CN115044017A - 一种超支化咪唑共聚物及其制备方法与应用 - Google Patents

一种超支化咪唑共聚物及其制备方法与应用 Download PDF

Info

Publication number
CN115044017A
CN115044017A CN202210748175.5A CN202210748175A CN115044017A CN 115044017 A CN115044017 A CN 115044017A CN 202210748175 A CN202210748175 A CN 202210748175A CN 115044017 A CN115044017 A CN 115044017A
Authority
CN
China
Prior art keywords
hyperbranched
monomer
anion exchange
imidazole
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210748175.5A
Other languages
English (en)
Inventor
郑吉富
李晓锋
李胜海
张所波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN202210748175.5A priority Critical patent/CN115044017A/zh
Publication of CN115044017A publication Critical patent/CN115044017A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G10/00Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/132Morphological aspects branched or hyperbranched
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3326Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkane-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/598Chemical stability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种超支化聚咪唑共聚物及其制备方法与应用,属于阴离子交换膜技术领域。解决了现有技术中,(苯并)咪唑阳离子结构在高温、高湿条件下的溶胀率高(甚至溶于水),难以在长期使用中保持膜的尺寸稳定性的技术问题。本发明的超支化聚咪唑共聚物,结构单元如式(1)所示,式(1)中,n≥10,0.6≤x≤0.8,0.01≤y≤0.33,且x+y+z=1。该超支化聚咪唑共聚物不仅解决了咪唑单体难以引入聚合物骨架的问题,同时克服了聚合物在高温高湿条件下尺寸稳定性差的缺点,进而为提高燃料电池的工作温度,提升燃料电池的功率密度提供了前提。
Figure DDA0003720204160000011

Description

一种超支化咪唑共聚物及其制备方法与应用
技术领域
本发明属于咪唑共聚物技术领域,具体涉及一种超支化咪唑共聚物及其制备方法与应用,尤其涉及该超支化咪唑共聚物在制备阴离子交换膜和阴离子交换膜燃料电池中的应用。
背景技术
阴离子交换膜燃料电池(AEMFC)工作在碱性环境中,具有铂、钌等贵金属用量少、燃料透过率低等显著特点,受到人们的广泛关注。然而,阴离子交换膜的碱性稳定性是AEMFC广泛应用和长期运行需要解决的挑战。经过几年的研究,在低浓度溶液(1~2M KOH/NaOH)中,碱性稳定的阴离子交换膜(包括阳离子基团和聚合物主链)已经取得了相当大的进展。通常,根据阳离子基团的化学结构,大位阻离子基团的碱稳定性(如苯并咪唑、咪唑)相较于季铵基团(QA)和环季铵基团(CQA)更稳定。此外,从聚合物主链结构的角度来看,设计非醚主链可以避免传统聚芳醚聚合物醚键断裂的风险。然而,将碱性稳定的离子基团与合适的聚合物主链相结合的匹配设计和聚合方法仍然是该领域的难点和发展方向。
