面,吸收滤波器244的厚度可在约1mm至约10mm的范围内。在各种其它方面,吸收滤波器244的厚度可在约1mm至约8mm、约2mm至约6mm和约3mm至约5mm的范围内。在各种附加方面,吸收滤波器244的厚度可以是约1mm、约2mm、约3mm、约4mm、约5mm、约6mm、约7mm、约8mm、约9mm和约10mm。在一个方面,吸收滤波器244是由OG530肖特玻璃构造的3-mm厚的滤波器。
在另一个方面,可以在光源井902内设置光学漫射器。在该方面,光学漫射器能够混合从第一光源218/220和第二光源218/220进入光源井902的光。通过在照射患者202的第一区域206之前使用光学漫射器混合来自第一光源218/220和第二光源218/220的光,相对于由未混合的光所采取的相应光路,由患者的组织的发射波长光和激发波长光所采取的光路的相似性被增强,从而减少潜在的变化源。
在一个方面,被配置为使激发波长和发射波长两者的光通过的透明材料可以位于第一光检测器222和第一检测器孔1004之间的第一检测井908内。在这方面,透明材料可以是具有与吸收滤波器244的材料相似的光学性质的任何材料,光学性质包括但不限于厚度和折射率。在一个方面,第一检测井908内的透明材料可以是与吸收滤波器244相同厚度的熔融石英玻璃。
作为非限制性示例,在图3中提供了OG 530滤波器的透射光谱。如图3所示,OG 530滤波器的透射光谱与MB-102外源性荧光剂的发射光谱和用作第二光源220的绿色LED的发射光谱(发射波长)重叠。此外,OG 530滤波器的透射光谱不包括用作第一光源218的蓝色LED的发射光谱和MB-102外源性荧光剂的吸收光谱(激发波长)。
在一个方面,诸如玻璃246和吸收滤波器244的透明材料可以分别固定到在第一检测井908和第二检测井910内形成的凸缘。诸如玻璃246和光学滤波器244的透明材料,可以使用不透明和/或吸光粘合剂固定就位,该粘合剂包括但不限于黑色环氧树脂,以确保通过第一检测器孔1004和第二检测器孔1006接收的所有光在被第一和第二光检测器222/224检测之前穿过光学滤波器244或玻璃246。在另一个方面,滤波器244或玻璃246的侧面可以涂成黑色,具有吸光涂层,该吸光涂层包括但不限于印度油墨,以确保光在没有穿过光学滤波器244或玻璃246的情况下不会到达第一和第二光检测器222/224。
在一个方面,由于离开患者皮肤的光的角度的Lambertian分布,检测井908/910的高度,结合检测器孔1004/1006的直径,可以限制从患者皮肤的第二区域208和第三区域210发射的到达光检测器222/224的有效区域的光的比例。在一个方面,由光检测器222/224接收的从患者皮肤的第二区域208和第三区域210发射的光的比例可在约5%至约90%的范围内。在各种其它方面,光的比例可在约5%至约15%、约10%至约20%、约15%至约25%、约20%至约30%、约25%至约35%、约30%至约40%、约35%至约45%、约40%至约60%、约50%至约70%和约60%至约90%的范围内。
在一个方面,对于图6和图7所示的具有直径为1mm的孔1002/1004/1006的传感器头204,从患者皮肤表面发射的光的大约10%可以到达待检测的光检测器222/224的有效区域。在各个方面,传感器头204还可以包括附加光学元件,附加光学元件包括但不限于透镜和/或棱镜,透镜和/或棱镜被配置为补偿光角的Lambertian分布,以便增强从患者皮肤发射的被引导到光检测器222/224的有效区域的光的比例。
iii)温度传感器
参照图2,传感器头204还可以包括一个或多个附加温度传感器228,附加温度传感器228被配置为监测传感器头204内和传感器头204附近的各个区域的温度。可由一个或多个附加温度传感器228监测其温度的合适区域的非限制性示例包括:患者202的皮肤表面处的温度;第一光源218和/或第二光源220附近的温度;传感器头204外部的环境温度;传感器头204的壳体600的温度;以及任何其他适当的区域。在一个方面,附加温度传感器228可以被配置为监测温度敏感电气部件附近的温度,温度敏感电气部件包括但不限于:光源218/220,诸如LED;光检测器222/224,诸如硅光电倍增管(SPM);以及传感器头204的任何其他温度敏感电气部件。在一些方面,由一个或多个附加温度传感器228测量的一个或多个温度,可用作下文所述的用于系统200的一个或多个温度敏感装置的控制方法中的反馈。
作为非限制性示例,温度测量可用于控制由用作第一或第二光源218/220的LED产生的光能的量。在该示例中,可以在控制方案中使用由第二温度传感器1108(参见图11)测量的LED温度,来调制提供给LED光源的电量,以补偿LED温度对LED光输出的影响。在另一个方面,附加温度传感器228可以监测LED光源218/220的温度,以监测和/或补偿LED的温度变化,以及监测和/或补偿光学滤波器的温度依赖性透射,以保持相对恒定的输出波长。
作为另一个非限制性示例,附加温度传感器228可以以热敏电阻器816(参见图8)的形式包括在传感器头204中,该热敏电阻器816被配置为监测传感器头204的接触面606附近的壳体600的温度。参照图7、图8和图9,在一个方面,热敏电阻器816可以环氧化到孔板702中的温度传感器开口706中。在该方面,电路板(未示出)与下壳体604之间的空间918可填充有导热油灰以确保良好的导热和散热。
在该示例中,测量的壳体温度可用于调制传感器头204的光输出,以防止在使用期间患者202的皮肤过热。在另一个方面,附加温度传感器228可以监测LED光源218/220的温度,以监测和/或补偿LED的温度变化,从而使得LED光源218/220能够保持相对恒定的输出波长。
在另一个方面,如果检测到过温状况,则由一个或多个附加温度传感器228测量的温度可以通过禁用包括光源218/220和/或光检测器222/224的一个或多个电气装置来保证受试者安全。在一个方面,如果由热敏电阻器816检测到的壳体温度大于约40℃,则可以指示过温状况。在各种其它方面,可以检测到壳体温度大于约40.5℃或大于约41.0℃的过温状况。
B.控制器
再次参照图2,在各个方面,系统200可以包括控制器212,控制器212被配置为以协调的方式操作光源218/200和光检测器222/224,以获得用于获取患者202的组织内的外源性荧光剂的荧光的多个测量值,以校正荧光数据以去除下文所述的光的漫反射的影响,并且以将荧光测量值转换成表示患者202的肾功能的参数。图11是电子电路1100的示意图,在一方面其示出了能够操作系统200的各种电气部件的布置。在一个方面,控制器212可以是进一步包括操作单元214和显示单元216的计算装置。
i)光源控制单元
再次参照图2,控制器212可以包括光源控制单元230,光源控制单元230被配置为操作第一光源218和第二光源220,以分别以协作的方式产生激发波长和发射波长的光,以产生重复脉冲序列,如图5示意性所示。在各个方面,光源控制单元230可产生多个光控制信号,该多个光控制信号编码一个或多个光控制参数,该光控制参数包括但不限于:每个光源的激活或停用;每个光源的激活和停用的相对定时,以使能光脉冲宽度、脉冲重复率、传送到光源的电功率或与光脉冲通量或光脉冲功率相关联的其它参数;控制光源的光输出的其它特定光源参数;以及任何其他相关的光控制参数。在一个方面,光源控制单元230可以接收一个或多个反馈测量值,该反馈测量值用于调制多个控制信号以补偿光源的性能变化,从而保持来自该光源的光的相对稳定的输出。光源控制单元230使用的反馈测量的非限制性示例包括:分别由第一监测器光电二极管904和第二监测器光电二极管906在源井902内测量的光源218/220的光输出、光源218/220的温度、以及与监测光源218/220的性能相关的任何其它反馈测量。
作为非限制性示例,光源控制单元230可以被配置为操作LED光源218/220。在该示例中,LED光源218/220的光输出可以通过控制提供给每个LED的电流幅度来控制。在一个方面,光源控制单元230可以包括至少一个波形发生器1122,该波形发生器1122包括但不限于具有16位DAC1124的现场可编程门阵列FPGA,该16位DAC1124可操作地耦接到LED电流源1126,如图11所示。在一个方面,由包括但不限于方波的至少一个波形发生器1122生成的波形,可以控制来自LED电流源1126的输出。在一个方面,提供给LED光源218/220的电流幅度可以基于由波形发生器/FPGA 1122提供的波形信号来调节。
参照图5,在一个方面,每个光脉冲序列500包括发射波长光脉冲502和激发波长光脉冲504,两者都由第一和第二LED光源218/220产生的多个方波506构成。参照图11,由波形发生器1122产生的方波被LED电流源1126接收。由LED电流源产生的电流包括与由波形发生器1122产生的波形相似的方波。在不限于任何特定理论的情况下,由于LED光源218/220产生的光的强度与所接收的电流的幅度成比例,所以LED光源218/220产生的光还包括如图5所示的方波。在另一个方面,在下面详细讨论中,由波形发生器1122产生的方波也可由采集单元234以同步检测方法使用,以减少各种混杂因素的影响,该混杂因素包括但不限于在分别由第一光源218/220和第二光源218/220以发射波长和激发波长照射患者组织期间,由光检测器222/224产生的检测器信号对环境光的检测。
在各种其它方面,可以不受限制地等效地采用各种交替LED脉冲调制方案。在一个方面,激发脉冲和发射脉冲以交替的系列传送,在每个脉冲之后间隔有暗周期。在另一方面,第一和第二LED光源218/220各自以50%占空比但以不同的调制频率被调制,从而允许与激发脉冲和发射脉冲相关联的信号通过频率滤波来分离。
在不限于任何特定理论的情况下,传送到患者皮肤的总体光学功率可以受到至少两个因素的限制:外源性荧光剂和/或内源发色团的光漂白,以及由系统200照射的患者组织的过热。在一个方面,基于包括但不限于ANSI/IESNA RP-27.1-05的安全标准,组织加热可以对可传送到皮肤的光学功率施加约9mW的绝对限制。在另一个方面,与内源性发色团(包括但不限于胶原、血红蛋白和黑色素)相关联的皮肤自荧光的光漂白,可向测量的荧光提供背景信号,只要不发生发色团的自漂白,该背景信号就保持相对恒定。可以从原始荧光信号中减去该恒定的自荧光背景,但是如果自荧光由于光漂白而随时间变化,则该背景校正可能干扰肾衰减时间常数(RDTC)的动力学计算。在一个方面,第一光源218和/或第二光源220的光输出功率可以被限制为低于与发色团光漂白相关联的功率阈值的水平。
再次参照图9,在各个方面光源218/220的光输出可以使用监测器光电二极管904/906来测量。因为到达这些监测器光电二极管904/906的光强度通常比通过患者皮肤到达光检测器222/224的光强度强得多,所以可以使用包括但不限于PIN光电二极管的不太灵敏的光检测装置来监测光源218/220的输出。
在各个方面,系统200可以被配置为在人类群体中观察到的皮肤色调的范围内操作。在不限于任何特定理论的情况下,不同患者202之间的皮肤色调的变化可导致检测到的荧光信号在约三个数量级幅度以上的范围内的变化。此外,由于随着时间的推移试剂在肾中的消除,每个患者202内的外源性荧光剂的浓度的改变,可以在大约两个数量级幅度的范围内变化。在各个方面,系统200可以被配置为在超过五个数量级幅度的强度范围上检测来自内源性荧光剂的荧光。在这些各个方面,系统200可以通过调制至少一个操作参数来配置,该操作参数包括但不限于:光源218/220的光输出的幅度和对应于检测器增益的光检测器222/224的灵敏度。
在一个方面,由光源218/220输出的光的强度可以经由操作单元214由用户手动设置。在另一方面,光源控制单元230可以被配置为自动地调制光源218/220产生的光的强度。在一个方面,光源控制单元230可以被配置为将LED光源218/220产生的光强度控制在从0(关断)到1(最大功率)的归一化输出强度的范围内。在一个方面,光源218/220的强度可以由光源控制单元230与由光检测器控制单元232设置的光检测器222/224的检测器增益协调地设置,如下文所述。
在一方面,光源控制单元230可以使用在数据采集初始化之后、但在注入外源性荧光剂之前由系统200获得的前10个检测周期期间获得的信号,以自动调节LED光源218/220产生的光强度,以及光检测器222/224的增益。在该示例中,可以在LED光源218/220被设置为最大LED强度的约10%(对应于归一化输出强度0.1)并且光检测器222/224被设置为低增益的情况下获得初始检测周期。基于光检测器222/224在一个检测周期中的激发波长和发射波长处接收的光的检测强度,可以调制相应的LED强度,以使得光检测器222/224产生的模拟信号能够对应于在低检测器增益设置下的每个检测器模数转换器(ADC)的全范围的大约1/4。如果光检测器222/224产生的信号响应于第二LED光源220在发射波长处产生的光不一致,则可以使用较大的信号来调制第二LED光源220的功率设置。如果上述方法导致调制到高于最大强度的LED强度设置(对应于归一化输出强度0.1),则LED强度设置被设置为最大设置。在不限于任何特定理论的情况下,选择由光检测器222/224产生的信号的目标电平(即ADC范围的1/4)以保留额外的光检测能力,以检测在研究期间由于多个因素中的任何一个或多个(包括但不限于将外源性荧光剂引入患者202)而导致患者202的组织的光学性质的变化所产生的信号。
在上述一个方面,一旦光源控制单元230与光检测器控制单元232在前10个检测周期内设置的光检测器222/224的检测器增益协调地设置LED强度,则获得额外的10个检测周期,以在给定特定患者202的组织性质的情况下确认这些设置对于系统200的操作的适用性,随后如本文所述重新计算LED强度设置和检测器增益。如果新计算的LED强度在先前确定的设置的两倍内,并且检测器增益不改变,则先前确定的设置被保持用于随后用于确定肾功能的数据采集周期。否则,使用本文描述的相同方法更新设置,并且进行另外10个数据采集周期以确认设置的稳定性。重复该处理,直到确定任一设置是可接受的稳定或者进行10个数据采集周期以获得该设置,在这种情况下,最近确定的设置用于所有后续数据采集,并且可以经由显示单元216通知用户设置可能不是最佳的。
ii)光检测器控制单元
再次参照图2,控制器212可以包括光检测器控制单元232,光检测器控制单元232被配置为操作第一光检测器222和第二光检测器224,以能够分别检测发射波长处的光和所有波长处的未滤波的光。在各个方面,光检测器控制单元232可以产生多个检测器控制信号,该多个检测器控制信号编码包括但不限于检测器增益的一个或多个检测器控制参数。在各种其它方面,光检测器控制单元232可以产生多个光测量信号,该多个光测量信号编码由光检测器222/224检测到的光的强度,该光测量信号包括但不限于在各个方面可以由模数转换器(ADC)1102(参见图11)接收的原始检测器信号。在另一方面,当系统200被配置为工程模式时,检测器增益和/或其它检测器控制信号可以由用户检测器增益手动设置。
在各种其它方面,由光检测器222/224接收的光量可以由于至少几个因素中的任何一个或多个而变化,该至少几个因素包括但不限于:在单个患者202之间观察到的皮肤色调的变化、每个患者202内的外源性荧光剂浓度的变化以及任何其它相关参数。在一个方面,第一光检测器222和第二光检测器224的增益可由用户经由操作单元214设置。在另一方面,光检测器控制单元232可以被配置为经由偏置电压发生器1112(参见图11)的偏置电压增益自动地调制光检测器222/224的增益。
在一个方面,在数据采集初始化之后,但在注入外源性荧光剂之前由系统200获得的前10个检测周期期间获得的信号,被光检测器控制单元232使用以自动调节光检测器222/224的增益,以及光源218/220的输出强度。如本文先前所述,可以在LED光源218/220被设置为最大LED强度的约10%(对应于归一化输出强度0.1)并且光检测器222/224具有低增益设置的情况下获得初始检测周期,并且可以调制LED强度以使得由光检测器222/224产生的模拟信号能够在低检测器增益设置下对应于每个检测器模数转换器(ADC)的整个范围的约1/4。
在这一个方面,如果第一LED光源218的强度(在激发波长处产生光)被设置为LED功率范围的最大值,则可以考虑仅对应于激发波长的滤波测量的第二光检测器224的高检测器增益。在各个方面,对于给定的光检测器,高检测器增益可以比对应的低检测器增益高10倍。在不限于任何特定理论的情况下,假设外源性荧光剂是以患者体重的约4μmol/kg的剂量水平引入患者202的MB-102,则在注射和肾消除过程中来自外源性荧光剂的预期峰值检测荧光信号,通常预期为在由第一光源218以激发波长照射期间接收的信号大小的约10%。在一个方面,如果在最大LED强度照明期间接收的预期检测器信号并且检测器增益设置为高设置时仍然低于检测器ADC的范围的10%,则用于该测量的检测器增益增加10倍。在另一个方面,饱和状态可以持续预定义的时间段,包括但不限于在对检测器增益或LED功率进行调整之前30秒的时间段,以避免对杂散信号尖峰作出反应。
在另一方面,如果来自一个光检测器222/224的检测到的光信号超过最大ADC范围的阈值百分比,则光检测器控制单元232可以将检测器增益调节到较低的增益水平,以避免信号饱和。虽然与信号饱和度相关的最大ADC范围的最高阈值百分比为100%,但严重检测器非线性的起始在阈值百分比约40%或更高时发生,而轻度检测器非线性的起始在阈值百分比超过约15%时发生。在各个方面,最大ADC范围的阈值百分比可以是最大ADC范围的40%、35%、30%、25%、20%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%或5%。在一个方面,如果来自一个光检测器222/224的检测到的光信号超过最大ADC范围的约8%,则将调整增益设置。作为非限制性示例,如果在接近饱和的信号上的检测器增益为高,则将其调节为低。如果电流检测器增益设置为低,并且相应的检测到的光信号保持在最大ADC范围的阈值百分比以上,则相应LED光源的LED输出功率设置可以减少10倍。
