CN115051572A - 带有串联谐振型lc功率自均衡单元的iios变换器及方法 - Google Patents

带有串联谐振型lc功率自均衡单元的iios变换器及方法 Download PDF

Info

Publication number
CN115051572A
CN115051572A CN202210498420.1A CN202210498420A CN115051572A CN 115051572 A CN115051572 A CN 115051572A CN 202210498420 A CN202210498420 A CN 202210498420A CN 115051572 A CN115051572 A CN 115051572A
Authority
CN
China
Prior art keywords
switch tube
conversion module
switching tube
pulse signal
frequency pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210498420.1A
Other languages
English (en)
Inventor
侯鹏辉
朱小全
侯锦涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202210498420.1A priority Critical patent/CN115051572A/zh
Publication of CN115051572A publication Critical patent/CN115051572A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

本发明公开了一种带有串联谐振型LC功率自均衡单元的IIOS变换器及方法,IIOS变换器包括N个变换模块和一个并网电抗器Lg;变换模块包含光伏阵列、滤波电容Ci、开关管S1~S4、开关管Q1~Q4、变压器、电感L­SM、滤波电容Co、谐振电感Lbr和谐振电容Cbr。本发明针对采用IIOS结构的光伏直流升压并入中高压直流电网应用场合,该变换器副边开关管50%占空比互补导通,通过控制子模块移相角实现光伏MPPT,控制简单;将均衡单元开关管与子模块副边开关管集成,减少了有源器件数量,降低了成本;在其光伏阵列功率失配时均衡各模块的输出电压,避免了器件过压损坏,保证了MPPT有效运行,提高了经济性。