由于(苯并)咪唑阳离子结构的特点,主链上的正电荷分布和大空间位阻基团的引入削弱了聚合物链之间的相互作用,在高温高湿条件(≥80℃,100%RH)下容易发生水溶胀现象(溶胀率高,甚至溶于水),不利于在AEMFC中长期稳定的使用,AEMFC运行温度低,难以得到较高的功率密度。现有技术中,抑制(苯并)咪唑类阴离子交换膜水溶胀的常用策略主要是共混(J.Am.Chem.Soc.2017,139,2888–2891;J.Power Sources2015,288,384-392)、交联(J.Electrochem.Soc.2020,167,054501)、共聚(Macromolecules 2021,54,2202-2212;PANS2019,116,9729-9734)或设计环状聚合物(Macromolecules2018,51,4113212-3218)。目前虽已开发较多种类的阴离子交换膜,但具备耐碱性和良好的尺寸稳定性的阴离子交换膜依然较少。
因此,利用超支化结构开发抑制水溶胀的(苯并)咪唑类阴离子交换膜,不仅对提高器件水平和扩大聚咪唑的应用领域,而且对促进高耐碱材料的推广具有重要意义。
发明内容
本发明为解决现有技术中,(苯并)咪唑阳离子结构在高温、高湿条件下的溶胀率高(甚至溶于水),难以在长期使用中保持阴离子交换膜的尺寸稳定性的技术问题,提供一种超支化咪唑共聚物及其制备方法与应用,该共聚物不仅解决了咪唑单体难以引入聚合物骨架的问题,同时克服了聚合物在高温高湿条件下尺寸稳定性差的缺点,进而为提高燃料电池的工作温度,提升燃料电池的功率密度提供了前提。
本发明的超支化咪唑共聚物,结构单元如式(1)所示:
Figure BDA0003720204140000021
式(1)中,n≥10,0.6≤x≤0.8,0.01≤y≤0.33,且x+y+z=1;
Ar1的结构为式(2)和式(3)中的一种;
Figure BDA0003720204140000022
Ar2的结构为式(4)、(5)和式(6)中的一种;
Figure BDA0003720204140000023
优选的是,所述n≥20,x为0.67,y为0.11。
优选的是,Ar1的结构为式(2),Ar2的结构为式(5)。
本发明还提供上述超支化咪唑共聚物的制备方法,步骤如下:
在酸催化条件下,将反应单体和三氟丙酮在非质子溶剂中进行反应,得到式(1)所示的超支化咪唑共聚物;
所述反应单体为咪唑单体、支化单体和芳香单体,反应单体和三氟丙酮的摩尔比为1.0:(1.1~1.2),咪唑单体、支化单体和芳香单体的摩尔比为(0.6~0.8):(0.01~0.33):(0~0.4);
所述咪唑单体的结构式如式(7)所示;
Figure BDA0003720204140000031
所述支化单体为1,3,5-三苯基苯、2,4,6-三苯基三嗪中的一种;
所述芳香单体为联苯、对三联苯和间三联苯中的一种。
优选的是,将反应单体与三氟丙酮溶液添加进含非质子溶剂的反应容器中,在-40~10℃下,添加超强酸,反应体系的固含量在20~30wt%,室温下搅拌反应30~60min,得到含超支化咪唑共聚物的溶液,乙醇析出,洗涤,干燥,得到超支化咪唑共聚物。
更优选的是,所述极性非质子溶剂为二氯甲烷、氯仿中的一种或两种的混合物。
更优选的是,所述反应容器为耐酸瓶。
更优选的是,所述超强酸与非质子溶剂的体积比为1:(0.5~2.0)。
更优选的是,在0℃下,添加超强酸。
更优选的是,所述超强酸为三氟甲磺酸、甲烷磺酸和伊顿试剂中的一种或多种的混合物。
更优选的是,所述搅拌为磁力搅拌。
本发明还提供上述超支化咪唑共聚物在制备阴离子交换膜中的应用。
优选的是,所述阴离子交换膜为燃料电池的阴离子交换膜。
优选的是,包括以下步骤:
步骤一、将超支化聚咪唑溶于有机溶剂中,得到超支化聚咪唑溶液,加入浓盐酸于60℃交换24h,过滤,所得溶液再加入浓盐酸于60℃交换24h,重复多次后,倒入乙醚中析出,经干燥,得到阴离子交换膜聚合物;
步骤二、将阴离子交换膜聚合物溶液铸膜,用1M的NaOH溶液浸泡24h,得到阴离子交换膜。