在一个方面,光检测器控制单元232可以接收用于调制多个检测器信号的一个或多个反馈测量值,以补偿由于温度和/或光源输出的变化引起的光检测器性能的变化。由光检测器控制单元232使用的反馈测量的非限制性示例包括:分别由第一监测器光电二极管904和第二监测器光电二极管906在源井902内测量的光源218/220的光输出(参见图11)、由第一温度传感器1106测量的光检测器222/224的温度、由第二温度传感器1108测量的LED温度、由第三温度传感器1128测量的传感器头壳体的温度、来自LED电流源1126的LED电源电流以及与监测光检测器222/224的性能相关的任何其它反馈测量。
在各个方面,光检测器222/224可以是硅光子倍增器(SPM)检测器,其可以包括低噪声内部放大,并且可以相对于诸如PIN光电二极管的其它光传感器装置在较低的光水平下工作。由SPM检测器222/224产生的检测器信号可以分别使用跨阻抗放大器1120/1118放大(参见图11),以将由每个SPM光检测器222/224产生的电流转换成可测量的检测器电压。第二SPM光检测器224上的跨阻抗放大器1118(即,仅检测激发波长处的滤波光)可以包括可切换的检测器增益,该检测器增益可以选择低增益,该低增益被配置为当激活第一LED光源218以产生发射波长处的光时,检测用于荧光测量的较大动态范围。当第二光源220未激活时,可切换检测器增益可进一步选择用于第二SPM光检测器224的高增益设置,以在检测周期的阶段期间当检测到患者202的组织内的外源性荧光剂产生的发射波长的光时,增强第二SPM光检测器224的灵敏度,以确保来自第二SPM光检测器224的预期暗电流占据小于总ADC输出范围的1/4。在一个方面,第二SPM光检测器224的第二跨阻抗放大器可包括低检测器增益,该低检测器增益被配置为提供约4kΩ的跨阻抗增益,该跨阻抗增益对应于由于差分操作而导致的跨阻抗电阻器的值的约两倍,并且还可包括高检测器增益,该高检测器增益被配置为提供约40kΩ的跨阻抗增益。在另一方面,第一SPM光检测器222的第一跨阻抗放大器可包括固定检测器增益,该固定检测器增益被配置为提供约2kΩ的跨阻抗增益。
iii)采集单元
再次参照图2,在各个方面控制器212还可以包括采集单元234。采集单元234可以被配置为从光源218/220、光检测器222/224、和附加光检测器226和附加温度传感器228接收多个信号,并且处理该多个信号以产生一个或多个原始信号,该原始信号包括但不限于,编码在激发波长处的照射期间由第二光检测器224检测到的荧光强度的原始荧光信号,和对应于在激发波长处的照射期间由第一光检测器222检测到的激发波长处的光强度、以及在发射波长处的照射期间由两个光检测器222/224检测到的发射波长处的光强度的原始内部反射信号。
从上文描述的各种传感器和装置接收的多个信号通常是包括但不限于电压和电流的模拟信号。在各个方面,采集单元234可以能够将模拟信号发送到一个或多个模数转换器(ADC),以将模拟信号转换成数字信号,用于处理单元236的后续处理。图11是电路1100的示意图,示出了传感器头204的各种电气装置和部件的布置。在一个方面,编码由第一光检测器222和第二光检测器224检测到的光的强度的模拟信号可以由第一ADC1102接收。
在各个方面,可以使用至少一个24位Σ-ΔADC来数字化由光检测器222/224和各种监控器传感器产生的模拟信号。再次参照图11,在一个方面,可以使用高速24位Σ-ΔADC1102使编码来自时间敏感传感器的测量的模拟信号数字化。在这方面,时间敏感传感器包括与以潜在快速变化信号为特征的光脉冲的产生和检测相关联的传感器。系统200的时间敏感传感器的非限制性示例包括:第一和第二光检测器1118/1120,以及第一和第二监测器光电二极管904/906。在另一个方面,可以使用低速24位Σ-ΔADC 1104使编码来自时间敏感性较低的传感器的测量的模拟信号数字化。在该另一个方面,时间敏感性较低的传感器包括与监测系统条件相关联的传感器,该系统条件以典型的慢变化信号为特征,该系统条件包括但不限于各种系统部件和/或区域的温度。系统200的时间敏感性较低的传感器的非限制性示例包括:第一和第二热敏电阻器1106/1108,其被配置为分别监测光传感器222/224和光源218/220的温度,以及第三温度传感器1128,其被配置为监测传感器头204的壳体600的温度。
在各个方面,采集单元234还可以被配置为能够通过检测器222/224同步检测光。在不限于任何特定理论的情况下,同步检测方法被认为通过将检测器信号与检测环境光或其他干扰源相关联的噪声区分开来,来抑制来自与由光源118/120产生的光的检测相关联的检测器信号和由患者202的组织内的外源性荧光剂产生的荧光的噪声。
图12是在一个方面同步检测方法的示意图。参照图11和图12,波形发生器/FPA1122可以生成由DAC 1124接收的数字方波1202,并且所得到的模拟转换方波由LED电流源1126接收。由LED电流源1126产生的、也以与模拟转换的方波成比例的波形为特征的所得电流,驱动LED光源218/220。由LED光源218/220产生的光,在穿过患者202的组织之后,与内源荧光剂产生的荧光一起被光检测器222/224检测,并且被高速ADC1102数字化。
再次参照图11和图12,由波形发生器/FPA 1122生成的数字方波1202还可以由DAC1110(参见图11)转换为同相参考正弦波1210和异相/正交参考余弦波1212。在一个方面,来自ADC 1102的数字化检测器信号和同相参考正弦波1210可以被采样,并且在第一乘法器1214处进行有符号乘法以生成多个同相调制信号。另外,数字化的检测器信号和正交参考余弦波1212可以在第二乘法器1216处被采样并进行有符号乘法,以生成多个正交(异相)调制信号。在此方面,采集单元234可将来自参考波1210/1214的样本延迟一定的量,该量等于生成参考波1210/1214的DAC1124与数字化检测器信号的ADC 1102之间的相对延迟以使参考波1210/1214与正被采集的检测器数据同步。
再次参照图12,同相调制信号可在第一累加器1218中求和以生成同相强度信号1224。类似地,正交调制信号可以在第三累加器1222中求和以生成正交强度信号1228。原始数字化检测器信号还可以在第二累加器1220中求和以生成平均强度信号1226。此外,同相强度信号1224和正交强度信号1228可以是平方根求和,以生成幅度信号1230。
在不限于任何特定理论的情况下,累加器1218/1220/1222的积分间隔可以对应于整数个调制周期(对应于数字方波1202的周期),以避免对测量信号的偏置。用于控制同步检测的相位累加器1218/1220/1222以整数操作,但是采样时钟频率和调制频率不是整数可除的,因此周期数不是精确的整数。然而,可以通过调整实际调制频率以尽可能接近地匹配可实现的采样间隔以及将适当数目的位分配给相位累加器,来最小化与该不匹配相关联的误差。在一个方面,与调制频率和采样间隔之间的不匹配相关联的误差可在106中的约一部分的量级上。
在一个方面,用于调制LED光源218/220并实现本文如上所述的同步检测方法的数字方波1202以约1kHz的频率产生。在不限于任何特定理论的情况下,以与作为相同峰值电源电平的调制波形的纯正弦波相比,选择方波作为调制波形,以能够增强信噪比(SNR)。
在另一方面,采集单元234还可以被配置为能够解调同相强度信号1224、平均强度信号1226和正交强度信号1228。在一个方面,采集单元234可以在基波处挑选出每个分量,其特征在于,幅度是用于调制强度信号1224/1226/1228的方波1202的幅度的(4/π)倍。在各个方面,为了抑制由交流电源生成的50/60Hz电噪声,以及由从这些电源供电的环境光源生成的相应100/120Hz光噪声,可以将累加器1218/1220/1222的积分周期选择为100ms的倍数。在这些不同方面,所选择的积分周期确保累加器1218/1220/1222的积分在50、60、100和120Hz信号的整数个周期上发生。
iv)处理单元
再次参照图2,在各个方面,控制器212还可以包括处理单元236,处理单元236被配置为对解调的检测器信号应用校正,并将校正的检测器信号的选定部分变换为肾功能的测量值。图13是示出在一方面处理单元236的子单元的框图。参照图13,处理单元236可以包括预处理子单元1302,预处理子单元1302被配置为确定和校正检测器信号,以移除与各种混杂效应相关联的信号伪像,混杂效应包括但不限于生理引起的信号变化、提供给光源218/220的电源变化、检测器响应中的非线性、环境温度变化和组织异质性。处理单元236还可以包括基线减法子单元1304,该基线减法子单元1304被配置为去除可归因于外部因素的检测器信号的一部分,该外部因素诸如组织的自荧光和/或在激发波长处的光通过第二光检测器224的光学滤波器244的泄漏。处理单元236可以额外包括漫反射校正子单元1306,漫反射校正子单元1306被配置为能够应用漫反射校正方法来去除患者202的组织内的光的漫反射的影响的方法。处理单元236还可以包括后平衡选择子单元1308,该后平衡选择子单元1308被配置为选择与后试剂施用时段相关联的检测器数据的一部分用于随后分析以确定患者的肾功能。处理单元236还可以包括RDTC计算子单元1310,RDTC计算子单元1310被配置为转换在后试剂施用时段获得的检测器信号,以产生指示患者肾功能的肾衰减时间常数。处理单元236还可以包括故障检测子单元1312,故障检测子单元1312被配置为监测检测器信号的大小以检测系统的任何故障。
a)预处理子单元
在一个方面,使用预处理子单元1302的各种模块,对对应于光检测器222/224检测到的光强度的原始信号进行预处理,该光检测器222/224检测到的光强度对应于第一光源218和第二光源220分别在激发波长和发射波长处的照射,以从原始信号中去除多个混杂因素的影响,从而产生更准确地反映潜在的特定受关注信号的信号。
作为多个非限制性示例,光源产生的光的强度可以由于多个因素中的一个或多个而变化,多个因素包括但不限于:供应到光源的电流的波动和光源的环境温度的变化。由传感器头的相同源孔发出的两个或更多波长所表征的光可以不共享至相同检测器的相同路径。检测器可以具有热依赖性灵敏度和增益。此外,与第二光检测器224相关联的光学滤波器可以具有依赖温度的透射特性。
在一个方面,预处理子单元1302被配置为处理对应于由第一和第二光检测器222/224检测到的光强度的原始信号,以便移除与系统200的装置和元件以及患者特定因素相关联的测量误差中的一个或多个,患者特定因素包括但不限于上述多个因素。图22A是在一个方面示出预处理子单元1302的模块的框图。图22B是在第二方面示出预处理子单元1302a的模块的框图。
在一个方面,如图22A所示,预处理子单元1302 1)使用如下所述的重采样模块2202的方法对信号进行重采样,2)使用如下所述的检测器输出饱和检测和去除模块2204的方法去除饱和检测器信号,3)使用下面描述的检测器温度校正模块2206的方法校正依赖温度的检测器增益,4)使用下面描述的光方向性校正模块2208的方法校正用于仪器光方向性的信号,5)使用下面描述的滤波器吞吐量温度校正(发射)模块2212的方法校正荧光的滤波器吞吐量和温度依赖性变化的信号,6)使用下面描述的组织非均匀性校正模块2216的方法校正组织非均匀性,7)使用下面描述的滤波器吞吐量温度校正(激发)模块和信号分解模块2214的方法校正激发光的滤波器吞吐量和温度依赖性变化的信号和信号分解,8)使用下面描述的部分(fractional)光子归一化模块2218的方法校正光功率变化。
在一个方面,如图22B所示,预处理子单元1302a使用如下所述的检测器温度校正模块2206a的方法来计算信号大小,使用如下所述的重采样模块2202a的方法对信号进行重采样,使用如下所述的检测器输出饱和检测和去除模块2204a的方法去除饱和样本,使用下面描述的检测器温度校正模块2206a的方法校正用于温度依赖性检测器增益的信号,使用下面描述的部分光子归一化模块2218a的方法校正用于光功率变化的信号,使用下面描述的滤波器吞吐量温度校正(激发)模块和信号分解模块2214a校正激发光泄漏到测量的荧光信号上,并且使用下面描述的滤波器吞吐量温度校正(发射)模块2212a校正荧光泄漏到测量的激发漫反射信号上。
-重采样模块
参照图22A和图22B,预处理子单元1302/1302a在各个方面包括重采样模块2202/2202a,重采样模块2202/2202a被配置为减少与患者202的生理过程相关联的信号变化,该生理过程包括但不限于心跳和呼吸。通常,采集序列的特征在于在激发和发射处的交替的照射间隔被无照明间隔(即,暗间隔)分开。尽管两个照明间隔(激发/发射)用如上所述的相同时间戳值进行时间戳,但激发和发射照明间隔之间的暗间隔导致激发和发射照明间隔之间的分离间隔。在不限于任何特定理论的情况下,如果与采集序列相关联的分离间隔在生理事件(诸如心跳或呼吸)之间的分离间隔的数量级上,则生理噪声可被引入到信号中。在各个方面,可以通过在信号的后续处理之前将与激发和发射照射相关联的信号重新采样以重叠来减少该生理噪声。
作为非限制性示例,样本序列可以包括100ms暗间隔、在激发波长处的100ms照射间隔、第二100ms暗间隔和在发射波长处的100ms照射间隔。每个样本数据包都用单个时间戳进行记录,以及每个样本数据包以400ms间隔分开。由于生理信号变化,诸如来自心跳的生理信号变化,发生在相同的时间尺度上,因此与激发波长和发射波长相关联的信号采集之间的200ms差值在信号中变得明显。可以使用预处理子单元1302,通过在执行如下所述的任何附加信号处理之前,首先将与激发波长和发射波长照射处的照射相关联的信号重新采样以重叠来减小该生理信号噪声。在该非限制性示例中,与激发波长处的照射相关联的信号可以向前偏移100ms,并且与发射波长处的照射相关联的信号可以向后偏移100ms,从而导致信号的重叠。
在各个方面,重采样模块2202对由第一和第二检测器222/224两者检测到的信号执行如上所述的重采样。在一个方面,重采样模块2202用作低通滤波器的形式。
-检测器输出饱和检测和去除模块
再次参照图22A和图22B,在各个方面预处理子单元1302/1302a包括检测器输出饱和检测和去除模块2204/2204a,其被配置为检测和去除落在光检测器222/224的检测范围之外的信号值。在一个方面,预处理子单元1302将检测到的信号与最大ADC信号进行比较。如果任何信号落在使用平均值或峰值信号值的最大ADC信号的阈值范围内,则检测器输出饱和检测和去除模块2204识别该值并从进一步处理中去除该值。
-检测器温度校正模块
图22A和图22B,在各个方面预处理子单元1302/1302a包括检测器温度校正模块2206/2206a,检测器温度校正模块2206/2206a被配置为能够进行温度校正以补偿光检测器222/224的热敏性。在一个方面,通常用作光检测器的硅光电倍增管(SPM)装置的本征检测器增益与装置击穿电压和偏置电压发生器1112(参见图11)施加的偏置电压(本文称为过电压)之间的差值成比例。在这方面,击穿电压以良好表征的方式随温度变化。在一个方面,温度校正考虑了该内部检测器增益变化和光子检测效率中额外的与温度相关的变化两者。
在一个方面,温度校正可以是应用于检测器测量的缩放校正,其中缩放校正基于测量的检测器温度。在一个方面,测量的光检测器信号可以除以计算的增益G(t)以去除温度依赖性。缩放校正G(t)可以根据等式(2)计算:
Figure BDA0003703466030000421
在等式(2)中,从被配置为监测传感器222/224的温度的第一温度传感器1106(参见图11)获得监测温度T。偏置电压(Vbias)可以由偏置电压发生器1112测量。击穿电压(Vbreakdown)和参考温度(T0)是系统200中包括的特定光检测器装置特有的常数。作为非限制性示例,如果光检测器222/224是硅光电倍增管(SPM)装置,则Vbreakdown可以是24.5V并且T0可以是21℃。在另一方面,可以基于在约18℃至约26℃的环境温度范围内使用恒定体模获得的测量值来经验地导出等式(2)中使用的系数Cv和CT
在另一方面,增益校正的温度部分由等式(3)至(5)确定。
Figure BDA0003703466030000431
Figure BDA0003703466030000432
Figure BDA0003703466030000433
该增益校正可应用于由第一和第二光检测器222/224测量的每个信号幅度,如下所示:
Figure BDA0003703466030000434
在一个方面,根据等式(1),根据同相强度信号1224(I)和正交强度信号1228(Q)的平方根求和计算来自每个检测器和监测器光电二极管的温度校正测量的幅度:
Figure BDA0003703466030000435
使用等式(1)计算的来自光检测器222/224的信号幅度被监测器光电二极管幅度标准化,用于对应于LED光源218/220中的一个在激发波长或发射波长处照明期间获得的测量的每个测量组。在一个方面,如果一个光电二极管位于源井902中,则来自相应测量组的单个光电二极管幅度用于该标准化。在另一方面,如果两个监测器光电二极管904/906与两个LED光源218/220(参见图9)位于同一源井902中,则来自相应测量组的两个监测器光电二极管幅度的平均值用于该标准化。