Description

带有串联谐振型LC功率自均衡单元的IIOS变换器及方法
技术领域
本发明涉及光伏多端口直流变换器技术领域,尤其涉及一种带有串联谐振型LC功率自均衡单元的IIOS变换器及方法。
背景技术
伴随可再生能源发电技术的持续发展,分布式光伏式发电渗透率显著增长,分布式光伏发电并入中高压直流电网前景广阔。由于单个太阳能光伏阵列输出的直流电压较低,无法满足并入直流电网所需的电压等级,需要在其中引入能够把低电压泵升为高电压的高增益变换器,以接入中高压直流电网。IIOS 型架构具有输入独立输出串联的特征,可在保持变换器整体单级功率变换结构的条件下同时实现多输入端口独立控制与串联高增益输出,该型变换器拓扑架构简洁清晰、是实现高效率、高增益、多输入支路直流升压变换的理想方案。由于各子模块输出侧串联连接,在输出电流相同的情况下,若输入功率出现差异则会导致各子模块输出电压不均,可能导致某些子模块退出MPPT运行,若输入功率差异过大还会导致器件过压损坏。常见的解决方案是在输出侧通过增加额外电路拓扑实现输出功率流动,包括Buck-Boost型电路、串联LC支路等,但对于目前的研究拓扑中,往往存在控制策略复杂、器件过多、调节时间长等问题,所以需要对现有的均压方法进行优化。
发明内容
本发明所要解决的技术问题是针对背景技术中所涉及到的缺陷,提供一种带有串联谐振型LC功率自均衡单元的IIOS变换器及方法。
本发明为解决上述技术问题采用以下技术方案:
带有串联谐振型LC功率自均衡单元的IIOS变换器,包括N个变换模块和一个并网电抗器Lg,N为大于等于2的自然数;
所述变换模块包含光伏阵列、滤波电容Ci、开关管S1 ~S4、开关管Q1~Q4、变压器、电感LSM、滤波电容Co、谐振电感Lbr和谐振电容Cbr
所述开关管S1的漏极分别和所述开关管S3的漏极、滤波电容Ci的一端、光伏阵列的正极相连,开关管S1的源极分别和所述变压器原边线圈的一端、开关管S2的漏极相连;
所述开关管S2的源极分别和所述开关管S4的源极、滤波电容Ci的另一端、光伏阵列的负极相连;
所述开关管S3的源极分别和所述变压器原边线圈的另一端、开关管S4的漏极相连;
所述开关管Q1的漏极分别和所述滤波电容Co的一端、开关管Q3的漏极相连,作为变换模块的连接点a;开关管Q1的源极分别和电感LSM的一端、开关管Q2的漏极相连;
所述电感LSM的另一端和所述变压器副边线圈的一端相连;
所述开关管Q2的源极分别和所述滤波电容Co的另一端、开关管Q4的源极相连,作为变换模块的连接点b;
所述开关管Q3的源极分别和所述谐振电感Lbr的一端、开关管Q4的漏极、变压器副边线圈的另一端相连;
所述谐振电容Cbr的一端和所述谐振电感Lbr的一端相连,谐振电容Cbr的另一端作为变换模块的连接点c;
所述第m个变换模块的连接点b和第m+1个变换模块的连接点a相连,且N个变换模块的连接点c相连,m为大于等于1小于N的自然数;
所述第1个变换模块的连接点a和所述并网电抗器Lg的一端相连,并网电抗器Lg的另一端作为IIOS变换器的一个输出端;所述第N个变换模块的连接点b作为IIOS变换器的另一个输出端。
本发明还公开了一种该带有串联谐振型LC功率自均衡单元的IIOS变换器的驱动方法,对各个变换模块实行独立的MPPT控制,对于每个变换模块,其MPPT控制的具体步骤如下:
步骤1),采用占空比为50%的高频脉冲信号1作为变换模块开关管Q1、开关管Q4的栅极触发信号;
步骤2),将高频脉冲信号1输入到反相器,得到高频脉冲信号2;
步骤3),将高频脉冲信号2作为变换模块开关管Q2、开关管Q3的栅极触发信号;
步骤4),采集变换模块的输入侧电压vin、输入侧电压vin并将其输入到MPPT控制器,MPPT控制器输出变换模块的移相角dSM
步骤5),将高频脉冲信号1与移相角dSM输入到移相器,得到高频脉冲信号3;
步骤6),将高频脉冲信号3作为变换模块开关管S1、开关管S4的栅极触发信号;
步骤7),将高频脉冲信号3输入到反相器,得到高频脉冲信号4;
步骤8),将高频脉冲信号4作为变换模块开关管S2、开关管S3的栅极触发信号。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