优选的是,每次加入浓盐酸的体积为超支化聚咪唑溶液体积的1.5~2.0倍。
优选的是,所述有机溶剂为二氯甲烷或氯仿。
与现有技术相比,本发明的有益效果为:
本发明的通过超强酸催化反应,将1,3,5-三苯基苯或2,4,6-三苯基三嗪引入聚合物主链中构筑超支化结构得到了超支化咪唑共聚物,再用浓盐酸浸煮超支化咪唑共聚物进行离子交换制备阴离子交换膜聚合物,溶液铸膜后用碱液浸泡,得到阴离子交换膜,该阴离子交换膜与线性聚咪唑基阴离子交换膜比,水溶胀率得到了有效的抑制,在高温高湿条件下可以稳定使用,可以提高燃料电池的工作温度,有利于提高功率密度;即一方面展现出优异的长期耐碱稳定性(在80℃,5M NaOH),另一方面展现出优异的尺寸稳定性,有助于扩展燃料电池的工作温阈,经试验检测,在90℃条件下,仍然能够长期稳定运行。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例1制备的P-MeIM-tPb11的核磁氢谱;
图2为本发明实施例6的阴离子交换膜在80℃,5M氢氧化钠溶液中浸泡30天前的核磁氢谱;
图3为本发明实施例6的阴离子交换膜在80℃,5M氢氧化钠溶液中浸泡30天后的核磁氢谱。
具体实施方式
为了进一步理解本发明,下面对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明的超支化咪唑共聚物,结构单元如式(1)所示:
Figure BDA0003720204140000051
式(1)中,n≥10,0.6≤x≤0.8,0.01≤y≤0.33,且x+y+z=1;
Ar1的结构为式(2)和式(3)中的一种;
Figure BDA0003720204140000052
Ar2的结构为式(4)、(5)和式(6)中的一种;
Figure BDA0003720204140000053
上述技术方案中,n≥20,x为0.67,y为0.11,Ar1的结构为式(2),Ar2的结构为式(5)。
本发明的超支化咪唑共聚物的制备方法,步骤如下:
在酸催化条件下,将反应单体和三氟丙酮在非质子溶剂中进行反应,得到式(1)所示的超支化咪唑共聚物;
其中,反应单体为咪唑单体、支化单体和芳香单体,反应单体和三氟丙酮的摩尔比为1.0:(1.1~1.2),咪唑单体、支化单体和芳香单体的摩尔比为(0.6~0.8):(0.01~0.33):(0~0.4);
咪唑单体的结构式如式(7)所示;
Figure BDA0003720204140000061
支化单体为1,3,5-三苯基苯、2,4,6-三苯基三嗪中的一种;
芳香单体为联苯、对三联苯和间三联苯中的一种。
本发明提供一种优选方案,但不限于此:将反应单体与三氟丙酮溶液添加进含非质子溶剂的反应容器中,在-40~10℃下,添加超强酸,反应体系的固含量在20~30wt%,室温下搅拌反应30~60min,得到含超支化咪唑共聚物的溶液,乙醇析出,洗涤,干燥,得到超支化咪唑共聚物。
其中,反应单体和三氟丙酮的摩尔比为1.0:(1.1~1.2),咪唑单体、支化单体和芳香单体摩尔比为(0.6~0.8):(0.01~0.33):(0~0.4);优选为(0.6~0.8):(0.01~0.33):(0.11~0.4);更优选为0.67:0.11:0.22、0.67:0.025:0.3、0.67:0.05:0.25、0.67:0.22:0.11、0.67:0.075:0.28。
上述技术方案中,极性非质子溶剂为二氯甲烷、氯仿中的一种或两种的混合物。
上述技术方案中,反应容器为耐酸瓶。
上述技术方案中,超强酸与非质子溶剂的体积比为1:(0.5~2.0)。
上述技术方案中,在0℃下,添加超强酸。
上述技术方案中,超强酸为三氟甲磺酸、甲烷磺酸和伊顿试剂中的一种或多种的混合物。
上述技术方案中,搅拌为磁力搅拌。
本发明的超支化咪唑共聚物能够在制备阴离子交换膜中的应用,阴离子交换膜优选为燃料电池的阴离子交换膜,阴离子交换膜在染料电池中的应用方法为现有技术。
本发明提供一种超支化咪唑共聚物能够在制备阴离子交换膜的方法,但不限于此:
步骤一、将超支化聚咪唑溶于有机溶剂中,得到超支化聚咪唑溶液,加入浓盐酸于60℃交换24h,过滤,所得溶液再加入浓盐酸于60℃交换24h(将CF3SO3 -交换成Cl-),重复多次(优选共加入三次浓盐酸,浓酸酸浓度超过20%)后,倒入乙醚中析出,经干燥,得到阴离子交换膜聚合物;
步骤二、将阴离子交换膜聚合物溶液铸膜,得到的薄膜用1M的NaOH溶液浸泡24h以上,抗衡离子转换为氢氧根,得到阴离子交换膜。
上述技术方案中,有机溶剂为二氯甲烷或氯仿;浓盐酸的加入量多有助于转化,但损失量会增多,优选每次加入浓盐酸的体积为超支化聚咪唑溶液体积的1.5~2.0倍;溶液铸膜为现有技术,过程为将聚合物溶解于挥发性溶剂中,干燥,挥发性溶剂溶剂挥发成膜。
在本发明中所使用的术语,一般具有本领域普通技术人员通常理解的含义,除非另有说明。为了使本领域的技术人员更好地理解本发明的技术方案,下面将结合实施例对本发明作进一步的详细介绍。
在以下实施例中,未详细描述的各种过程和方法是本领域中公知的常规方法。下述实施例中所用的材料、试剂、装置、仪器、设备等,如无特殊说明,均可从商业途径获得。
以下结合实施例进一步说明本发明。
实施例1
在干燥的耐压瓶中加入4.01g(6.7mmol)咪唑单体、0.51g(2.2mmol)对三联苯、0.34g(1.1mmol)1,3,5-三苯基苯和1.39g(12.0mmol)三氟丙酮,用12mL二氯甲烷溶解后,将反应体系的温度降至0℃,将13mL三氟甲磺酸倒入耐压瓶中,待反应温度回升至25℃后,磁力搅拌下反应34min,将反应体系倒入乙醇中,析出固体聚合物,水洗、真空干燥后,得到超支化咪唑共聚物P-MeIM-tPb11。
实施例1的超支化咪唑共聚物P-MeIM-tPb11的反应路线如下。
Figure BDA0003720204140000081
对实施例1制备的超支化咪唑共聚物P-MeIM-tPb11进行核磁氢谱检测,检测结果如图1所示。
实施例2
在干燥的耐压瓶中加入4.00g(6.7mmol)咪唑单体、0.69g(3mmol)对三联苯、0.08g(0.25mmol)2,4,6-三苯基三嗪和1.40g(12.0mmol)三氟丙酮,用12mL二氯甲烷溶解后,将反应体系的温度降至0℃,将13mL三氟甲磺酸倒入耐压瓶中,待反应温度回升至25℃后,磁力搅拌下反应45min,将反应体系倒入乙醇中,析出固体聚合物,水洗、真空干燥后,得到超支化咪唑共聚物P-MeIM-tPt2.5。
实施例2的超支化咪唑共聚物P-MeIM-tPt2.5的反应路线如下。
Figure BDA0003720204140000091
实施例3
在干燥的耐压瓶中加入4.00g(6.7mmol)咪唑单体(结构同实施例1)、0.65g(2.5mmol)对三联苯、0.15g(0.5mmol)1,3,5-三苯基苯和1.41g(12.0mmol)三氟丙酮,用10mL二氯甲烷溶解后,将反应体系的温度降至0℃,将12mL三氟甲磺酸倒入耐压瓶中,待反应温度回升至25℃后,磁力搅拌下反应40min,将反应体系倒入乙醇中,析出固体聚合物,水洗、真空干燥后,得到超支化咪唑共聚物P-MeIM-tPb5。
实施例4
在干燥的耐压瓶中加入4.00g(6.7mmol)咪唑单体(结构同实施例1)、0.25g(1.1mmol)对三联苯、0.67g(2.2mmol)1,3,5-三苯基苯和1.42g(12.0mmol)三氟丙酮,用12mL二氯甲烷溶解后,将反应体系的温度降至0℃,将12mL三氟甲磺酸倒入耐压瓶中,待反应温度回升至25℃后,磁力搅拌下反应30min,将反应体系倒入乙醇中,析出固体聚合物,水洗、真空干燥后,得到超支化咪唑共聚物P-MeIM-tPb22。
实施例5
在干燥的耐压瓶中加入4.00g(6.7mmol)咪唑单体(结构同实施例1)、0.43g(2.8mmol)联苯、0.23g(0.75mmol)1,3,5-三苯基苯和1.41g(12.0mmol)三氟丙酮,用12mL二氯甲烷溶解后,将反应体系的温度降至0℃,将12mL三氟甲磺酸倒入耐压瓶中,待反应温度回升至25℃后,磁力搅拌下反应40min,将反应体系倒入乙醇中析出固体聚合物,将反应体系倒入乙醇中,析出固体聚合物,水洗、真空干燥后,得到超支化咪唑共聚物P-MeIM-bPh7.5。
对比例1
在干燥的耐压瓶中加入4.00g(6.7mmol)咪唑单体(结构同实施例1)、0.76g(3.3mmol)对三联苯和1.42g(12.0mmol)三氟丙酮,用10mL二氯甲烷溶解后,将反应体系的温度降至0℃,将12mL三氟甲磺酸倒入耐压瓶中,待反应温度回升至25℃后,磁力搅拌下反应60min后,将反应体系倒入乙醇中,析出固体聚合物,水洗、真空干燥后,得到线性聚合物P-MeIM-tPh。
对比例2
在干燥的耐压瓶中加入4.03g(6.7mmol)咪唑单体(结构同实施例1)、0.51g(3.3mmol)联苯和1.41g(12.0mmol)三氟丙酮,用10mL二氯甲烷溶解后,将反应体系的温度降至0℃,将12mL三氟甲磺酸倒入耐压瓶中,待反应温度回升至25℃后,磁力搅拌下反应60min后,将反应体系倒入乙醇中,析出固体聚合物,水洗、真空干燥后,得到线性聚合物P-MeIM-bPh。
实施例6
将实施例1~5制备的超支化咪唑共聚物和对比例1~2的线性聚合物溶于二氯甲烷中,加入浓盐酸于60℃交换24h,过滤,所得溶液再加入浓盐酸于60℃交换24h,共重复三次后,倒入乙醚中析出,得到阴离子交换膜聚合物和线性膜聚合物,将阴离子交换膜聚合物溶液铸膜,得到的薄膜用1M NaOH溶液浸泡24h,得到阴离子交换膜;将线性膜聚合物溶液铸膜,得到线性膜。
对阴离子交换膜和线性膜的吸水率、溶胀率差异进行检测,吸水率、溶胀率的参考标准为:质子交换膜燃料电池-第3部分:质子交换膜测试方法(GB/T20042.3-2022)。结果如表1和表2所示,说明本发明的阴离子交换膜优异的尺寸稳定性。
将实施例1的超支化咪唑共聚物制备的阴离子交换膜(P-MeIM-tPb11)在80℃,5M氢氧化钠溶液中浸泡30天,取出,进行核磁氢谱检测,结果如图2和图3所示,可以看出,阴离子交换膜保持了结构稳定性。
如表3所示,通过提高操作窗口温度,由其组装的碱性H2/O2燃料电池性能也得到了提升。具体组装电池的制备工艺参考Journal of Membrane Science 591(2019)117334文献报道的方法(第四页,结果与讨论的前一段关于碱性H2/O2燃料电池组装的相关内容);其它制备条件不变的情况下,通过变换阴离子交换膜的种类,采用本专利制备的阴离子交换膜P-MeIM-tPb11。
表1、不同温度下阴离子交换膜在水中的溶胀率
Figure BDA0003720204140000111
表2、不同温度下阴离子交换膜在水中的吸水率
Figure BDA0003720204140000112
表3、P-MeIM-tPb11阴离子交换膜的H2/O2单电池性能
Figure BDA0003720204140000113
Figure BDA0003720204140000121
显然,上述实施方式仅仅是为清楚地说明所作的举例,而并非对实施例的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有实施例予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.超支化咪唑共聚物,其特征在于,结构单元如式(1)所示:
Figure FDA0003720204130000011
式(1)中,n≥10,0.6≤x≤0.8,0.01≤y≤0.33,且x+y+z=1;
Ar1的结构为式(2)和式(3)中的一种;
Figure FDA0003720204130000012
Ar2的结构为式(4)、(5)和式(6)中的一种;
Figure FDA0003720204130000013
2.根据权利要求1所述的超支化咪唑共聚物,其特征在于,所述n≥20,x为0.67,y为0.11,Ar1的结构为式(2),Ar2的结构为式(5)。
3.权利要求1或2所述的超支化咪唑共聚物的制备方法,其特征在于,步骤如下:
在酸催化条件下,将反应单体和三氟丙酮在非质子溶剂中进行反应,得到式(1)所示的超支化咪唑共聚物;
所述反应单体为咪唑单体、支化单体和芳香单体,反应单体和三氟丙酮的摩尔比为1.0:(1.1~1.2),咪唑单体、支化单体和芳香单体的摩尔比为(0.6~0.8):(0.01~0.33):(0~0.4);
所述咪唑单体的结构式如式(7)所示;
Figure FDA0003720204130000021
所述支化单体为1,3,5-三苯基苯、2,4,6-三苯基三嗪中的一种;
所述芳香单体为联苯、对三联苯和间三联苯中的一种。
4.根据权利要求3所述的超支化咪唑共聚物的制备方法,其特征在于,将反应单体与三氟丙酮溶液添加进含非质子溶剂的反应容器中,在-40~10℃下,添加超强酸,反应体系的固含量在20~30wt%,室温下搅拌反应30~60min,得到含超支化咪唑共聚物的溶液,乙醇析出,洗涤,干燥,得到超支化咪唑共聚物。
5.根据权利要求4所述的超支化咪唑共聚物的制备方法,其特征在于,
所述极性非质子溶剂为二氯甲烷、氯仿中的一种或两种的混合物;
所述超强酸为三氟甲磺酸、甲烷磺酸和伊顿试剂中的一种或多种的混合物;
所述超强酸与非质子溶剂的体积比为1:(0.5~2.0)。
6.权利要求1或2所述的超支化咪唑共聚物在制备阴离子交换膜中的应用。
7.根据权利要求6所述的超支化咪唑共聚物在制备阴离子交换膜中的应用,其特征在于,所述阴离子交换膜为燃料电池的阴离子交换膜。
8.根据权利要求6所述的超支化咪唑共聚物在制备阴离子交换膜中的应用,其特征在于,包括以下步骤:
步骤一、将超支化聚咪唑溶于有机溶剂中,得到超支化聚咪唑溶液,加入浓盐酸于60℃交换24h,过滤,所得溶液再加入浓盐酸于60℃交换24h,重复多次后,倒入乙醚中析出,经干燥,得到阴离子交换膜聚合物;
步骤二、将阴离子交换膜聚合物溶液铸膜,得到的薄膜用1M的NaOH溶液浸泡24h以上,得到阴离子交换膜。
9.根据权利要求8所述的超支化咪唑共聚物在制备阴离子交换膜中的应用,其特征在于,所述有机溶剂为二氯甲烷或氯仿。
10.根据权利要求6所述的超支化咪唑共聚物在制备阴离子交换膜中的应用,其特征在于,每次加入浓盐酸的体积为超支化聚咪唑溶液体积的1.5~2.0倍。
CN202210748175.5A 2022-06-29 2022-06-29 一种超支化咪唑共聚物及其制备方法与应用 Pending CN115044017A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210748175.5A CN115044017A (zh) 2022-06-29 2022-06-29 一种超支化咪唑共聚物及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210748175.5A CN115044017A (zh) 2022-06-29 2022-06-29 一种超支化咪唑共聚物及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN115044017A true CN115044017A (zh) 2022-09-13

Family

ID=83163942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210748175.5A Pending CN115044017A (zh) 2022-06-29 2022-06-29 一种超支化咪唑共聚物及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115044017A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320692A (zh) * 2018-09-21 2019-02-12 中国科学院长春应用化学研究所 一种含阳离子基团无醚键聚芴烷撑、其制备方法和阴离子交换膜
CN111848520A (zh) * 2020-08-10 2020-10-30 中国科学院长春应用化学研究所 一种咪唑鎓盐单体及其制备方法和聚合物电解质材料及其制备方法和应用
CN113717352A (zh) * 2021-08-06 2021-11-30 常州大学 一种基于无醚键聚芴的主链型碱性阴离子交换膜及其制备方法
CN113956445A (zh) * 2021-11-26 2022-01-21 合肥工业大学 一种含有支化结构的阳离子聚合物及其制备方法和应用
CN114025957A (zh) * 2019-03-28 2022-02-08 特拉华大学 用作阴离子交换膜的具有稳定阳离子侧基的聚合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320692A (zh) * 2018-09-21 2019-02-12 中国科学院长春应用化学研究所 一种含阳离子基团无醚键聚芴烷撑、其制备方法和阴离子交换膜
CN114025957A (zh) * 2019-03-28 2022-02-08 特拉华大学 用作阴离子交换膜的具有稳定阳离子侧基的聚合物
CN111848520A (zh) * 2020-08-10 2020-10-30 中国科学院长春应用化学研究所 一种咪唑鎓盐单体及其制备方法和聚合物电解质材料及其制备方法和应用
CN113717352A (zh) * 2021-08-06 2021-11-30 常州大学 一种基于无醚键聚芴的主链型碱性阴离子交换膜及其制备方法
CN113956445A (zh) * 2021-11-26 2022-01-21 合肥工业大学 一种含有支化结构的阳离子聚合物及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
白雷: "支化聚亚芳基阴离子交换膜的制备及性能", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Similar Documents

Publication Publication Date Title
CN112175170A (zh) 一种含有柔性链段的基于哌啶酮与芳烃聚合的阴离子交换膜及其制备方法和应用
CN104835933B (zh) 一种接枝型聚合物质子交换膜及其制备方法
CN110690486A (zh) 一种基于柔性长侧链多阳离子结构的交联型碱性阴离子膜的制备方法
CN109096473B (zh) 不含芳基醚键的聚芳哌啶类两性离子交换膜及其制备方法
CN114276505B (zh) 含有聚乙二醇柔性亲水侧链的聚亚芳基哌啶共聚物及制备方法、阴离子交换膜及应用
CN102746638A (zh) 侧链含季铵盐基团的聚芳醚酮阴离子传导膜材料及其制备方法
CN113621131A (zh) 一种聚电解质材料、其制备方法与聚电解质膜
CN111607117B (zh) 燃料电池用多种侧链型阴离子交换膜及其制备方法
CN115594807A (zh) 一种基于聚亚芳基哌啶共聚物的穴醚交联型阴离子交换膜制备方法及其应用
CN114560997A (zh) 一种燃料电池用低溶胀有序支化型聚芳烃哌啶碱性膜及其制备方法
CN115536885B (zh) 一种亚微相分离阴离子交换膜的制备方法
CN115044017A (zh) 一种超支化咪唑共聚物及其制备方法与应用
CN103724648B (zh) 一种强碱性聚芳醚离聚物阴离子交换膜及其制备和应用
CN114524912B (zh) 一种侧链哌啶阳离子接枝型聚联苯碱性膜及其制备方法
CN114835935B (zh) 一种肟基辅助无醚氧键型聚合物阴离子交换膜及其制备方法
CN112708155B (zh) 一种基于氰基结构侧链磺化聚芳醚离子交换膜及其制备方法
CN113307966B (zh) 含四甲基哌啶氧化物季铵盐的共聚物及其制备方法和应用
WO2022151512A1 (zh) 一种含酰胺结构阴离子交换膜及其制备方法和应用
CN115353619A (zh) 一种微孔季铵鎓官能化阴离子交换膜及其制备方法
CN102532507A (zh) 一种新型嵌段共聚物及其制备方法
CN113025024A (zh) 一种含双阳离子梳型聚芳醚离子交换膜及其制备方法
CN112521535A (zh) 高碱稳定性阴离子交换膜及其制备方法
CN112751067A (zh) 一种交联型阴离子交换膜及其制备方法和应用
CN103087318A (zh) 一种侧链磺酸化的聚砜及其制备方法
CN114716649B (zh) 含氟的磺化聚芳基高分子结构、高效制备及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220913