在一个方面,同相强度信号1224、正交强度信号1228和平均强度信号1226(参见图12)被进一步处理用于累积样本的数目和ADC缩放,使得强度信号1224/1226/1228作为高速ADC 1102的整个范围(即,从0的最小值到1的最大值的范围)的一部分返回。监测器光电二极管904/906(参见图11)的测量被类似地缩放为低速ADC 1104的整个范围的一部分。
在一个方面,Gcorrection可以结合功率校正以校正LED电源中的波动的影响。在这方面,当来自光源218/220的光强度变化时,通过用功率计测量光输出功率来校准来自第一监测器光电二极管904和第二监测器光电二极管906的信号。每个光源218/220、Csource1和Csource2的校准系数被计算为每个记录的监测器光电二极管信号值的检测器测量的毫瓦。Csource1和Csource2用于确定在每个波长处输出到组织中的绝对光。
再次参照图22B,检测器温度校正模块2206a通过使用由第一监测器光电二极管904和/或第二监测器光电二极管906测量的LED输出信号PDmagnitude对温度校正后的检测信号进行归一化来校正用于LED的变化强度的信号幅度。在这种情况下,对来自上面的每个光源218/220的Gcorrection变量修改如下:
Figure BDA0003703466030000441
-光方向性校正模块
再次参照图22A,在此方面的预处理子单元1302包括光方向性校正模块2208,其被配置为能够校正与在数据采集期间不同波长的光通过患者202的组织的散射和吸收的差异相关联的检测信号中的变化。在一个方面,可以通过从一个或多个均匀组织模型获取数据并使用不存在发射滤波器的传感器配置来测量光方向性的校正项。由第一光检测器222(Det1)检测到的信号与由第二光检测器224(Det2)检测到的信号的测量的比率被用于确定信号的系数Gex或Gem,该信号的系数Gex或Gem分别与激发波长和发射波长处的光的照明相关联地获得。这些系数用于修改由第一光检测器222检测到的信号。在一个方面,第一光检测器222使用系数Gex或Gem对在均匀介质中采集的信号的校正使得由第一检测器222/224和第二检测器222/224测量的信号等效于彼此的20%以内。在其它方面,第一光检测器222使用系数Gex或Gem对在均匀介质中采集的信号的校正使得由第一检测器222/224和第二检测器222/224测量的信号等效于约10%、约5%、约2%和约1%。
-检测器非线性响应校正模块
再次参照图22A,在该方面预处理子单元1302包括检测器非线性响应校正模块2210,该检测器非线性响应校正模块2210被配置为能够校正与检测器的非线性响应相关联的检测信号中的变化。在此方面,可以使用基于平均数据的校准曲线来缩放由检测器222/224获得的幅度数据。
-滤波器吞吐量温度校正(发射)模块
再次参照图22A,在该方面预处理子单元1302包括滤波器吞吐量温度校正(发射)模块2212,其被配置为能够在发射波长照明期间,校正与第二光检测器224相关联的光学滤波器244的与温度依赖性的光学特性相关联的检测信号中的变化。在这方面,可以根据等式(8)来校正由第二光检测器224检测到的信号Det2:
Figure BDA0003703466030000451
在各个方面,当在包括工作温度范围或足够大的范围子集的范围内环境温度循环以充分确定发射滤波器的温度依赖性时,可以监测由第二光检测器224测量的信号Det2。这些数据是利用安装在第二光检测器224上的光学滤波器244从均匀的、非荧光体模获取的。此外,从第一光检测器222监测同时测量,并且确定测量值Det2/Det1的比率。标称滤波器系数CemF,nom被计算为在标称工作温度Tnom下获得的Det2/Det1的标称比。在这方面,从均匀的非荧光体模的发射波长照射期间在环境温度范围内获得的Det2/Det1的斜率获得系数CemF,slopeT
-组织异质性校正模块
再次参照图22A,在此方面预处理子单元1302包括组织异质性校正模块2216,其被配置为能够校正与由光源218/220照射的第一区域206与光检测器222/224位于其中的第二和第三区域208/210之间介入的组织的异质性相关联的检测信号的变化。在该方面,根据等式(9),由光方向性校正模块2208校正为光方向性的信号Det1,和由滤波器吞吐量温度校正(发射)模块2212校正为滤波器效果的信号Det2,被用于计算Chetero,即校正组织异质性的系数:
Chetero=Det2/Det1 等式(9)
-滤波器吞吐量温度校正(激发)和信号分解模块
再次参照图22A,在该方面预处理子单元1302包括滤波器吞吐量温度校正(激发)模块和信号分解模块2214,滤波器吞吐量温度校正(激发)模块和信号分解模块2214被配置为能够在激发波长照射期间校正与第二光检测器224相关联的光学滤波器244的与温度依赖性的光学特性相关联的检测信号的变化。在此方面,因为发射滤波器被配置为阻挡激发波长处的光,所以滤波器吞吐量温度校正(激发)模块和信号分解模块2214执行对由于光学滤波器244的光学性质的温度相关变化而导致的激发光泄漏量的变化的校正。此外,滤波器吞吐量温度校正(激发)模块和信号分解模块2214能够由于在与激发波长照射相关联的信号的一部分上叠加的激发波长照明引起的荧光的存在,而对在激发波长照射期间由第一光检测器222测量的信号进行校正。
在这方面,如等式(10)所示,计算温度依赖性的变化对通过光学滤波器244的激发波长的泄漏的影响:
CexLT=CexLT,nom+CexLT,slopeT(T-Tnom) 等式(10)
在这方面,在激发波长照明期间在标称工作温度Tnom下从均匀的非荧光体模测量的信号Det1和Det2的比率来计算CexLT,nom。CexLT,slopeT被计算为在激发波长照明期间在工作温度范围T内从均匀的非荧光体模测量的信号Det2的斜率。
在此方面,滤波器吞吐量温度校正(激发)模块和信号分解模块2214还执行信号提取,以隔离与激发波长照明的漫反射相关联的检测信号的部分和荧光。DRex2,即在没有光学滤波器244的情况下入射到第二光检测器224上的激发光的量,由于光学滤波器244的存在而不可测量。此外,由第一光检测器222测量的信号Det1是来自激发波长照射DRex1的漫反射和荧光Flr1两者的合成信号。使用如上所述的组织异质性校正模块2216获得CHetero。基础信号通过使用以下方程组提取:
Det2=CexLTDRex2+Flr2 等式(11)
Det1=DRex1+Flr1 等式(12)
Flr2=CHetero Flr1 等式(13)
DRex2=CHetero DRex1 等式(14)
在这方面,通过仅使用可测量信号Det1和Det2求解上述方程组来确定Flr2,如下所示:
Det2=CexLTCHetero DRex1+Flr2 等式(15)
Det2=CexLTCHetero(Det1-Flr1)+Flr2 等式(16)
Det2=CexLTCHetero Det1-CexLTCHetero Flr1+Flr2 等式(17)
Det2-CexLTCHetero Det1=Flr2(1-CexLT) 等式(18)
Figure BDA0003703466030000471
在这方面,一旦如上所述获得Flr2,则可以通过代入到上述方程组(等式(11)至(14))中来容易地获得其它信号Flr1、DRex1和DRex2
-部分光子归一化模块
再次参照图22A,在该方面预处理子单元1302包括部分光子归一化模块2218,部分光子归一化模块2218被配置为在如上所述的预处理之后,将检测器信号转换成部分光子单元,以用于随后的背景减法和本征荧光校正算法中,如本文所述。在这方面,可以通过反转与ADC和跨阻抗放大器相关联的缩放来将检测器信号转换为光电流,跨阻抗放大器用于获取检测到的信号来获得以光电流为单位的信号。一旦获得光电流,由光检测器的制造商提供的检测器响应度被用于将检测器光电流转换成瓦特单位。然后,将以瓦特为单位的检测器信号与以瓦特为单位的源功率成比例,该源功率由用于监测光源218/220的输出的附加光检测器226测量,以获得检测到的部分光子的数目。
-光功率校正模块
再次参照图22A和图22B,在此方面预处理子单元1302/1302a包括部分光子归一化模块2218/2218a,部分光子归一化模块2218/2218a被配置为在如上所述的预处理之后,将检测器信号转换成部分光子单元,以用于随后的背景减法和本征荧光校正算法中,如本文所述。在这方面,可以通过反转与ADC和跨阻抗放大器相关联的缩放来将检测器信号转换为光电流,该跨阻抗放大器用于获取检测到的信号来获取以光电流为单位的信号。一旦获得光电流,由光检测器的制造商提供的检测器响应度被用于将检测器光电流转换成瓦特单位。然后,将以瓦特为单位的检测器信号与以瓦特为单位的源功率成比例,该源功率由用于监测光源218/220的输出的附加光检测器226测量,以获得检测到的部分光子的数目。
-激发光漏通减法模块
再次参照图22B,在该方面预处理子单元1302a包括部分光子归一化模块2222,部分光子归一化模块2222被配置为对Flrmeas信号执行激发漏通减法。为了获得仅由荧光光子(Flrphotons)产生的荧光信号,执行激发漏通减法。为了去除激发光的贡献,激发漏通被视为漫反射激发(
Figure BDA0003703466030000482
)信号的一部分,其中通用校准因子,CExLT,确定要从Flrmeas中减去的信号的一部分,如下所示:
Figure BDA0003703466030000483
其中CExLT是通过如下所述计算两个检测器在非荧光光学模型上检测到的激发光之间的比率而获得的校准因子:
Figure BDA0003703466030000481
然后从Flrmeas中减去该信号以提供仅由于如下所示的荧光光子而产生的荧光信号:
Flrphotons=Flrmeas-ExLT
-荧光光漏通减法模块
再次参照图22B,在该方面预处理子单元1302a包括被配置为对Flrmeas信号执行荧光漏通减法的荧光光漏通减法模块2224a。为了获得漫反射,本文定义为仅由于激发光子(DRexphotons)引起的激发信号,执行荧光漏通减法。为了去除荧光漏通,基于在人体对象数据的数据库上观察到的荧光漏通的量与通过漫反射、发射信号
Figure BDA0003703466030000491
之间的关系测量的组织异质性之间的关系来确定校准因子,CFlrLT。该关系是如下所示的线性关系:
Figure BDA0003703466030000492
其中在一个方面p1和p2分别为大约0.61和0.01,如由上述关系确定的。在另一个方面,在不限于由上述关系所定义的情况下,p1和p2可以假定任何其它值。
然后,通过从漫反射激发信号中减去测量荧光的这一部分来计算DRexphotons信号,如下所示:
Figure BDA0003703466030000493
b)基线减法子单元
再次参照图13,处理单元236还包括基线减法子单元1304。在一个方面,基线减法子单元1304从光检测器测量值中减去基线信号,以校正自荧光和光泄漏的影响。本文所用的基线时段是指在注射外源性荧光剂之前获得的测量的初始时间段。在基线时段期间,可以假定由系统200测量的荧光信号与来自LED光源218/220的组织自荧光和/或激发光相关联,该组织自荧光和/或激发光通过第二光检测器224的吸收滤波器244泄漏。在一个方面,可以从后续的荧光测量中减去在基线时段期间测量的平均信号(本文称为基线信号),以产生仅与患者组织内的外源性荧光剂产生的荧光相关联的测量。
在另一个方面,对于激发光漏通和自荧光的校正可以单独实施。在该另一个方面,可以在本文下面描述的漫反射校正之前,执行激发光漏通效应的减法,并且可以在漫反射校正之后执行自荧光效应的减法。
c)漫反射校正子单元
再次参照图13,处理单元236还包括漫反射校正子单元1306。在一个方面,漫反射校正子单元1306可以校正测量的荧光数据,以在监测患者组织内的外源性荧光剂的肾提取期间,去除患者202的组织的光学性质(吸收和散射)的变化的影响。如上所述,组织的光学性质可由于任何一个或多个因素而改变,该因素包括但不限于:血管舒张、血管收缩、血氧饱和度、水合、水肿,以及与内源性发色团(诸如血红蛋白和黑色素)的浓度的变化相关联的、系统监测的受关注区域内的任何其它合适因素。
在不限于任何特定理论的情况下,由系统200获得的用于确定肾功能的荧光测量包括由第二(滤波的)光检测器224检测的发射波长光子。响应于激发波长光子的照射,这些发射波长光子由引入到患者组织中的外源性荧光剂发射。发射波长光子从荧光源(即,外源性荧光剂)通过患者皮肤的第三区域210行进到第二(滤波的)光检测器224。然而,由第二(滤波的)光检测器224检测的发射波长光,还可以包括由患者组织内的内源性荧光团(诸如角蛋白和胶原)发射的自荧光,以及通过第二光检测器224的光学滤波器244的激发波长光的漏通。诱导外源性荧光剂的荧光的激发波长光子由第一光源218产生,并被引导到患者皮肤的第一区域206中。如果患者皮肤的光学性质(散射和/或吸收)在用于确定肾功能的检测器数据被采集的时间间隔内(即,从几小时到大约24小时或更长)变化,则荧光测量的准确性可能受到影响,如上文所讨论的。
在一个方面的每个测量周期期间,系统200可以用交替系列的发射波长光脉冲和激发波长光脉冲,将光引导到患者皮肤的第一区域206中,并且可以使用第一(未滤波的)光检测器222检测从患者皮肤的第二区域发出的所有光,并且使用第二(滤波的)光检测器224检测从患者皮肤的第三区域210发出的部分光。通过第一区域206的激发和发射波长照明的每个组合以及通过未滤波/滤波的光检测器222/224的检测所检测的光强度,不仅包含关于患者组织中的外源性荧光剂的浓度的信息,而且包含关于患者皮肤的光学性质的信息。
表2:温度和功率波动校正后的光检测器测量
Figure BDA0003703466030000511
荧光的主要测量是Flrmeas,在滤波的检测器处测量的荧光的强度。
漫反射测量Flrmeas表示光子到未滤波装备的传播,并且主要由激发光子组成。
DRem和DRem,filtered表示仅发射光子的传播。
参照表2,在各个方面,在由激发波长光照射期间由第二(滤波的)光检测器224测量的光强度,捕获组织光学性质的任何校正之前由外源性荧光剂(Flrmeas)发射的光的原始强度。在如本文先前所述的基线减法校正之后,假定包含在Flrmeas中的发射波长光主要来源于外源性荧光剂,由于内源发色团的自荧光而仅有很小的贡献,并且因此被称为Flragent。在一个方面,如果假定患者皮肤的光学性质没有变化,则在上面描述的基线校正期间将减去所有自荧光贡献。
然而,如果在数据采集期间患者皮肤的光学性质改变,则在发射波长处患者皮肤可能稍微出现或多或少的自荧光,从而给先前执行的背景减法校正的精度带来不确定性。此外,变化的皮肤光学性质可进一步改变在激发波长处到达外源性荧光剂的光的强度,响应于激发波长光的照射,从而改变外源性荧光剂吸收的能量的量和从外源性荧光发射的诱导荧光的强度。在各个方面,剩余的三个光测量能够监测患者皮肤的光学性质,并且提供可用于调整患者皮肤的光学性质的任何变化的数据。
再次参考表2,在应用漫反射校正之前,已经针对温度和光学输出的变化而校正的表示信号DRexmeas和Flrmeas,被进一步处理为仅归因于期望波长的光子的信号。由于漫反射、激发或荧光在任一探测器上的光子数,取决于光方向性和检测器在检测波长处的增益,如下所示:
DRexmeas=A1*DRexphotons+B1*Flrphotons
Flrmeas=A2*DRexphotons+B2*Flrphotons
其中系数A1、A2、B1、B2由方向性和增益因子组成,例如,
A1=d450SPM1*GSPM1@450
从荧光发射和漫反射、激发波长光子处产生的信号的隔离执行如下:
Figure BDA0003703466030000521
Figure BDA0003703466030000522
由于肾功能监测器测量与幅度无关的速率,所以不需要光子信号(例如
Figure BDA0003703466030000523
)之前的恒定项,如下所示。
Figure BDA0003703466030000524
因此,项
Figure BDA0003703466030000525
(或CExLT)和
Figure BDA0003703466030000526
(或CFlrLT)可实验确定以分别分离Flrphotons和DRexphotons
下表表示用于表示漫反射校正展开中的四个测量信号中的每一个的信号的名称。注意,可以遵循描述的预处理路径中的任一个以获得可用于展开校正的信号。
表3:用于获得针对可变组织光学性质校正的荧光测量的光检测器测量
Figure BDA0003703466030000531
其中激发波长信号中的任一个可用作通过已描述的预处理方法中的任一个获得漫反射校正的替代方法。
再次参考表2,在由激发波长光照射期间由第一(未滤波的参考)光检测器222测量的光强度,捕获了传播通过患者皮肤的激发波长光的漫反射的测量值
Figure BDA0003703466030000532
尽管第一光检测器222被配置为检测激发波长光和发射波长光两者,但是由于经由荧光产生光的效率较低,激发波长光的强度比发射波长光的强度高多个数量级大小。在各个方面,假设发射波长的光在
Figure BDA0003703466030000533
中的比例可以忽略不计。在其它方面,估计并减去发射波长光在
Figure BDA0003703466030000534