本发明的带有串联谐振型LC功率自均衡单元的IIOS变换器,通过将输出侧滤波电容进行串联获得高的升压比,同时每个子模块仅需增加一条低值LC支路,利用谐振传递不均衡功率,即可实现输出侧滤波电容的电压均衡,在实现每个子模块独立MPPT运行的情况下,保证了变换器安全可靠的运行,所有开关管均可零电压开通,开关损耗小,变换器效率高,同时通过开关管集成减少有源器件的使用数量,降低了本发明的成本,具有良好的经济性。
附图说明
图1为本发明的电路拓扑结构示意图;
图2为本发明的控制信号以及触发脉冲示意图;
图3为本发明正常工作的电路波形示意图;
图4(a)至图4(f)分别为本发明在一个开关周期内两个变换模块的第一个到第六个工作模态的等效电路图;
图5(a)为N=4、t=0.3s时四个变换模块输入功率出现跌落时其滤波电容Co的电压波形对比示意图;
图5(b)为N=4、t=0.3s时四个变换模块输入功率出现跌落时其谐振电容Cbr的电流电压波形示意图;
图5(c)是本发明在稳态工作下第二个变换模块电感LSM的电压电流仿真波形图;
图5(d)是开关管S1 ,1的电压电流以及触发脉冲波形示意图;
图5(e)是开关管Q1,1的电压以及触发脉冲波形示意图。
具体实施方式
下面结合附图对本发明的技术方案做进一步的详细说明:
本发明可以以许多不同的形式实现,而不应当认为限于这里所述的实施例。相反,提供这些实施例以便使本公开透彻且完整,并且将向本领域技术人员充分表达本发明的范围。在附图中,为了清楚起见放大了组件。
如图1所示,本发明公开了一种带有串联谐振型LC功率自均衡单元的IIOS变换器,包括N个变换模块和一个并网电抗器Lg,N为大于等于2的自然数;
所述变换模块包含光伏阵列、滤波电容Ci、开关管S1 ~S4、开关管Q1~Q4、变压器、电感LSM、滤波电容Co、谐振电感Lbr和谐振电容Cbr
所述开关管S1的漏极分别和所述开关管S3的漏极、滤波电容Ci的一端、光伏阵列的正极相连,开关管S1的源极分别和所述变压器原边线圈的一端、开关管S2的漏极相连;
所述开关管S2的源极分别和所述开关管S4的源极、滤波电容Ci的另一端、光伏阵列的负极相连;
所述开关管S3的源极分别和所述变压器原边线圈的另一端、开关管S4的漏极相连;
所述开关管Q1的漏极分别和所述滤波电容Co的一端、开关管Q3的漏极相连,作为变换模块的连接点a;开关管Q1的源极分别和电感LSM的一端、开关管Q2的漏极相连;
所述电感LSM的另一端和所述变压器副边线圈的一端相连;
所述开关管Q2的源极分别和所述滤波电容Co的另一端、开关管Q4的源极相连,作为变换模块的连接点b;
所述开关管Q3的源极分别和所述谐振电感Lbr的一端、开关管Q4的漏极、变压器副边线圈的另一端相连;
所述谐振电容Cbr的一端和所述谐振电感Lbr的一端相连,谐振电容Cbr的另一端作为变换模块的连接点c;
所述第m个变换模块的连接点b和第m+1个变换模块的连接点a相连,且N个变换模块的连接点c相连,m为大于等于1小于N的自然数;
所述第1个变换模块的连接点a和所述并网电抗器Lg的一端相连,并网电抗器Lg的另一端作为IIOS变换器的一个输出端;所述第N个变换模块的连接点b作为IIOS变换器的另一个输出端。
如图2所示,本发明还公开了一种该带有串联谐振型LC功率自均衡单元的IIOS变换器的驱动方法,对各个变换模块实行独立的MPPT控制,对于每个变换模块,其MPPT控制的具体步骤如下:
步骤1),采用占空比为50%的高频脉冲信号1作为变换模块开关管Q1、开关管Q4的栅极触发信号;
步骤2),将高频脉冲信号1输入到反相器,得到高频脉冲信号2;
步骤3),将高频脉冲信号2作为变换模块开关管Q2、开关管Q3的栅极触发信号;
步骤4),采集变换模块的输入侧电压vin、输入侧电压vin并将其输入到MPPT控制器,MPPT控制器输出变换模块的移相角dSM
步骤5),将高频脉冲信号1与移相角dSM输入到移相器,得到高频脉冲信号3;
步骤6),将高频脉冲信号3作为变换模块开关管S1、开关管S4的栅极触发信号;
步骤7),将高频脉冲信号3输入到反相器,得到高频脉冲信号4;
步骤8),将高频脉冲信号4作为变换模块开关管S2、开关管S3的栅极触发信号。
图1和图2中,为了区别各个变换模块,在各个部件标号后加上“,k”的下标,譬如,S2,k表示第k个变换模块的开关管S2
图3为本发明正常工作的电路波形示意图,第k个变换模块输入侧的开关管S1,k、S2,k、S3,k、S4,k以及输出侧的开关管Q1,k、Q2,k、Q3,k、Q4,k驱动信号分别为gS1,k、gS2,k、gS3,k、gS4,k、gQ1,k、gQ2,k、gQ3,k、gQ4,k,第k个变换模块的变压器原副边电压波形为Vh,第k个变换模块的电感LSM,k电流为iLSM,k,Vink为第k个变换模块的滤波电容Ci,k的电压,Vok为第k个变换模块的滤波电容Co,k的电压,nk为第k个变换模块的变压器变比,第k个变换模块的谐振电容Cbr,k的电压、电流分别为Vck、ick。当变换器工作于稳态时应满足Vok=Vok+1=Vbus/N,变换器的输出电流为Io,开关频率为fs,每个开关周期时间为Ts
在一个开关周期(Ts,t0-t6)内,电路的工作波形如图3所示,假设第j个变换模块的输出电压大于第k个变换模块的输出电压,Voj>Vok,电路可以被分成 6个状态:
图4(a)中,t=t0之前,输入侧开关管S1,k、S4,k、输出侧的开关管Q1,k反并联二极管、开关管Q4,k反并联二极管开通,变压器漏感电流iLSM ,k为负且线性增大,第j个变换模块副边开关管Q4,j开通,第k个自均衡单元谐振电容Cbr,k电流ick为正呈正弦且先增后减,自均衡单元谐振电容Cbr,k电压Vck为正呈正弦且增大,第k+1-j个变换模块向自均衡单元k、自均衡单元j充电,一直持续到副边开关管Q4,j关断。
图4(b)中,t=(t0 ,t1),在t=t0时,断开开关管S1,k、S4,k,由于变压器漏感电流iLSM ,k不可突变,开关管S2,k、S3,k反并联二极管被迫导通,开关管S2,k、S3,k端电压被箝位为0V,在此时给开关管S2,k、S3,k触发脉冲即可实现零电压开通,变压器漏感电流iLSM ,k为负且线性增大斜率增大。
图4(c)中,t=(t1 ,t2),在t=t1时,变压器漏感电流iLSM ,k由负过零,开关管S2,k、S3,k、Q1,k、Q4,k零电压开通,输入电流Iink向变压器漏感充电,变压器漏感电流iLSM ,k为正且线性增大。
图4(d)中,t=(t2,t3),在t=t2时,输出侧的开关管Q1,k、Q4,k触发脉冲消失,由于变压器漏感电流iLSM ,k不可突变,输出侧的开关管Q2,k、Q3,k反并联二极管被迫导通,变压器漏感电流iLSM ,k为正且线性减小,第j个变换模块副边开关管Q1,j开通,第k个自均衡单元谐振电容Cbr,k电流ick为正呈正弦且先减后增,自均衡单元谐振电容Cbr,k电压Vck为负呈正弦且减小,自均衡单元k、自均衡单元j向第k-j-1个变换模块放电,一直持续到副边开关管Q3,j关断。
图4(e)中,t=(t3 ,t4),在t=t3时,断开开关管S2,k、S3,k,由于变压器漏感电流iLSM ,k不可突变,开关管S1,k、S4,k反并联二极管被迫导通,开关管S1,k、S4,k端电压被箝位为0V,在此时给开关管S1,k、S4,k触发脉冲即可实现零电压开通,变压器漏感电流iLSM ,k为正且线性减小斜率增大。
图4(f)中,t=(t4 ,t5),在t=t4时,变压器漏感电流iLSM ,k由正过零,开关管S1,k、S4,k、Q2,k、Q3,k零电压开通,输入电流Iink向变压器漏感充电,变压器漏感电流iLSM ,k为负且线性减小。
如图5(a)所示,N为4、额定输出电压500V、直流母线2kV时,第二个变换模块的输入功率在t=0.3s时从38.5kW变化到30kW,第一到第四个变换模块的输入功率均为38.5kW,由于光照发生变化,变换模块输出电压出现波动,但是通过谐振电感和谐振电容对失配功率进行调节,输出电压趋于均衡,调节时间约为40ms,最大电压波动约为16V。
图5(b)为N=4、t=0.3s时四个变换模块输入功率出现跌落时其谐振电容Cbr的电流电压波形示意图,其中第二个变换模块输入功率在t=0.3s时从38.5kW变化到30kW,第二到第四个变换模块的输入功率均为38.5kW。
图5(c)是本发明在稳态工作下第二个变换模块电感LSM的电压电流仿真波形图。