中的比例。在不限于任何特定理论的情况下,因为被引导到患者皮肤中的激发波长光的强度被假定为相对恒定且由于外源性荧光剂的吸收而损失可忽略不计,并且进行如本文先前描述的功率校正,
Figure BDA0003703466030000535
被用作基准测量,以相对于激发波长光评估患者皮肤的光学性质的变化。
在由发射波长光照射期间由第一(未滤波的参考)光检测器222测量的光强度捕获传播通过患者皮肤的发射波长光的漫反射的测量值(DRem)。在不限于任何特定理论的情况下,由于在数据采集周期的该阶段期间由于没有激发波长照明而未诱导外源性荧光剂发射发射波长光,并且由于如本文先前描述的被引导到患者皮肤中的发射波长光的强度相对恒定并且进行了功率校正,所以DRem用作基准测量,以相对于发射波长光评估患者皮肤的光学性质的变化。
在由发射波长光照射期间由第二(滤波的)光检测器224测量的光强度,捕获传播通过患者皮肤的发射波长光的漫反射的第二测量值(DRem,filtered)。在一个方面,DRem,filtered进行与上述DRem相同的假设。此外,DRem,filtered提供了评估组织光学特性的异质性的手段。由于DRem,filtered由第二光检测器224测量,第二光检测器224被配置为检测在第三区域210处从患者皮肤射出的光(参见图2),因此在DRem,filtered中测量的光的强度已经沿着穿过患者皮肤的光路传播,该光路不同于在DRem中测量的光所行进的光路。在不限于任何特定理论的情况下,因为第一检测器孔1004和第二光孔2006(通过第一检测器孔1004和第二光孔2006,将光传送到第一和第二光检测器222/224)的距离被设计为分别与光传送孔1002等距(参见图10),所以假设DRem,filtered和DRem之间的任何差值是通过两个不同光路穿过皮肤的光学性质的异质性造成的。
在一个方面,本征荧光(IF),本文定义为在发射波长处的测量荧光,其仅归因于外源性荧光剂的发射,可以根据等式(20)计算:
Figure BDA0003703466030000541
因子IF、Flr、DRex、DRex和DRem,filtered在本文中如上定义。如等式(20)所示,漫反射校正测量信号DRex、DRem和DRem,filtered因子中的每一个,被分别提升到功率kex、kem和kem,filtered。在一方面,在应用等式(20)的漫反射校正之前,对表2中的每个测量进行如上所述的功率/温度校正和背景减法校正(参见图22A和图22B)。
在各个方面,可以经验地确定kex、kem和kem,filtered的值。用于确定kex、kem和kem,filtered的合适值的合适的经验方法的非限制性示例,包括全局误差映射方法和线性回归方法,这两种方法都在下文中详细描述。
在一个方面,一旦识别出每个功率(kex、kem、kem,filtered)的值,相同的一组指数可被重复用于后续的本征荧光测量。本文描述的系统和方法的应用的非限制性示例,其中可重用一组选定的指数,包括:使用相同的传感器头204在相同的患者上重复测量;使用相同的传感器头在相同物种的不同患者上重复测量;使用相同设计的不同传感器头对相同物种的患者重复测量;使用不同设计的不同传感器头对相同物种的患者重复测量;使用不同设计的不同传感器头对不同物种的患者重复测量;以及本文描述的系统和方法的任何其它合适的应用。在另一方面,可以通过重复使用本文描述的系统和方法来更新指数。在该另一个方面,可以为系统和方法的每次使用确定新的指数组,并且可以周期性地或连续地评估所存储的指数集,以评估是否指示了指数的更新的选择。作为非限制性示例,如果对多组指数的分析确定在系统的先前使用中指数没有在阈值范围之外变化,则系统可用于使用先前的一组指数、所有先前的指数组的平均值/中值或基于先前的指数值的适当指数的任何其它估计来进行测量。在该非限制性示例中,如果对多组先前指数的分析确定指数在阈值范围之外变化,则可以指示使用下面描述的方法之一重新选择指数。
全局误差映射法
在一个方面,在上面等式(20)中使用的功率的值是使用全局误差表面方法经验地确定的。
在图14A和图14B中示出了流程图,该流程图示出全局误差表面方法1400的各个步骤。在本方面,方法包括在步骤1402处,为用户选择的每个漫反射信号(DRex,DRem,DRem,filtered)选择每个功率(kex,kem,kem,filtered)的值范围。在各个方面,每个功率的值范围可受多种因素中的任何一个或多个的影响,该多种因素包括但不限于:系统200的设计,包括传感器头204的设计;所选择的外源性荧光剂的性质,诸如患者组织中的激发波长/发射波长、吸收效率、发射效率和初始剂量浓度;患者202的物种和内源性发色团的相应浓度;传感器头204在患者202上的位置;以及任何其他有关因素。
在一个方面,该方法可以包括为每个系数(kex,kem,kem,filtered)选择宽范围并且进行广泛搜索。可以分析来自该广泛搜索的误差表面以定位误差表面中的井以及每个系数的相关范围。在这方面,方法包括调整每个系数的范围以包括来自宽搜索的区域,在该宽搜索内观察误差表面中的井,并重复分析。可以迭代该方法,直到获得能够准确获得最小误差的适当精细的分辨率。在一个非限制性示例中,对于人类患者,潜在因子的选定范围可以是kex的[0,2],kem的[0,4],和kem,filtered的[-4,0]。
再次参照图14A,可以在1404处,为在1402处为每个功率kex、kem、kem,filtered选择的值的范围选择步长。在一个方面,每个因子的步长可以基于至少几个因子中的任何一个或多个来选择,该至少几个因子包括但不限于:由等式(20)计算的IF值对于每个因子的变化的预期灵敏度;用于计算所考虑的因子(包括可用的计算资源、可接受的数据处理次数或任何其他相关因子)的IF的合适的功率组合总数;以及步长的任何其它合适的标准。
在各个方面,对于所有功率kex、kem、kem,filtered,步长可以是相同的值。作为非限制性示例,所有功率的步长可以是0.5。在各种其它方面,对于单个功率kex、kem、kem,filtered的所有值,步长可以是恒定的,但是对于每个功率选择的步长可以在不同功率之间不同。作为非限制性示例,kex的所选步长可以是0.01,以及kem和kem,filtered的所选步长可以是0.6。在各种附加方面,一个或多个功率内的步长可以在每个功率的值的范围内变化。作为非限制性示例,kex的所选步长可以关于平均值非线性分布。在该非限制性示例中,kex的潜在值的矢量可以是[0 0.5 0.75 0.9 1 1.1 1.25 1.5 2]。在这些各种附加方面,步长可以在功率的值的子范围内减小,对于该功率由等式(20)计算的IF预测在该功率下对微小变化更敏感。在单个功率的值范围内适当变化步长的非限制性示例,包括:由用户选择的不同步长、随机步长、步长的线性增加和/或减小、不同步长的非线性分布,诸如步长的对数分布、指数分布或任何其它适当的非线性分布。
再次参照图14A所示,在1402处选择的指数范围,以及在步骤1404处选择的步长可用于在1406处形成kex、kem、kem,filtered的潜在值的向量。作为非限制性示例,假设kex的[0,2],kem的[0,4]和kem,filtered的[-4,0]的潜在指数的选定范围,并且假设对于所有功率的恒定步长为0.5,则在1406处创建的向量为:
kex=[0.0 0.5 1.0 1.5 2.0](5个值)
kem=[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0](9个值)
kem,filtered=[-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.5-0.0](9个值)
再次参照图14A,对于在1406处形成的所有向量中的指数的每个组合,在1408处使用等式(20)根据测量值Flr、DRex、DRem和DRem,filtered计算IF。对于指数的每个组合,在1408处计算多个IF值,其中每个IF值对应于数据采集周期中的一个(即,如图5所示,发射波长照明的单个序列随后是激发波长照明)。作为非限制性示例,使用上面列出的潜在指数的向量,将计算总共405(5*9*9)个IF信号。
在一个方面,可以评估多个潜在指数的组合,以从多个中选择一个指数的组合来分配用于后续使用等式(20)计算的漫反射校正。再次参照图14A,可以在1410处计算校正的Flr信号数据(即,使用等式(20)计算的IF信号数据)的误差估计。可以在1410处计算误差的任何估计,包括但不限于相对于IF信号数据的曲线拟合,与IF信号数据的残差相关的量。任何类型的已知曲线拟合方法可用于曲线拟合IF信号数据,包括但不限于单指数曲线拟合。在不限于任何特定理论的情况下,认为外源性荧光剂(诸如MB-102)从肾脏的清除速率,预期是恒定的指数衰减,其以肾衰减时间常数RDTC为特征。
在一个方面,可以选择对应于后试剂施用时段1508/1510的Flr信号的子集,以相对于参考曲线,估计用于使用等式(20)计算IF信号的指数的每个组合的误差,包括但不限于使用等离子体测量获得的曲线。作为非限制性示例,如果通过静脉注射方式将外源性荧光剂引入患者的组织中,则后试剂施用时段包括注射后的时段,在该时段中,外源性荧光剂已经经历了从血液到整个患者的细胞外流体空间的充分扩散,使得荧光的衰减表示试剂被肾脏清除。在各个方面,Flr测量的后试剂施用时段1508/1510可以在没有限制的情况下通过任何合适的方法来选择。用于识别后试剂施用时段的合适方法的非限制性示例包括:经由用户的检查进行的选择和自动化选择方法,诸如由平衡选择子单元1308启用的平衡检测方法,如下文详细描述的。
图15A是在注射前约3小时后注射外源性荧光剂(MB-102)后约10小时时段内从患者获得的荧光测量的曲线图。参照图15A,注射前/基线时段1502的特征在于相对低且稳定的荧光水平,可能是由于患者血液中不存在内源性荧光剂。在注射外源性荧光剂1503之后,荧光测量显示出急剧增加1504至峰值浓度1506,随后随着肾脏从患者血液中消除外源性荧光剂,相对平滑的指数下降1508回到背景荧光水平。在不限于任何特定理论的情况下,一旦荧光衰减被线性拟合(或半对数曲线上的线)很好地描述,则认为注入的外源性荧光剂很可能在细胞外空间上平衡。图16是图15B的曲线图的放大,图16示出了测量的荧光数据与线性曲线拟合1604和IF信号在后平衡时段1510的一部分内的对数的比较,示出了单指数曲线拟合与IF信号数据的紧密拟合。
在一个方面,所计算的IF信号值的对数可以与线拟合,并且对于指数的多个组合中的每一个,曲线拟合相对于各个IF值的误差可以与使用等式(20)计算的IF信号相比较以在1410计算误差。适合于量化单指数曲线拟合的误差和相应的IF信号值的任何统计性汇总参数可以不受限制地使用,包括但不限于:均方根(RMS)误差、平均绝对偏差、平均有符号偏差、均方根偏差、以及任何其他合适的统计性汇总参数。在一个方面,在1410处计算的误差可以是对数(IF)信号的线性拟合的归一化RMS误差。在这方面,在1410处计算的归一化RMS误差是单个数值量,以便于随后从在1406处识别的多个组合中选择指数的单个组合。
再次参照图14A,方法1400包括在1412处,从在1408处为其计算IF的多个组合中选择指数的单个组合。在不限于任何特定理论的情况下,假定与使在1410处计算的误差最小化的计算的IF信号相关联的指数的组合最适合于校正测量的Flr信号,以在后试剂施用时段1508/1510内的数据采集期间消除患者皮肤的光学性质的变化的影响。在各个方面,可以在没有限制的情况下使用识别指数组合的任何已知方法,包括但不限于,从对应于指数的所有组合的所有误差值的映射中选择指数的单个组合。
在各个方面,对应于指数的多个组合的多个误差值可以被转换成误差映射,该误差映射包括三维体积,其中三维中的每一个分别对应于等式(20)中使用的功率:kex、kem和kem,filtered。在这些不同方面,对应于指数组合之一的每个误差值被映射到三维体积内的坐标(kex1,kem1和kem,filtered1),其中kex1、kem1和kem,filtered1是指数的一个组合的数值。在各个方面,每个误差值可以以任何已知形式映射到三维体,该形式包括但不限于:数字、颜色、灰度值和任何其他合适的形式。
在一个方面,上述误差值的三维映射可以被变换为多个误差表面,该误差表面对应于与功率kex、kem和kem,filtered中的一个的单个值相关联的误差值的平面映射,剩余两个指数的整个数值范围用作误差映射的水平轴和垂直轴。
图17是计算出的IF信号的单指数曲线拟合的归一化RMS误差的误差映射,该误差映射以kem的常数值映射到kem,filtered(水平轴)和kex(垂直轴)的整个范围,其中归一化RMS误差在误差映射上表示为颜色。在一个方面,可以根据等式(21)对针对每个系数计算的归一化RMS值进行归一化:
Figure BDA0003703466030000591
其中IFagent是计算的IF信号,以及fit(IFagent)是单系数曲线拟合等式的相应值。在一个方面,通过如上所述分析单个测量组,全局误差映射方法确定用于皮肤光学特性变化的校正中的功率。在另一方面,全局误差映射方法可以分析和组合使用相同系统和/或传感器头获得的多个个体的多个测量数据集。在又一方面,全局误差映射方法可以分析来自使用多个系统和传感器头获得的多个个体的多个测量数据集。在一个方面,可以针对每个个体的每个测量来确定根据等式(20)在校正中使用的功率。在其他方面,可以使用至少几个不同的测量数据集来获得要使用的功率,并且可以存储这样获得的功率以用于随后用于从新个体获得的和/或使用不同的系统和/或传感器获得的测量数据集。在各个方面,可以检查跨越每个误差表面的投影(kem,filtered-kex投影,kem,filtered-kem投影,和kem-kex投影),以确定在1402定义的功率范围是否足够。在一个方面,可以检查误差表面以确认映射包括明确定义的最小值。在这一个方面,如果对误差映射的检查没有识别出最小值,则可以修改一个或多个功率值的范围,并且可以重复方法1400。在一个方面,可以使用患者皮肤的光学性质(例如黑色素吸收率、血液含量和/或散射系数)的评估来对患者分类,从而可以为该类别选择适当的系数组。
在一个方面,可以存储指数kex、kem和kem,filtered的组合,并将其用于由系统200进行的后续测量。图18是将原始荧光信号(蓝线)与用于测量数据集的计算出的IF信号(红线)进行比较的曲线图。在另一个方面,可通过组合使用多个不同系统和/或传感器头获得的测量值并识别对应于总体最小误差值的指数的组合来计算全局校正。
线性回归方法
在一个方面,在上面等式(20)中使用的功率系数的值是使用线性回归方法经验性地确定的。在图19中提供了示出线性回归方法的各种步骤的流程图,该线性回归方法获得具有预测变量(DRex、DRem、DRem,filtered)的回归方程形式的校正。
参照图19,方法1900可以包括将Flr对数转换为log(Flr)以准备在1902处用于分析的原始荧光测量Flr。图20是在1902处产生的log(Flr)的曲线图。再次参照图19,在一方面,方法1900还可以包括选择稳定光学性质2002的区域(参见图20),在这方面,稳定光学性质2002的区域通常对应于如图20所示的log(Flr)曲线图上的线性段。在这方面,方法1900还包括在1906处获得稳定光学性质2002区域内的线性回归模型2004。线性回归模型2004可以在不受限制的情况下使用任何回归方法获得,该回归方法包括但不限于多变量线性回归建模方法。
再次参照图19,方法1900还可以包括在1908处扩展在稳定光学性质2002的区域内获得的线性回归模型2004,以产生扩展线性回归2008,该扩展线性回归2008扩展到可变光学性质2010的区域。在一个方面,可变光学性质2010的区域的特征在于如图20所示的log(Flr)曲线图内的非线性分布。
再次参照图19,方法1900还可以包括获得线性回归模型2004,其在1910处具有预测变量Flr、DRex、DRem和DRem,filtered以及线性曲线拟合2004作为预测响应。在1908处产生的线性回归2008的扩展可用于训练在1910处获得的线性回归模型。
在一个方面,可以使用从单个个体和/或单个系统和传感器头获得的测量数据集来开发线性回归模型。在另一方面,可以使用从多个个体和/或多个系统和传感器头获得的多个测量数据集来开发线性回归模型。在一些方面,可以针对为个体获得的每个新测量数据集重新开发线性回归模型。在至少一些其它方面,可以存储表征如上所述开发的线性回归模型的常数和参数,用于随后代替如上所述获得的每个测量数据集重新开发线性回归模型。
d)故障检测子单元
再次参照图13,控制器212的处理单元236还可以包括故障检测子单元1312,故障检测子单元1312被配置为监测光源218/220和光检测器222/224的功能,并且经由显示单元216向用户通知系统200内的任何检测到的故障的任何不规则性。在各个方面,故障检测子单元1312可以通过检查从光源218/220和光检测器222/224接收的信号水平以及相关联的传感器头204的附加温度传感器228和附加光检测器226(参见图2)来实现故障和通知状态的基本识别。在各个方面,信号幅度(参见等式(1))和平均信号可用于确定LED光源218/220的调制的峰值和最低点水平。信号的最低点,本文定义为平均信号减去峰峰值信号的一半,在一个方面可以用于监测环境光水平。在不限于任何特定理论的情况下,对于调制信号的最低点水平的额外贡献,诸如放大器DC偏移,可以忽略为相对于环境光泄漏的贡献小且恒定。在一个方面,如果在低检测器放大器增益下检测到的环境光水平记录超过高速ADC1102范围的约四分之一,则经由显示单元216向用户发出环境光通知。
在各种其它方面,光检测器222/224检测器的饱和也可由故障检测子单元1312监测。在这些其它方面,可以通过计算信号的峰值来监测饱和,本文定义为平均信号值加上峰峰值信号的一半。如果信号的峰值落在ADC范围的饱和度的5%内,则故障检测子单元1312可以经由显示单元216向用户发出饱和通知。如果故障检测子单元1312检测到饱和事件,则然后可检查环境光水平以确定饱和事件是否与环境光饱和相关联,本文定义为与如上所述的环境光通知同时发生的饱和事件。如果检测到环境光饱和事件,则故障检测子单元1312经由显示单元216向用户发出环境光饱和通知,并且由采集单元234进行的数据采集在该通知状态下继续,以允许用户解决该状况。如果检测到与过量的环境光不相关联的饱和事件,则故障检测单元可以向光检测器控制单元232发信号以执行检测器增益的调节和/或可以向光源控制单元230发信号以执行对LED电流源1126的调节以调节LED强度。在各个方面,故障检测单元经由显示单元向用户发出通知,以报告环境光饱和事件或与过量环境光无关的饱和事件。在一些方面,如果检测到饱和事件,但是当如上所述将系统200配置为工程模式时,用户已经禁用自动增益控制,则还经由显示单元通知用户。
e)后试剂施用选择子单元
再次参照图13,处理单元236还可以包括后试剂施用选择子单元1308,该后试剂施用选择子单元1308被配置为自动识别测量数据集中与后试剂施用时段1508/1510相对应的部分(参见图15A)。参照图15A,如上所述,在将诸如MB-102的外源性荧光剂注射到患者的血流中后,外源性荧光剂经历从血流扩散到患者的其余细胞外组织中的平衡时段。在试剂注射1503后,荧光信号Flr的时间分布可以表征为由等式(22)描述的双指数信号分布:
Figure BDA0003703466030000631
其中C0是如上所述通常通过基线减法去除的基线信号。
再次参照图15A,一旦外源性荧光剂扩散到患者的细胞外组织中达到准稳态条件,则达到后平衡时段1510,并且荧光信号可以表征为线性衰减。在不限于任何特定理论的情况下,假设测量数据集的后平衡区域被表征为IF时间分布的区域,当对数变换时,IF时间分布的区域由线性等式很好地描述。在一个方面,后平衡区域由等式(23)很好地描述:
IFpost-equilibration=C0+C1e-t/τ 等式(23)
在一个方面,后试剂施用选择子单元1308可以通过在IF数据集的不同部分处执行单指数曲线拟合以及分析不同部分中的每一个的相关曲线拟合误差,来自动识别后试剂施用时段1510。在各个方面,后试剂施用选择子单元1308可以选择IF数据集的最早发生的部分,其中与单指数曲线拟合相关联的曲线拟合误差低于阈值,作为适合于如上所述的数据校正和分析的IF数据集的初始后试剂施用部分。适合于比较与IF数据集的不同部分的单指数曲线拟合相关联的曲线拟合误差的任何分析方法,可用于后试剂施用选择子单元1308中,包括但不限于IF数据集落在重叠或非重叠数据窗口内的线性曲线拟合部分,并比较相应数据窗口的曲线拟合误差。在一个方面,后试剂施用选择子单元1308可以产生至少一个信号,该至少一个信号被配置为向漫反射校正子单元1306和/或RDTC计算子单元1310发出与后试剂施用时段1508/1510相对应的IF数据集内的时间范围的信号,以能够选择IF数据集的适当部分来校正和分析,如本文所公开的。
在另一方面,可以比较对IF数据的线性拟合和2-指数拟合。在该另一个方面,一旦拟合误差等效(对2-指数拟合中的额外自由度的校正),平衡可被识别为完成。
f)RDTC计算子单元
在各个方面,系统200被配置为响应于激发波长处的光的照射,将来自光检测器222/224和相关光源218/220以及其他热和光传感器的各种测量,转换成与检测到的荧光相对应的校正的本征荧光(IF)信号,该校正的本征荧光(IF)信号可仅归因于外源性荧光剂在发射波长处发射的荧光。在各个方面,可以分析IF数据集的后试剂施用部分期间IF信号的指数下降,以监测和量化肾功能。
在一个方面,在IF数据集的后试剂施用部分期间IF信号的指数下降可以被转换成肾小球滤过率(GFR),该肾小球滤过率被配置为量化肾功能。在另一个方面,在IF数据集的后平衡部分期间IF信号的指数下降可以被转换成肾衰减时间常数(RDTC),该肾衰减时间常数也被配置为量化肾功能。在另一个方面,在IF数据集的后平衡部分期间IF信号的指数下降可以被转换成肾衰减率,该肾衰减率也被配置为量化肾功能。
再次参照图13,处理单元236还可以包括RDTC计算子单元1310,RDTC计算子单元1310被配置为将IF信号自动转换为肾衰减时间常数(RDTC)。如本文所用,肾衰减时间常数(RDTC)被定义为与上文等式(23)中描述的后平衡单指数衰减相关联的时间常数。在一个方面,在由基线减法子单元1304进行精确的基线减法后,可以通过对对数变换的IF信号数据(log(IF))执行线性回归来计算肾衰减时间常数τ,如等式(24)所述:
Figure BDA0003703466030000641
在各个方面,RDTC计算子单元1310可以产生信号,该信号被配置为使用显示单元216来生成计算出的RDTC的显示。计算出的RDTC的显示可以以任何合适的形式提供给显示单元216,该形式包括但不限于:RDTC作为时间函数的曲线图、单个离散RDTC值、RDTC值作为时间函数的表、彩色编码显示器或被配置为确定计算出的RDTC是否可以被分类为正常/健康、异常、高、低和任何其他合适的分类的其它图形表示。在各种其它方面,当获得和分析附加数据时,可以连续地或非连续地更新上述图形形式中的任何一种。在一个方面,RDTC计算子单元1310可以在IF数据集中的非重叠和/或重叠窗口内计算如上所述的RDTC。
在另一方面,RDTC计算子单元1310可使用已知方法将RDTC转换成肾小球滤过率(GFR)。在这方面,RDTC可以被反转并乘以斜率,从而产生cGFR,GFR的预测,该GFR的预测可以针对身体尺寸(例如,身体表面积或分布体积)校正。
v)存储器
再次参照图2,系统200的控制器212还可以包括存储器242,存储器242被配置为便于在系统200中存储数据。在一些实施例中,存储器242包括多个存储部件,诸如但不限于硬盘驱动器、闪存、随机存取存储器以及磁盘或光盘。可选地或附加地,存储器242可以包括与控制器212通信的远程存储设备这样的服务器。存储器242存储至少一个计算机程序,当至少一个处理器接收该至少一个计算机程序时,使得至少一个处理器执行上述控制器212的任何功能。在一个实施例中,存储器242可以是或包含计算机可读介质,诸如软盘装置、硬盘装置、光盘装置或磁带装置、闪存或其它类似固态存储器装置,或装置阵列,包括存储区域网络中的装置或其它配置。计算机程序产品可以有形地体现在信息载体中。计算机程序产品还可以包含指令,当指令被执行时,执行一个或多个功能,诸如本文描述的那些功能。信息载体可以是非暂时性计算机或机器可读介质,诸如存储器242或处理器238上的存储器。
在各个方面,系统200可以将原始测量和处理后的数据记录到一系列文件中。每个文件可以包含一个头文件,其中包含关于操作符、工具和会话的信息。每个实验会话都将一组文件记录到该会话中使用的每个传感器头的单独的文件夹中。原始数据文件可以包含激发波长和发射波长LED的有效时段期间,来自检测器和监测器的同相、正交和平均测量值,以及在数据采集时LED和检测器的增益设置。
在各种其它方面,处理后的数据文件可以包含在监测器读数的幅度计算和校正之后的荧光和漫反射测量,以及LED和检测器的增益设置。本征荧光数据文件可以包含由原始荧光信号的漫反射校正产生的本征荧光测量。GFR文件可以包含作为时间函数的计算出的GFR,该GFR被分类以指示是否发生了后平衡,以及置信度界限。遥测文件可以包含温度和电压测量。事件记录文件可以包含用户和自动生成的事件记录。
vi)GUI单元
再次参照图2,在各个方面,控制器212可以包括GUI单元240,GUI单元240被配置为从系统的其它单元接收多个信号,该多个信号对各种测量的和变换的数据进行编码。此外,GUI单元可以被配置为产生信号,该信号被配置为操作显示单元216以显示数据、帧、表格和/或用户与系统200之间的信息的任何其他通信。
vii)处理器
再次参照图2,控制器212还可以包括处理器238。处理器238可以包括解释和执行指令的任何类型的常规处理器、微处理器或处理逻辑。处理器238可以被配置为处理用于在控制器212内执行的指令,包括存储在存储器242中的用于在外部输入/输出装置(诸如耦接到高速接口的显示单元216)上显示GUI的图形信息的指令。在其它实现方式中,可以适当地使用多个处理器和/或多个总线以及多个存储器和多类型的存储器。此外,多个控制器212可以与每个装置连接,该每个装置提供必要操作的一部分以启用系统200的功能。在一些实施例中,处理器238可以包括采集单元234、光检测器控制单元232、光源控制单元230和/或处理单元236。
如本文所使用的,诸如处理器238的处理器可包括任何可编程系统,该可编程系统包括使用微控制器、精简指令集电路(RISC)、专用集成电路(ASIC)、逻辑电路和能够执行本文所描述的功能的任何其它电路或处理器的系统。以上示例仅是示例,并且因此不旨在以任何方式限制术语“处理器”的定义和/或含义。
如本文所述,计算装置和计算机系统包括处理器和存储器。然而,本文所指的计算机装置中的任何处理器也可以指一个或多个处理器,其中处理器可以在一个计算装置中或者在并行操作的多个计算装置中。另外,本文所指的计算机装置中的任何存储器也可以指一个或多个存储器,其中存储器可以在一个计算装置中或者在并行操作的多个计算装置中。
C.操作单元
操作单元214可以被配置为使得用户能够与控制器212接口(例如,视觉、音频、触摸、按钮按压、触笔轻击等)以控制系统200的操作。在一些实施例中,操作单元214可进一步耦接到每个传感器头204以控制每个传感器头204的操作。
D.显示单元
再次参照图2,系统200还可以包括显示单元216,显示单元216被配置为使得用户能够查看系统200的数据和控制信息。显示单元216还可以耦接到系统200的其它组件,诸如传感器头204。显示单元216可以包括视觉显示器,诸如阴极射线管(CRT)显示器、液晶显示器(LCD)、发光二极管(LED)显示器或“电子墨水”显示器。在一些实施例中,显示单元216可以被配置为向用户呈现图形用户界面(例如,web浏览器和/或客户端应用)。图形用户界面可以包括,例如,由系统200产生的如上所述的GFR值的显示,以及系统200的操作数据。
外源标记
在不局限于任何特定理论的情况下,高亲水性和小(肌酐,分子量=113)至中等大小(菊粉,分子量约5500)的分子已知通过肾小球过滤从体循环中迅速清除。除了这些特性外,理想的GFR试剂既不会被肾小管重新吸收也不会分泌,与血浆蛋白的结合可以忽略,并且具有非常低的毒性。为了设计满足所有这些要求的光学探针,在光物理性质与荧光团的分子大小和亲水性之间取得了平衡。例如,虽然疏水性菁染料和吲哚菁染料在近红外(NIR)生物窗口(700至900nm)内最佳地吸收和发射,但亲水性不足以用作纯GFR试剂。较小的染料分子可能更容易转化为肾清除所需的极亲水性物质,但由于这些较低分子量的化合物形成的有限π体系通常能够在紫外线(UV)中激发和发射单光子。
为了解决与增强光物理学性质相关的药物动力学问题,2,5-二氨基吡嗪-3,6-二羧酸的简单衍生物用作极低分子量的荧光支架体系,在电磁波谱的黄到红区有明亮的发射。为了同时优化GFR的药物动力学和光物理性质,已经使用这些衍生物的酰胺连接变体进行了SAR研究。可采用多种亲水性功能,以实现这类吡嗪荧光团的快速肾清除,该吡嗪荧光团包括碳水化合物、醇、氨基酸和各种基于PEG的相关策略。PEG替代物可用于增加亲水性和溶解度,降低毒性,并调节所得吡嗪衍生物的聚集。一系列中等尺寸的PEG吡嗪衍生物的分子量和结构(并且因此流体力学体积)的变化也可适合用作内源荧光剂。
在一方面,外源性荧光剂是MB-102。
示例
下面的示例示出了所公开的系统和方法的各个方面。
示例1:扰动分析
为了证明本文上述漫反射数据校正方法的有效性,进行了以下实验。
使用本文上述方法,特别是漫反射数据校正方法,与本文上述的系统200类似的系统被用来监测在外源性荧光剂MB-102的肾消除期间产生的荧光。
图21A是概括了在将MB-102荧光剂注射到猪体内之前和注射后约6小时的原始荧光信号(Flr)的幅度的变化的曲线图。在后平衡部分期间,对应于图21A中约13:45的时间,猪经受选定的一系列扰动以改变猪皮肤和/或下面组织的光学性质:施用血压药物以诱导血管舒张/血管收缩2102,施加压力以压缩组织2104,传感器头2106的横向移动,SpO2减少2108,SpO2减少2110,去除/替换传感器头2112/2114,以及皮肤冷却2116。
图21B是概括在没有基线减法时,如上所述校正的校正的本征荧光信号(IF)的曲线图。在试剂注射后2小时之后的时间点,IF信号的时间过程以预期的信号单指数衰减为特征,由于所施加的扰动而具有衰减变化。
表4概括了漫反射数据校正方法对与每个单独扰动相关联的Flr数据的具体影响:
表4.漫反射数据校正的效果
<u>扰动</u> <u>校正效果</u>
施加压力 数据偏移/异常值减少
传感器横向移动 数据偏移/异常值减少
SpO<sub>2</sub>降低 IF信号斜率降低改善
SpO<sub>2</sub>增加 IF信号斜率降低改善
去除/更换传感器头 数据偏移/异常值减少
冷却 无明显影响
图21C是概括代入等式(20)中的检测到的漫反射信号DRem,filtered、DRem和DRex的曲线图,以确定如上所述的原始Flr信号的漫反射校正。如图21C所示,DRem,filtered信号对各种扰动最敏感。DRem和DRex信号响应于扰动表现出适度的变化。
这些实验的结果表明,漫反射数据校正能够校正原始荧光信号数据,以补偿引起皮肤光学特性的各种变化的各种扰动的影响。
示例2:带扩口壳体的传感器头
图23是在另一个方面传感器头204a的透视图。在该另一方面,传感器头204a包括由上壳体602a和扩口下壳体604a形成的壳体600a。下壳体604a的表面积扩大以形成扩大的底表面608a。壳体600a还包括穿过上壳体602a形成的线缆开口806a。
图24是示出壳体600a的底表面608a的传感器头204a的仰视图。底表面608a可以包括孔板702a,孔板702a包括一个或多个孔704a,孔704a被配置为在患者皮肤与包含在壳体600内的光源和光检测器之间透射光。如图24所示,孔704a包括配置为将由第一光源218/220和第二光源218/220产生的照射传送到患者202的组织的光传送孔1002a,以及配置为接收来自患者202的组织的光的第一和第二检测器孔1004/1006。在一个方面,底表面608a能够将孔704a定位在相对较大的区域下方,该相对较大区域被底表面608a以环境光条件遮蔽。进入第一检测器孔1004/1006和第二检测器孔1004/1006的散射环境光的这种减少,使引入到由第一和第二光检测器222/224获得的光强度测量中的噪声减少。
在各个方面,壳体600a的底表面608a可以使用生物相容性和透明性粘合剂材料610a附接患者的皮肤,该生物相容性和透明性粘合剂材料610a包括但不限于透明双面医用级粘合剂,如图24所示。透明粘合剂材料610a可以定位在底表面608a上,使得粘合剂材料610a覆盖孔704a。
图25是传感器头204a的等轴视图,其中移除上壳体602a和各种电气部件以露出内壳体2502。图26是图25所示的内壳体2502和相关联的电气部件的分解图。参照图25和图26,内壳体2502包含在壳体600a内并且安装到下壳体608a。内壳体2502包含传感器安装件912,传感器安装件912具有第一检测井908、第二检测井910和穿过其中形成的光源井902。第一光检测器222安装在第一检测井908内,并且第二光检测器224安装在第二检测井910内。第一和第二光源218/220安装在光源井902内。在一方面,传感器安装件912的第一检测井908、第二检测井910和光源井902彼此光学隔离,以确保来自光源218/220的光在未通过患者202的皮肤耦合的情况下不会到达光检测器222/224。如上详细所述,两个检测井908/910之间的分离确保了来自外源性荧光剂的检测到的荧光信号与未滤波的激发光是可区分的。
参照图26,内壳体2502包括第一检测孔2602、第二检测孔2604和光源孔2606。传感器安装件912耦接到内壳体2502,使得第一检测孔2602、第二检测孔2604和光源孔2606分别与传感器安装件912的第一检测井908、第二检测井910和光源井902对准。
在一个方面,光学透明窗口2610、2612和2614分别耦接在第一检测孔2602、第二检测孔2604和光源孔2606内,以密封孔,同时还在组织和传感器头204a的内部之间提供光学透明导管。此外,漫射器2616、2618和2620分别在光学透明窗口2610、2612和2614上耦接。漫射器2616、2618和2620被设置成使由光源218/220传送到组织的光在空间上均匀化,并使由光检测器222/224检测到的光在空间上均匀化。在一个方面,吸收滤波器244耦接到扩散器2616。在一个方面,使用光学透明粘合剂将吸收滤波器244耦接到漫射器2616。
鉴于上述,可以看出,实现了本公开的多个优点,并且获得了其它有利的结果。由于在不背离本公开的范围的情况下可以对上述方法和系统进行各种改变,所以包含在上述描述中并在附图中示出的所有内容应当被解释为说明性的而不是限制性的意义。
当引入本公开的元件或其各种版本、实施例或方面时,文章“一个”、“一种”、“该”和“所述”旨在表示存在一个或多个元件。术语“包括”、“包含”和“具有”旨在具有包容性,并且意味着除了所列出的元件之外可能还有附加的元件。

Claims (9)

1.一种监测从来自具有时变光学性质的漫反射介质内的荧光剂发射的时变荧光信号的方法,所述方法包括:
设置包括多个测量数据条目的测量数据集,每个测量数据条目包括在施用所述荧光剂之前和之后在一个数据采集时间从患者共同获得的至少两个测量值,所述至少两个测量值选自:
在由来自邻近所述漫反射介质的第一区域的激发波长光照射所述漫反射介质期间,由未滤波光检测器在邻近所述漫反射介质的第二区域处检测到的DRex信号,其中,所述DRex信号表示由所述未滤波光检测器从所述第二区域接收的所有光的组合强度;
在由来自所述第一区域的激发波长光照射所述漫反射介质期间,由滤波光检测器在邻近所述漫反射介质的第三区域处检测到的Flr信号,其中,所述Flr信号表示由所述滤波光检测器从所述第三区域接收的发射波长光的强度;
在由来自所述第一区域的发射波长光照射所述漫反射介质期间,由所述未滤波光检测器在所述第二区域处检测到的DRem信号,其中,所述DRem信号表示由所述未滤波光检测器从所述第二区域接收的所有光的所述组合强度;以及
在由来自所述第一区域的发射波长光照射所述漫反射介质期间由所述滤波光检测器在所述第三区域处检测到的DRem,filtered信号;其中,所述DRem,filtered信号表示由所述滤波光检测器从所述第三区域接收的发射波长光的组合强度;
识别所述测量数据集的后试剂施用部分;以及
将所述测量数据集的所述后试剂施用部分内的每个测量数据条目的每个Flr信号转换为IF信号,所述IF信号表示仅由来自所述漫反射介质内的所述荧光剂发射的检测到的荧光强度,其中,转换包括根据转换关系组合所述至少两个测量值,所述转换关系包括将Flr转换为IF的数学等式;
其中,所述至少两个测量值中的至少一个包括所述Flr信号。
2.根据权利要求1所述的方法,其中,所述转换关系由等式(20)组成:
Figure FDA0003703466020000021
其中,IF表示仅由所述荧光剂发射的荧光强度,并且kex、kem和kem,filtered分别是项DRex、DRem和DRem,filtered的指数;
其中,DRex、DRem和DRem,filtered表示漫反射校正测量信号。
3.根据权利要求2所述的方法,其中,kex、kem和kem,filtered是从先前测量数据集的先前分析中预先确定的。
4.根据权利要求2所述的方法,其中,通过全局误差映射方法确定kex、kem和kem,filtered,包括:
形成建议的指数值的三个向量,三个向量中的每个向量分别包括kex、kem和kem,filtered的多个建议值;
使用来自所述三个向量的建议值的每个组合,根据所述转换关系,对所述测量数据的所述后试剂施用部分内的每个测量数据条目的每个Flr信号进行转换,以形成多个转换后的数据测量集;
对所述多个转换后的数据测量集中的每个数据测量集的所述测量数据条目的至少一部分,执行单指数曲线拟合以获得多个曲线拟合误差,每个曲线拟合误差对应于来自所述三个向量的建议的指数值的一个组合;
汇编误差映射,所述误差映射包括映射到由两个或多个正交轴限定的体积的所述多个曲线拟合误差的至少一部分,每个正交轴包括来自所述三个向量中的一个向量的建议的指数值的范围;
识别所述误差映射内的最小曲线拟合误差;以及
选择与所述最小曲线拟合误差相对应的建议的指数值以用于等式(20)。
5.根据权利要求4所述的方法,其中,所述多个曲线拟合误差中的每个曲线拟合误差包括所述单指数曲线拟合的归一化均方根拟合误差。
6.根据权利要求1所述的方法,其中,所述转换关系由线性回归模型组成,所述线性回归模型使用所述多个测量数据条目的低可变性部分由预测变量DRex、DRem和DRem,filtered形成,多个测量数据条目的低可变性部分的特征在于曲线拟合误差低于用于所述低可变性部分的测量数据条目的单指数曲线拟合的阈值;
其中,DRex、DRem和DRem,filtered表示漫反射校正测量信号。
7.根据权利要求6所述的方法,其中,所述线性回归模型被外推到低可变性区域之外的测量数据条目。
8.根据权利要求1所述的方法,其中,还包括在将所述测量数据集的所述后试剂施用部分内的每个测量数据条目的每个Flr信号转换为IF信号之前,从多个测量数据集的每个Flr值中减去Flr的基线值。
9.根据权利要求2所述的方法,其中,kex、kem和kem,filtered中的任何一个或多个等于0。
CN202210697974.4A 2017-01-30 2018-01-30 利用漫反射校正的荧光示踪剂的非入侵监测方法 Pending CN115120241A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762452025P 2017-01-30 2017-01-30
US62/452,025 2017-01-30
CN201880008812.7A CN110520035B (zh) 2017-01-30 2018-01-30 利用漫反射校正的荧光示踪剂的非入侵监测方法
PCT/US2018/016041 WO2018140978A1 (en) 2017-01-30 2018-01-30 Method for non-invasive monitoring of fluorescent tracer agent with diffuse reflection corrections

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201880008812.7A Division CN110520035B (zh) 2017-01-30 2018-01-30 利用漫反射校正的荧光示踪剂的非入侵监测方法

Publications (1)

Publication Number Publication Date
CN115120241A true CN115120241A (zh) 2022-09-30

Family

ID=62977348

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201880008812.7A Active CN110520035B (zh) 2017-01-30 2018-01-30 利用漫反射校正的荧光示踪剂的非入侵监测方法
CN202110122084.6A Pending CN112932413A (zh) 2017-01-30 2018-01-30 传感器头
CN202210697974.4A Pending CN115120241A (zh) 2017-01-30 2018-01-30 利用漫反射校正的荧光示踪剂的非入侵监测方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201880008812.7A Active CN110520035B (zh) 2017-01-30 2018-01-30 利用漫反射校正的荧光示踪剂的非入侵监测方法
CN202110122084.6A Pending CN112932413A (zh) 2017-01-30 2018-01-30 传感器头

Country Status (15)

Country Link
US (5) US10548521B2 (zh)
EP (1) EP3573518A4 (zh)
JP (2) JP6861288B2 (zh)
KR (2) KR102306048B1 (zh)
CN (3) CN110520035B (zh)
AU (1) AU2018213422B2 (zh)
BR (1) BR112019015520A2 (zh)
CA (2) CA3203465A1 (zh)
IL (2) IL300236B2 (zh)
MX (2) MX2019009040A (zh)
PH (1) PH12019501749A1 (zh)
RU (1) RU2721652C1 (zh)
SG (2) SG10202108183SA (zh)
WO (1) WO2018140978A1 (zh)
ZA (1) ZA201904973B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102327738B1 (ko) 2015-06-18 2021-11-17 삼성전기주식회사 반도체 패키지 및 반도체 패키지의 제조 방법
KR20180052089A (ko) * 2016-11-09 2018-05-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전자 기기의 동작 방법
MX2019011977A (es) 2017-10-27 2020-01-27 Medibeacon Inc Composiciones y sistemas para la determinacion de la funcion renal.
US11513002B2 (en) 2018-12-12 2022-11-29 Hamamatsu Photonics K.K. Light detection device having temperature compensated gain in avalanche photodiode
WO2020121852A1 (ja) 2018-12-12 2020-06-18 浜松ホトニクス株式会社 光検出装置
JP7454917B2 (ja) 2018-12-12 2024-03-25 浜松ホトニクス株式会社 光検出装置
AU2019423269A1 (en) * 2019-01-16 2021-07-29 Medibeacon Inc. Two piece sensor assembly and method of use
WO2020163349A1 (en) 2019-02-04 2020-08-13 Copious Imaging Llc Systems and methods for digital imaging using computational pixel imagers with multiple in-pixel counters
WO2021178771A1 (en) * 2020-03-06 2021-09-10 Verily Life Sciences Llc Temperature sensor and fever alert generator with tunable parameters
WO2022020174A1 (en) * 2020-07-24 2022-01-27 Medibeacon Inc. Systems and methods for home transdermal assessment of gastrointestinal function
KR20220046186A (ko) * 2020-10-07 2022-04-14 삼성전자주식회사 전자 장치 및 전자 장치에서 피부 형광 측정 방법
EP4019916A1 (en) * 2020-12-23 2022-06-29 OTT HydroMet B.V. Pyranometer
CN113476043A (zh) * 2021-07-01 2021-10-08 深圳亿杉医疗科技有限公司 一种非侵入式传感装置及检测方法、检测仪
CN113720825B (zh) * 2021-11-04 2022-02-08 四川丹诺迪科技有限公司 光学即时检测器及检测方法和应用
DE102022121505A1 (de) 2022-08-25 2024-03-07 Carl Zeiss Meditec Ag Verfahren, Computerprogramm und Datenverarbeitungseinheit zur Vorbereitung der Beobachtung einer Fluoreszenzintensität, Verfahren zum Beobachten einer Fluoreszenzintensität und optisches Beobachtungssystem
CN115728276B (zh) * 2022-11-14 2024-01-23 中船重工安谱(湖北)仪器有限公司 爆炸物检测方法和检测系统

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE206395T1 (de) 1990-05-15 2001-10-15 Hyperion Inc Fluoreszierende porphyrin- und fluoreszierende phthalocyanin-polyethylenglykol-, polyol- und saccharidderivate als fluoreszierende sonden
WO1994012096A1 (en) 1992-12-01 1994-06-09 Somanetics Corporation Patient sensor for optical cerebral oximeters
US5847395A (en) * 1996-10-23 1998-12-08 Siemens Medical Systems Adaptive baseline correction for gamma camera
EP0934986A1 (de) 1997-12-17 1999-08-11 Roche Diagnostics GmbH Farbstoff-Polyaccharid- bzw. Cyclosaccharid-Konjugate und deren Verwendung als Diagnostikum
US6720572B1 (en) 1999-06-25 2004-04-13 The Penn State Research Foundation Organic light emitters with improved carrier injection
DE10023051B4 (de) 2000-05-11 2004-02-19 Roche Diagnostics Gmbh Verfahren zur Herstellung von Fluoresceinisothiocyanat-Sinistrin, dessen Verwendung und Fluoresceinisothiocyanat-Sinistrin enthaltende diagnostische Zubereitung
JP2001321363A (ja) * 2000-05-16 2001-11-20 Nippon Koden Corp 生体パラメータ計測装置
GB2369428B (en) 2000-11-22 2004-11-10 Imperial College Detection system
US6697652B2 (en) * 2001-01-19 2004-02-24 Massachusetts Institute Of Technology Fluorescence, reflectance and light scattering spectroscopy for measuring tissue
US20030215391A1 (en) 2001-07-19 2003-11-20 Carlos Rabito Fluorescent agents for real-time measurement of organ function
US6619838B2 (en) 2001-08-22 2003-09-16 Scimed Life Systems, Inc. Two-piece sensor assembly
US6909912B2 (en) 2002-06-20 2005-06-21 University Of Florida Non-invasive perfusion monitor and system, specially configured oximeter probes, methods of using same, and covers for probes
DE10249853A1 (de) 2002-10-25 2004-05-13 Liedtke, Rainer K., Dr. Pflasterartige Chip-Systeme zur thermodynamischen Kontrolle topisch dermaler und transdermaler Systeme
CA2516497A1 (en) 2003-02-19 2004-09-02 Sicel Technologies Inc. In vivo fluorescence sensors, systems, and related methods operating in conjunction with fluorescent analytes
WO2004096082A2 (en) 2003-04-24 2004-11-11 The Board Of Regents Of The University Of Texas System Noninvasive blood analysis by optical probing of the veins under the tongue
US7050175B1 (en) 2003-08-08 2006-05-23 Carl Zeiss Smt Ag Method for calibrating an interferometer apparatus, for qualifying an optical surface, and for manufacturing a substrate having an optical surface
US20060095102A1 (en) 2003-09-17 2006-05-04 Thomas Perez Method and apparatus for sublingual application of light to blood
US20050137459A1 (en) 2003-12-17 2005-06-23 Scimed Life Systems, Inc. Medical device with OLED illumination light source
CA2604491A1 (en) 2004-04-14 2005-10-27 Led Medical Diagnostics, Inc. Systems and methods for detection of disease including oral scopes and ambient light management systems (alms)
US20060020216A1 (en) 2004-07-20 2006-01-26 Sharp Kabushiki Kaisha Medical information detection apparatus and health management system using the medical information detection apparatus
DE102004045748A1 (de) 2004-09-21 2006-04-06 Roche Diagnostics Gmbh Stöchiometrisch definierte farbstoffmarkierte Substanzen zur Messung der glomerulären Filtrationsrate, ihre Herstellung und Verwendung
DE102004048864A1 (de) 2004-10-07 2006-04-13 Roche Diagnostics Gmbh Analytisches Testelement mit drahtloser Datenübertragung
US8103331B2 (en) 2004-12-06 2012-01-24 Cambridge Research & Instrumentation, Inc. Systems and methods for in-vivo optical imaging and measurement
US20080312540A1 (en) * 2004-12-08 2008-12-18 Vasilis Ntziachristos System and Method for Normalized Flourescence or Bioluminescence Imaging
EP1854790B1 (en) 2004-12-23 2011-08-31 Mallinckrodt, Inc. Fluorescent pyrazine derivatives and methods of using the same in assessing renal function
US8664392B2 (en) 2004-12-23 2014-03-04 Medibeacon, LLC Pyrazine derivatives for bioconjugation
US20060224055A1 (en) 2005-03-30 2006-10-05 Kermani Mahyar Z Fluorescence measurement analytical kit
US8329143B2 (en) * 2005-04-19 2012-12-11 Indiana University Research And Technology Corporation Method and apparatus for kidney function analysis
US7993585B2 (en) 2005-07-14 2011-08-09 Battelle Memorial Institute Biological and chemical monitoring
US20070036723A1 (en) 2005-08-09 2007-02-15 Hayter Paul G Kinematic adhesive fluorescence measurement patch
US20070038046A1 (en) 2005-08-09 2007-02-15 Hayter Paul G Kinematic fluorescence measurement band
CA2944254A1 (en) * 2005-10-24 2007-05-03 Marcio Marc Abreu Apparatus and method for measuring biologic parameters
AU2006340061A1 (en) 2006-02-24 2007-09-20 Mallinckrodt Llc Process for using optical agents
EP2029554B1 (en) 2006-06-22 2014-03-19 MediBeacon, LLC Pyrazine derivatives and uses thereof in renal monitoring
US20080082004A1 (en) 2006-09-08 2008-04-03 Triage Wireless, Inc. Blood pressure monitor
KR100853655B1 (ko) 2006-12-15 2008-08-25 한국전기연구원 피부 질환의 광학 진단 및 치료를 위한 장치, 광원 시스템 및 장치의 이용방법
WO2009005748A1 (en) * 2007-06-29 2009-01-08 The Trustees Of Columbia University In The City Ofnew York Optical imaging or spectroscopy systems and methods
WO2009055095A1 (en) 2007-10-19 2009-04-30 Visen Medical, Inc. Imaging systems featuring waveguiding compensation
JP2011521899A (ja) * 2008-04-18 2011-07-28 ファーマコフォトニクス,インコーポレイティド 腎機能の分析方法及び装置
US8361775B2 (en) * 2008-05-14 2013-01-29 Novadaq Technologies Inc. Imaging methods and compositions comprising fluorescent dyes associated with viral components for nerve imaging
CN104939806B (zh) * 2008-05-20 2021-12-10 大学健康网络 用于基于荧光的成像和监测的装置和方法
EP2317911B8 (de) 2008-08-22 2019-03-20 MediBeacon Inc. Transkutane organfunktionsmessung
EP2376458A1 (en) 2008-12-17 2011-10-19 Mallinckrodt LLC Modified pyrazine derivatives and uses thereof
US9084554B2 (en) * 2009-03-19 2015-07-21 The Regents Of The University Of California Multi-phase pseudo-continuous arterial spin labeling
CA2784576C (en) * 2009-12-15 2020-01-07 Shuming Nie System and methods for providing real-time anatomical guidance in a diagnostic or therapeutic procedure
JP2013515528A (ja) 2009-12-23 2013-05-09 デルタ、ダンスク・エレクトリニク、リス・オ・アクスティク モニタリングデバイス
EP4160192A1 (en) * 2010-01-25 2023-04-05 University Health Network Device, system and method for quantifying fluorescence and optical properties
WO2011089258A2 (en) * 2010-01-25 2011-07-28 Imec A variability-aware reliability simulation method of electronic systems
FR2957599B1 (fr) * 2010-03-18 2014-01-10 Commissariat Energie Atomique Procede de depolymerisation de biomasse lignocellulosique
US8818733B2 (en) * 2010-04-20 2014-08-26 Mayo Foundation For Medical Education And Research Determination of photodynamic therapy (PDT) treatment parameters
US20120065519A1 (en) * 2010-07-09 2012-03-15 Niculae Mincu Method and system for collecting optical data for use in time resolved optical imaging of a turbid media
US9066657B2 (en) * 2010-11-23 2015-06-30 General Electric Company Methods and systems of optical imaging for target detection in a scattering medium
US20120172679A1 (en) 2010-12-30 2012-07-05 Logan Robert J Systems and methods for monitoring and processing biometric data
WO2012149227A2 (en) 2011-04-26 2012-11-01 Incube Labs, Llc Mouthpiece for measurement of biometric data of a diver and underwater communication
US20130109963A1 (en) * 2011-10-31 2013-05-02 The University Of Connecticut Method and apparatus for medical imaging using combined near-infrared optical tomography, fluorescent tomography and ultrasound
US20130289414A1 (en) * 2012-03-09 2013-10-31 Mahmoudreza Adibnazari Combined absorption-reflection based instrument and technique to measure antioxidants (including carotenoids) in human tissue
US9155473B2 (en) 2012-03-21 2015-10-13 Korea Electrotechnology Research Institute Reflection detection type measurement apparatus for skin autofluorescence
KR101454298B1 (ko) 2013-01-29 2014-10-27 한국전기연구원 반사광 검출용 피라미드형 피부 형광 측정 장치
US9955871B2 (en) * 2012-03-21 2018-05-01 Korea Electrotechnology Research Institute Transmitted light detection type measurement apparatus for skin autofluorescence
DE102012018076B4 (de) * 2012-09-13 2014-06-12 Lohmann Gmbh & Co. Kg Klebender Funktionsstreifen zur transkutanen Fluoreszenzmessung sowie zugehörige Herstellungsverfahren und Verwendungen
WO2014062716A1 (en) 2012-10-15 2014-04-24 Visen Medical, Inc. Systems, methods, and apparatus for imaging of diffuse media featuring cross-modality weighting of fluorescent and bioluminescent sources
US9386932B2 (en) 2012-10-29 2016-07-12 Microsoft Technology Licensing, Llc Wearable personal information system
US9704209B2 (en) 2013-03-04 2017-07-11 Hello Inc. Monitoring system and device with sensors and user profiles based on biometric user information
US10045722B2 (en) * 2013-03-14 2018-08-14 Profusa, Inc. Method and device for correcting optical signals
JP6502630B2 (ja) * 2013-09-30 2019-04-17 株式会社リコー 光学センサ、光学検査装置、及び光学特性検出方法
WO2015059083A1 (en) * 2013-10-22 2015-04-30 Ralf Heinrich Improved transcutaneous organ function measurement
CN110174170A (zh) * 2014-03-21 2019-08-27 海佩尔梅德影像有限公司 紧凑型光传感器
WO2016055260A1 (en) * 2014-10-09 2016-04-14 Koninklijke Philips N.V. Optical vital signs sensor.
JP2016112375A (ja) 2014-12-16 2016-06-23 イオム株式会社 皮膚蛍光測定装置
JP6523468B2 (ja) * 2015-02-02 2019-06-05 ノバダック テクノロジーズ ユーエルシー 対象の組織を特徴付けるための方法およびシステム
US11590244B2 (en) 2017-10-27 2023-02-28 Medibeacon Inc. Methods for renal function determination

Also Published As

Publication number Publication date
CN110520035B (zh) 2023-03-10
JP6861288B2 (ja) 2021-04-21
CN110520035A (zh) 2019-11-29
BR112019015520A2 (pt) 2020-03-17
JP7263425B2 (ja) 2023-04-24
US10952656B2 (en) 2021-03-23
JP2020506764A (ja) 2020-03-05
US20210219883A1 (en) 2021-07-22
US20180214057A1 (en) 2018-08-02
IL268335B2 (en) 2023-07-01
EP3573518A1 (en) 2019-12-04
US11950907B2 (en) 2024-04-09
IL268335B1 (en) 2023-03-01
RU2721652C1 (ru) 2020-05-21
US10548521B2 (en) 2020-02-04
US20230021174A1 (en) 2023-01-19
US10980459B2 (en) 2021-04-20
KR102429632B1 (ko) 2022-08-05
IL300236A (en) 2023-03-01
WO2018140978A1 (en) 2018-08-02
SG11201906938WA (en) 2019-08-27
CA3203465A1 (en) 2018-08-02
EP3573518A4 (en) 2020-11-04
US20200383617A1 (en) 2020-12-10
KR20190107720A (ko) 2019-09-20
IL300236B2 (en) 2024-04-01
MX2023002896A (es) 2023-04-05
JP2021106888A (ja) 2021-07-29
MX2019009040A (es) 2019-11-11
PH12019501749A1 (en) 2020-06-01
NZ755765A (en) 2021-03-26
KR102306048B1 (ko) 2021-09-29
SG10202108183SA (en) 2021-09-29
KR20210118253A (ko) 2021-09-29
CA3051963A1 (en) 2018-08-02
IL300236B1 (en) 2023-12-01
AU2018213422A1 (en) 2019-09-19
ZA201904973B (en) 2020-05-27
CN112932413A (zh) 2021-06-11
AU2018213422B2 (en) 2020-02-06
US11478172B2 (en) 2022-10-25
US20200138352A1 (en) 2020-05-07
IL268335A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
CN110520035B (zh) 利用漫反射校正的荧光示踪剂的非入侵监测方法
CN110476051B (zh) 具有背景分离校正的荧光示踪剂的非入侵性监测方法
NZ755765B2 (en) Method for non-invasive monitoring of fluorescent tracer agent with diffuse reflection corrections
NZ755760B2 (en) Method for non-invasive monitoring of fluorescent tracer agent with background separation corrections

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40072656

Country of ref document: HK