图5(d)是开关管S1 ,1的电压电流以及触发脉冲波形示意图,可以看出在开关管在触发脉冲到来前管压降被箝位为0V,故可实现零电压开通,由于变换模块全桥逆变单元的开关管工作过程相似,因此在变换模块全桥逆变单元的开关管均可实现零电压开通。
图5(e)是开关管Q1,1的电压以及触发脉冲波形示意图,可以看出在开关管在触发脉冲到来前管压降被为0V,故可实现零电压开通,由于变换模块半有源整流单元的开关管工作过程相似,因此在子模块半有源整流单元的开关管均可实现零电压开通;因此所述带有串联谐振型LC功率自均衡单元的IIOS变换器所有开关管均可实现软开关,开关损耗小,提高了变换器效率。
本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.带有串联谐振型LC功率自均衡单元的IIOS变换器,其特征在于,包括N个变换模块和一个并网电抗器Lg,N为大于等于2的自然数;
所述变换模块包含光伏阵列、滤波电容Ci、开关管S1 ~S4、开关管Q1~Q4、变压器、电感LSM、滤波电容Co、谐振电感Lbr和谐振电容Cbr
所述开关管S1的漏极分别和所述开关管S3的漏极、滤波电容Ci的一端、光伏阵列的正极相连,开关管S1的源极分别和所述变压器原边线圈的一端、开关管S2的漏极相连;
所述开关管S2的源极分别和所述开关管S4的源极、滤波电容Ci的另一端、光伏阵列的负极相连;
所述开关管S3的源极分别和所述变压器原边线圈的另一端、开关管S4的漏极相连;
所述开关管Q1的漏极分别和所述滤波电容Co的一端、开关管Q3的漏极相连,作为变换模块的连接点a;开关管Q1的源极分别和电感LSM的一端、开关管Q2的漏极相连;
所述电感LSM的另一端和所述变压器副边线圈的一端相连;
所述开关管Q2的源极分别和所述滤波电容Co的另一端、开关管Q4的源极相连,作为变换模块的连接点b;
所述开关管Q3的源极分别和所述谐振电感Lbr的一端、开关管Q4的漏极、变压器副边线圈的另一端相连;
所述谐振电容Cbr的一端和所述谐振电感Lbr的一端相连,谐振电容Cbr的另一端作为变换模块的连接点c;
所述第m个变换模块的连接点b和第m+1个变换模块的连接点a相连,且N个变换模块的连接点c相连,m为大于等于1小于N的自然数;
所述第1个变换模块的连接点a和所述并网电抗器Lg的一端相连,并网电抗器Lg的另一端作为IIOS变换器的一个输出端;所述第N个变换模块的连接点b作为IIOS变换器的另一个输出端。
2.基于权利要求1所述的带有串联谐振型LC功率自均衡单元的IIOS变换器的驱动方法,其特征在于,对各个变换模块实行独立的MPPT控制,对于每个变换模块,其MPPT控制的具体步骤如下:
步骤1),采用占空比为50%的高频脉冲信号1作为变换模块开关管Q1、开关管Q4的栅极触发信号;
步骤2),将高频脉冲信号1输入到反相器,得到高频脉冲信号2;
步骤3),将高频脉冲信号2作为变换模块开关管Q2、开关管Q3的栅极触发信号;
步骤4),采集变换模块的输入侧电压vin、输入侧电压vin并将其输入到MPPT控制器,MPPT控制器输出变换模块的移相角dSM
步骤5),将高频脉冲信号1与移相角dSM输入到移相器,得到高频脉冲信号3;
步骤6),将高频脉冲信号3作为变换模块开关管S1、开关管S4的栅极触发信号;
步骤7),将高频脉冲信号3输入到反相器,得到高频脉冲信号4;
步骤8),将高频脉冲信号4作为变换模块开关管S2、开关管S3的栅极触发信号。
CN202210498420.1A 2022-05-09 2022-05-09 带有串联谐振型lc功率自均衡单元的iios变换器及方法 Pending CN115051572A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210498420.1A CN115051572A (zh) 2022-05-09 2022-05-09 带有串联谐振型lc功率自均衡单元的iios变换器及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210498420.1A CN115051572A (zh) 2022-05-09 2022-05-09 带有串联谐振型lc功率自均衡单元的iios变换器及方法

Publications (1)

Publication Number Publication Date
CN115051572A true CN115051572A (zh) 2022-09-13

Family

ID=83157425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210498420.1A Pending CN115051572A (zh) 2022-05-09 2022-05-09 带有串联谐振型lc功率自均衡单元的iios变换器及方法

Country Status (1)

Country Link
CN (1) CN115051572A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117175920A (zh) * 2023-09-01 2023-12-05 国网经济技术研究院有限公司 一种应用于风电功率不匹配的高效率多端口直流变换器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120042588A1 (en) * 2009-05-11 2012-02-23 The Regents Of The University Of Colorado Integrated photovoltaic module
US9397580B1 (en) * 2006-06-06 2016-07-19 Ideal Power, Inc. Dual link power converter
CN106208134A (zh) * 2016-07-29 2016-12-07 常熟理工学院 基于三相clc导抗变换器的光伏并网拓扑及功率控制方法
CN112039340A (zh) * 2020-08-26 2020-12-04 武汉大学 一种采用双向buck-boost及串联LC的电压均衡拓扑及控制方法
CN112467987A (zh) * 2020-09-30 2021-03-09 中国电力科学研究院有限公司 一种光伏直流升压变换系统及其控制方法
CN112564080A (zh) * 2020-11-30 2021-03-26 武汉大学 带有低损耗lc-pbu的新型iios变换器
CN112953243A (zh) * 2021-03-25 2021-06-11 上海交通大学 含储能准z源llc多模块串联光伏直流变换器及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9397580B1 (en) * 2006-06-06 2016-07-19 Ideal Power, Inc. Dual link power converter
US20120042588A1 (en) * 2009-05-11 2012-02-23 The Regents Of The University Of Colorado Integrated photovoltaic module
CN106208134A (zh) * 2016-07-29 2016-12-07 常熟理工学院 基于三相clc导抗变换器的光伏并网拓扑及功率控制方法
CN112039340A (zh) * 2020-08-26 2020-12-04 武汉大学 一种采用双向buck-boost及串联LC的电压均衡拓扑及控制方法
CN112467987A (zh) * 2020-09-30 2021-03-09 中国电力科学研究院有限公司 一种光伏直流升压变换系统及其控制方法
CN112564080A (zh) * 2020-11-30 2021-03-26 武汉大学 带有低损耗lc-pbu的新型iios变换器
CN112953243A (zh) * 2021-03-25 2021-06-11 上海交通大学 含储能准z源llc多模块串联光伏直流变换器及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱小全,等: "带有LC串联谐振功率自均衡单元的模块化光伏直流升压变换器", 《电工技术学报》, vol. 39, no. 4, 13 February 2023 (2023-02-13), pages 1087 - 1102 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117175920A (zh) * 2023-09-01 2023-12-05 国网经济技术研究院有限公司 一种应用于风电功率不匹配的高效率多端口直流变换器
CN117175920B (zh) * 2023-09-01 2024-03-01 国网经济技术研究院有限公司 一种应用于风电功率不匹配的高效率多端口直流变换器

Similar Documents

Publication Publication Date Title
US8111528B2 (en) DC to AC inverter
CN112737293B (zh) 一种非隔离型集成升压dc/ac变换器的控制方法
CN107086782B (zh) 一种基于倍压单元的相数可调的高升压dc/dc变换器
CN115051572A (zh) 带有串联谐振型lc功率自均衡单元的iios变换器及方法
CN112564080B (zh) 带有低损耗lc-pbu的iios变换器
Ardashir et al. A novel five-level transformer-less inverter topology with common-ground for grid-tied PV applications
CN110912407B (zh) 一种宽范围高频直流变换装置
CN105553273B (zh) 适用于中高压直流并网的级联dc/dc变换器及其控制方法
CN106787736A (zh) 一种双开关高升压比pwm直流变换器
CN112202351A (zh) 一种宽范围软开关的单级式隔离型三相ac/dc整流器
Alhatlani et al. Phase-shifted quad-input LLC converter with variable pulse width modulation
CN106712504B (zh) 一种含有软开关的非隔离型高增益dc/dc变换器
CN110729913B (zh) 一种单级式高增益五开关Boost型逆变器
Alaql et al. A Boost and LLC Resonant–based Three-port DC–DC Converter
CN109560703B (zh) 一种基于耦合电感的开关电容型高增益dc/dc变换器
Raghavendran et al. A Self-Balanced High Gain Multi-Port Converter for Photovoltaic and Fuel Cell based Power Generation Systems
CN208522655U (zh) 一种高增益模块化大容量隔离型dc/dc变换器
Kianpour et al. High step-up floating-output interleaved-input coupled-inductor-based boost converter
CN115459243A (zh) 基于耦合电感的自均衡光伏变换器及其控制方法
CN110707959A (zh) 基于脉冲组合的高频变压器隔离电压源逆变器拓扑及控制策略
CN111277160A (zh) 一种六开关功率解耦电路及其控制方法
CN113904576B (zh) 一种集成升压光伏并网逆变器及其控制方法
Hu et al. Single stage high-frequency non-isolated step-up sinusoidal inverter with three ground-side power switches
Wang et al. Study of a coupled inductor converter based active-network
CN108551262A (zh) 一种高增益模块化大容量隔离型dc/dc变换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination