CN115028850A - 一种用于吸附分离乙炔/乙烯混合气体的金属有机框架材料及其制备方法 - Google Patents

一种用于吸附分离乙炔/乙烯混合气体的金属有机框架材料及其制备方法 Download PDF

Info

Publication number
CN115028850A
CN115028850A CN202210649033.3A CN202210649033A CN115028850A CN 115028850 A CN115028850 A CN 115028850A CN 202210649033 A CN202210649033 A CN 202210649033A CN 115028850 A CN115028850 A CN 115028850A
Authority
CN
China
Prior art keywords
organic framework
framework material
metal
metal organic
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210649033.3A
Other languages
English (en)
Other versions
CN115028850B (zh
Inventor
李风亭
顾逸凡
黄恒聪
王颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202210649033.3A priority Critical patent/CN115028850B/zh
Publication of CN115028850A publication Critical patent/CN115028850A/zh
Priority to US18/093,407 priority patent/US11794163B1/en
Application granted granted Critical
Publication of CN115028850B publication Critical patent/CN115028850B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28052Several layers of identical or different sorbents stacked in a housing, e.g. in a column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3092Packing of a container, e.g. packing a cartridge or column
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/52Sorbents specially adapted for preparative chromatography
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

本发明提供了一种用于吸附分离乙炔/乙烯混合气体的金属有机框架材料及其制备方法,属于气体吸附分离新材料领域。所述金属有机框架材料命名为TJE‑2,其化学式为[Ni(pyc)(apyz)]n,其中,Ni表示金属中心镍,pyc表示有机配体1H‑吡唑‑4‑甲酸,apyz表示有机配体2‑氨基吡嗪;制备方法为将pyc和apyz、Ni(NO3)2·6H2O充分溶解,转移至耐压的密闭容器中加热反应,然后进行抽滤及溶剂交换,得到均相的粉末材料。本发明制备得到的超微孔金属有机框架材料表现出明显的高C2H2吸附容量,同时具有较好的选择性和较低的原料成本,能够实现更低成本的C2H2/C2H4分离。

Description

一种用于吸附分离乙炔/乙烯混合气体的金属有机框架材料 及其制备方法
技术领域
本发明涉及气体吸附分离新材料领域,尤其是一种用于吸附分离乙炔/乙烯混合气体的金属有机框架材料及其制备和使用方法。
背景技术
乙烯(C2H4)是很多聚合物的重要化学原料,主要由管式炉蒸汽热裂解技术生产,其产品通常含有约1%的乙炔(C2H2)。然而,用于生产聚合物的C2H4要求其中混杂的C2H2浓度低于40ppm,因为C2H2的存在会使催化剂中毒,降低聚乙烯的质量。此外,C2H2本身也是许多聚合物生产的重要原料和燃料,如果不加以纯化和提取,会造成很大的浪费。因此,对C2H2/C2H4混合气的分离是最重要的工业过程之一。
由于乙烯和乙炔在物理性质上高度相似,如分子尺寸(C2H2
Figure BDA0003685209230000011
Figure BDA0003685209230000012
C2H4
Figure BDA0003685209230000013
)和沸点(C2H2,188.4K;C2H4,169.4K)。传统方法如贵金属催化乙炔加氢法往往成本较高、选择性较低;溶剂萃取法则会产生大量的有机废液,难以再生;而深冷精馏分离需要较高的设备建造成本和能耗。目前,基于多孔材料的物理吸附分离是降低C2H2/C2H4分离能耗的一种新兴技术。
金属有机框架(Metal-organic frameworks,MOFs)是一类由金属中心和有机配体配位自组装形成的新型微孔材料,由于具有孔径大小和孔化学的可调控性,作为一种吸附材料在分离C2H2和C2H4方面具有良好的应用前景。申请号为201910860492.4的专利公开了一种用于分离乙炔乙烯的超微孔金属有机骨架材料的制备方法,但其使用的吖嗪配体2,5-双(4-吡啶基)-3,4-二氮杂-2,4-己二烯合成条件严苛,成本高昂。申请号为201810373233.4的专利公开了一种Cu基的金属有机框架材料,但仍存在乙炔的吸附量不高的问题。同时关于C2H2/C2H4选择性吸附的研究,仅仅停留在小试阶段,很难保证在工业化生产中仍然保持高选择吸附性和高稳定性的特点,为解决上述问题,特提出本发明。
发明内容
针对现有技术存在的上述问题,本发明提供了一种用于吸附分离乙炔/乙烯混合气体的金属有机框架材料及其制备方法。本发明制备得到的超微孔金属有机框架材料表现出明显的高C2H2吸附容量,同时具有较好的选择性和较低的原料成本,能够实现更低成本的C2H2/C2H4分离。
本发明的技术方案如下:
一种用于吸附分离乙炔/乙烯混合气体的金属有机框架材料,所述金属有机框架材料命名为TJE-2,其化学式为[Ni(pyc)(apyz)]n,其中,Ni表示金属中心镍,pyc表示有机配体1H-吡唑-4-甲酸,结构式为
Figure BDA0003685209230000021
apyz表示有机配体2-氨基吡嗪,结构式为
Figure BDA0003685209230000022
进一步地,所述金属有机框架材料具有超微孔级的周期性一维孔道,孔道横截面最窄处孔径为
Figure BDA0003685209230000023
TJE-2中Ni为6配位,与1H-吡唑-4-甲酸配体中的两个N和两个O以及2-氨基吡嗪的两个N形成配位键,未形成开放金属位点;孔道表面分布有电负性的氧原子、吡嗪环和氨基基团。
本发明还提供了所述的金属有机框架材料的制备方法,包括以下步骤:
S1:将有机配体1H-吡唑-4-甲酸即pyc和2-氨基吡嗪即apyz搅拌溶解于有机溶剂中,随后加入六水合硝酸镍即Ni(NO3)2·6H2O,搅拌或借助超声震荡使其充分溶解;
S2:将S1得到的混合溶液转移至耐压的密闭容器中,加热至80~100℃,反应24~48h;
S3:反应结束后,待反应液冷却至室温,抽滤得到均相的粉末材料,使用甲醇进行溶剂交换处理;
S4:抽滤S3得到的溶剂交换后的材料,在80~100℃下真空烘干24~48h,使孔道内的溶剂分子完全去除,得到活化的金属有机框架材料TJE-2。
优选的,步骤S1中所述有机配体1H-吡唑-4-甲酸、有机配体2-氨基吡嗪和Ni(NO3)2·6H2O的摩尔比为1:1~2:1~5。
优选的,步骤S1中所述有机溶剂由甲醇和N,N-二甲基甲酰胺组成,所述甲醇和N,N-二甲基甲酰胺的体积比为1:0.5~2。
优选的,步骤S2中所述密闭的反应容器为带有聚四氟乙烯垫片的密闭玻璃反应瓶或聚四氟乙烯内衬的反应釜。
优选的,步骤S3中交换处理时间不少于4天,更换溶剂的次数不少于8次。
优选的,步骤S3和S4中所述的抽滤过程使用装配有孔径为0.2~0.8μm的有机相滤膜的玻璃砂芯抽滤装置或布氏漏斗进行抽滤。
本发明进一步提供了所述金属有机框架材料吸附分离乙炔/乙烯混合气体的方法,包括以下步骤:
A1:将所述的金属有机框架材料装填在内径为6-10mm的固定床吸附柱内,在常温常压条件下,以2-10mL/min的流速通入C2H2/C2H4混合气体,将C2H2/C2H4混合气体与所述金属有机框架材料进行充分接触;
A2:所述金属有机框架材料吸附捕捉混合气体中的C2H2,从而实现C2H2与C2H4的分离,混合气中的C2H4组分优先穿透床层,从吸附柱出口可一步获得高纯C2H4气体;
A3:所述金属有机框架材料在吸附饱和后,C2H2组分在床层中富集,通过真空下脱附2~8h或使用惰性气体加热吹扫,实现吸附材料的循环再生。
进一步地,所述C2H2/C2H4混合气体的体积比为1:99~99:1。
本发明有益的技术效果在于:
(1)本发明得到的金属有机框架材料TJE-2具有周期性的一维孔道,孔道横截面孔径在
Figure BDA0003685209230000031
之间,该孔道尺寸属于超微孔级,孔道表面分布有氧原子作用位点、吡嗪环和氨基官能团。氧原子和吡嗪环可以与C2H2形成氢键或π键相互作用,而氨基官能团的存在可以进一步缩小微孔孔径,这些官能团的协同作用导致了TJE-2对C2H2的选择性吸附分离效果。
(2)本发明提供了一种基于金属有机框架材料吸附分离C2H2/C2H4的新方法,该方法使用的新型超微孔金属有机框架材料具有特殊的孔道结构,对C2H2的吸附容量高于C2H4。由于C2H2和C2H4分子构型的不同,两者在孔道中受到的氢键作用强弱不同。从而可实现C2H2/C2H4混合气的高效分离,获得气体纯度>99.9%的C2H4气体。
(3)本发明得到的金属有机框架材料中,Ni配位饱和,1H-吡唑-4-甲酸配体中的两个吡唑氮都参与了Ni的配位,因此没有开放金属位点,能在水中保持结构稳定。此外,材料热分解温度为300℃,具有较好的热稳定性。
(4)本发明采用的金属有机框架材料与常规多孔吸附剂相比,具有吸附容量高、解吸性能优良、可反复再生利用、吸附选择性高、材料成本低的优点。所用材料在制备上操作简便安全,产率高且基本无副产物。
(5)本发明提供的分离方法,与传统贵金属催化乙炔加氢法相比,成本更低、选择性更高;与传统溶剂萃取法相比,废液产量小、再生能耗低;与传统低温精馏法相比,具有操作条件温和、能耗低、设备投资小等优势。因此,本发明有望为相关石化企业带来经济效益的提升。
附图说明
为了更清楚地说明本发明实施例和现有技术的方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为TJE-2的空间结构示意图(其中a和b为从两个不同角度观测的视图);
图2为实施例1所得的TJE-2的X射线粉末衍射实验结果;
图3为实施例1所得的TJE-2的热重曲线;
图4为实施例1合成并活化的TJE-2在298K下对C2H2、C2H4的吸附等温线;
图5为实施例1合成并活化的TJE-2在298K下对比例为50:50和1:99的C2H2/C2H4混合气的IAST选择性;
图6为实施例1合成并活化的TJE-2在298K下对C2H2、C2H4混合气(体积比50:50)的穿透曲线;
图7为实施例2所得的TJE-2及其在水中浸泡后的X射线粉末衍射实验结果;
图8为实施例3放大合成所得的TJE-2的X射线粉末衍射实验结果。
具体实施方式
下面结合附图和实施例,对本发明进行具体描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
称量112mg 1H-吡唑-4-甲酸(pyc)和95mg 2-氨基吡嗪(apyz)搅拌溶解于30mL的MeOH/DMF(即甲醇和N,N-二甲基甲酰胺,体积比1:1)中,随后加入290mg的六水合硝酸镍在超声震荡下使其充分溶解;将混合溶液转移至容积为50mL的耐压密闭玻璃反应瓶中,加热至80℃,反应24h;冷却后使用装配有孔径为0.22μm的有机相滤膜的玻璃砂芯抽滤装置过滤,再使用甲醇进行溶剂交换处理5天,每天更换溶剂2次,每次使用30mL新鲜甲醇;抽滤后在真空烘箱中加热到80℃烘干24h,得到活化后的TJE-2。
制备得到的TJE-2的空间结构如图1所示;利用X射线粉末衍射对材料进行分析,结果与解析结构模拟得到的粉末衍射一致(图2)。真空烘干前后材料的热重曲线(图3)表明材料活化完全。
测量活化后的TJE-2在298K下对C2H2和C2H4的吸附等温线,结果如图4所示,TJE-2对C2H2的饱和吸附量(81.1cm3·g-1)明显高于C2H4的饱和吸附量(49.2cm3·g-1)。使用理想溶液吸附模型(IAST)可以计算得TJE-2在298K下对比例为50:50和1:99的C2H2/C2H4的理想吸附选择性分别为13.3和16.0(图5),表明TJE-2具有吸附分离C2H2/C2H4的能力。
将0.8g活化后的TJE-2材料装入8mm固定床吸附柱中进行固定床穿透实验。在298K、1bar下通入体积比50:50的C2H2/C2H4混合气,气体总流速为10mL/min,从吸附柱出口可直接获得纯度>99.9%的C2H4气体(图6)。待C2H2组分穿透后,使用氦气在80℃下吹扫,可以实现C2H2的脱附和吸附材料的再生。
实施例2:
称量112mg 1H-吡唑-4-甲酸(pyc)和190mg 2-氨基吡嗪(apyz)搅拌溶解于30mL的MeOH/DMF(体积比1:2)中,随后加入1.45g的六水合硝酸镍在超声震荡下使其充分溶解;将混合溶液转移至容积为50mL的密闭的聚四氟乙烯反应釜中,加热至90℃,反应36h;冷却后使用装配有孔径为0.6μm的有机相滤膜的布氏漏斗过滤,再使用甲醇进行溶剂交换处理4天,每天更换溶剂2次,每次使用30mL新鲜甲醇;抽滤后在真空烘箱中加热到90℃烘干36h,得到活化后的TJE-2。
称取0.2g活化后所得TJE-2材料浸泡到20mL的水中,每隔数天抽滤样品进行X射线粉末衍射对材料进行分析,分析完成后继续浸泡到20mL的水中。持续10天后,再将材料置于100℃下真空烘干24h。整个过程中材料的X射线粉末衍射结果均没有改变,并与解析结构模拟得到的粉末衍射一致,表明TJE-2具有极好的水稳定性(图7)。
实施例3
实施例3是一组克级放大合成。称量3.36g 1H-吡唑-4-甲酸(pyc)和2.85g2-氨基吡嗪(apyz)搅拌溶解于800mL的MeOH/DMF(体积比1:0.5)中,随后加入17.4g的六水合硝酸镍在超声震荡下使其充分溶解;将混合溶液转移至容积为1L的密闭耐压玻璃反应瓶中,加热至100℃,反应48h;冷却后使用装配有孔径为0.8μm的有机相滤膜的玻璃砂芯抽滤装置过滤,再使用甲醇进行溶剂交换处理5天,每天更换溶剂3次,每次使用100mL新鲜甲醇;抽滤后在真空烘箱中加热到100℃烘干48h,得到活化后的TJE-2。称量活化后材料质量为6.85g,产率(以配体pyc计)为86.5%。
利用X射线粉末衍射对材料进行分析,结果与解析结构模拟得到的粉末衍射一致(图8),证明放大合成成功。
以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在上面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。公开于该背景技术部分的信息仅仅旨在加深对本发明的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。

Claims (10)

1.一种用于吸附分离乙炔/乙烯混合气体的金属有机框架材料,其特征在于,所述金属有机框架材料命名为TJE-2,其化学式为[Ni(pyc)(apyz)]n,其中,Ni表示金属中心镍,pyc表示有机配体1H-吡唑-4-甲酸,结构式为
Figure FDA0003685209220000011
apyz表示有机配体2-氨基吡嗪,结构式为
Figure FDA0003685209220000012
2.根据权利要求1所述的金属有机框架材料,其特征在于,所述金属有机框架材料具有超微孔级的周期性一维孔道,孔道横截面最窄处孔径为
Figure FDA0003685209220000013
TJE-2中Ni为6配位,与1H-吡唑-4-甲酸配体中的两个N和两个O以及2-氨基吡嗪的两个N形成配位键,未形成开放金属位点;孔道表面分布有电负性的氧原子、吡嗪环和氨基基团。
3.一种权利要求1所述的金属有机框架材料的制备方法,其特征在于,包括以下步骤:
S1:将有机配体1H-吡唑-4-甲酸即pyc和2-氨基吡嗪即apyz搅拌溶解于有机溶剂中,随后加入六水合硝酸镍即Ni(NO3)2·6H2O,搅拌或借助超声震荡使其充分溶解;
S2:将S1得到的混合溶液转移至耐压的密闭容器中,加热至80~100℃,反应24~48h;
S3:反应结束后,待反应液冷却至室温,抽滤得到均相的粉末材料,使用甲醇进行溶剂交换处理;
S4:抽滤S3得到的溶剂交换后的材料,在80~100℃下真空烘干24~48h,使孔道内的溶剂分子完全去除,得到活化的金属有机框架材料TJE-2。
4.根据权利要求3所述的制备方法,其特征在于,步骤S1中所述有机配体1H-吡唑-4-甲酸、有机配体2-氨基吡嗪和Ni(NO3)2·6H2O的摩尔比为1:1~2:1~5。
5.根据权利要求3所述的制备方法,其特征在于,步骤S1中所述有机溶剂由甲醇和N,N-二甲基甲酰胺组成,所述甲醇和N,N-二甲基甲酰胺的体积比为1:0.5~2。
6.根据权利要求3所述的制备方法,其特征在于,步骤S2中所述密闭的反应容器为带有聚四氟乙烯垫片的密闭玻璃反应瓶或聚四氟乙烯内衬的反应釜。
7.根据权利要求3所述的制备方法,其特征在于,步骤S3中交换处理时间不少于4天,更换溶剂的次数不少于8次。
8.根据权利要求3所述的制备方法,其特征在于,步骤S3和S4中所述的抽滤过程使用装配有孔径为0.2~0.8μm的有机相滤膜的玻璃砂芯抽滤装置或布氏漏斗进行抽滤。
9.一种权利要求1或3所述的金属有机框架材料吸附分离乙炔/乙烯混合气体的方法,其特征在于,包括以下步骤:
A1:将所述的金属有机框架材料装填在内径为6-10mm的固定床吸附柱内,在常温常压条件下,以2-10mL/min的流速通入C2H2/C2H4混合气体,将C2H2/C2H4混合气体与所述金属有机框架材料进行充分接触;
A2:所述金属有机框架材料吸附捕捉混合气体中的C2H2,从而实现C2H2与C2H4的分离,混合气中的C2H4组分优先穿透床层,从吸附柱出口可一步获得高纯C2H4气体;
A3:所述金属有机框架材料在吸附饱和后,C2H2组分在床层中富集,通过真空下脱附2~8h或使用惰性气体加热吹扫,实现吸附材料的循环再生。
10.根据权利要求9所述的吸附分离乙炔/乙烯混合气体的方法,其特征在于,所述C2H2/C2H4混合气体的体积比为1:99~99:1。
CN202210649033.3A 2022-06-09 2022-06-09 一种用于吸附分离乙炔/乙烯混合气体的金属有机框架材料及其制备方法 Active CN115028850B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210649033.3A CN115028850B (zh) 2022-06-09 2022-06-09 一种用于吸附分离乙炔/乙烯混合气体的金属有机框架材料及其制备方法
US18/093,407 US11794163B1 (en) 2022-06-09 2023-01-05 Metal-organic framework for adsorptive separation of acetylene/ethylene mixture and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210649033.3A CN115028850B (zh) 2022-06-09 2022-06-09 一种用于吸附分离乙炔/乙烯混合气体的金属有机框架材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115028850A true CN115028850A (zh) 2022-09-09
CN115028850B CN115028850B (zh) 2023-05-12

Family

ID=83123947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210649033.3A Active CN115028850B (zh) 2022-06-09 2022-06-09 一种用于吸附分离乙炔/乙烯混合气体的金属有机框架材料及其制备方法

Country Status (2)

Country Link
US (1) US11794163B1 (zh)
CN (1) CN115028850B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115678027A (zh) * 2022-10-25 2023-02-03 德州学院 一种镍基双配体的金属有机框架材料、制备方法及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117487187B (zh) * 2023-12-29 2024-03-22 潍坊学院 一种用于乙炔和乙烯混合气分离的Zn-MOF材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213897A (ja) * 2014-04-24 2015-12-03 東洋紡株式会社 吸脱着を繰返すためのアルデヒド類除去材
US20180093218A1 (en) * 2015-04-07 2018-04-05 King Abdullah University Of Science And Technology Metal organic framework absorbent platforms for removal of co2 and h2s from natural gas
CN112592490A (zh) * 2020-12-15 2021-04-02 北京工业大学 基于两头吡唑配体的多核钴簇的金属有机框架材料及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3996838A1 (en) * 2019-07-09 2022-05-18 ExxonMobil Research and Engineering Company Metal-organic framework materials comprising a pyrazolylcarboxylate ligand and methods for production thereof
CN112844321B (zh) * 2020-12-29 2023-04-14 北京工业大学 系列柱撑型金属有机骨架材料的合成制备及其低碳烃分离应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213897A (ja) * 2014-04-24 2015-12-03 東洋紡株式会社 吸脱着を繰返すためのアルデヒド類除去材
US20180093218A1 (en) * 2015-04-07 2018-04-05 King Abdullah University Of Science And Technology Metal organic framework absorbent platforms for removal of co2 and h2s from natural gas
CN112592490A (zh) * 2020-12-15 2021-04-02 北京工业大学 基于两头吡唑配体的多核钴簇的金属有机框架材料及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GARNOVSKII, DA等: "Electrochemical synthesis, structure, and photoluminescent properties of copper, zinc, and cadmium mixed-ligand complexes", 《RUSSIAN JOURNAL OF INORGANIC CHEMISTRY》 *
GONG, Y等: "Bivariate Metal-Organic Frameworks with Tunable Spin-Crossover Properties", 《CHEMISTRY-A EUROPEAN JOURNAL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115678027A (zh) * 2022-10-25 2023-02-03 德州学院 一种镍基双配体的金属有机框架材料、制备方法及应用
CN115678027B (zh) * 2022-10-25 2023-08-18 德州学院 一种镍基双配体的金属有机框架材料、制备方法及应用

Also Published As

Publication number Publication date
US11794163B1 (en) 2023-10-24
CN115028850B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
CN110496604B (zh) 一种钴镍双金属有机框架二氧化碳吸附材料及其制备方法与应用
CN115028850B (zh) 一种用于吸附分离乙炔/乙烯混合气体的金属有机框架材料及其制备方法
CN113019330B (zh) 一种铜基金属-有机框架材料的制备及其乙炔/二氧化碳分离应用
CN105944680A (zh) 一种吸附分离丙烯丙炔的方法
CN113201144B (zh) 一种刚性的四羧基氢键有机框架材料及其制备和应用
KR101707821B1 (ko) 마그네슘 금속-유기 골격체(Mg-MOF)의 제조 및 이의 아민 기능화
NL2029682B1 (en) Mofs material with high gas adsorbability and preparation method and use thereof
CN112844321B (zh) 系列柱撑型金属有机骨架材料的合成制备及其低碳烃分离应用
CN115536857B (zh) 一种选择性吸附二氧化碳的锌-有机框架材料及合成方法
CN113603897A (zh) 一种锌基金属有机骨架材料的制备及其选择性吸附应用
CN108654564B (zh) 一种配位聚合物多孔材料的制备方法及其应用
CN113578275A (zh) 一种用于NOx气体去除的锰钴二元金属基MOF吸附剂及其制备方法
CN111732736A (zh) 一种Ni(II)-Salen配体金属有机框架晶体材料及其制备方法与应用
CN114452938B (zh) 一种烷烃优先吸附微孔材料及其制备方法和应用
CN114989442A (zh) 一种用于co2吸附捕获的新型超微孔多孔配位聚合物的制备方法
CN114682231A (zh) 选择性吸附乙炔的氰基MOFs吸附剂、制备方法和应用
CN114479095A (zh) Cu基金属-有机骨架材料及其制备方法和应用
CN114085386B (zh) 一种低成本Cu(BDC)的规模化合成方法及其在乙烷乙烯分离中的应用
CN115418001B (zh) 一种金属有机框架材料及其制备方法、应用
CN118005947B (zh) 一种双稠环配体mof晶体材料及其制备方法和在分离苯/环己烷的应用
CN118063789B (zh) 一种多孔双稠环配体配位聚合物材料及其制备方法和分离甲苯/甲基环己烷的应用
CN117282411A (zh) 一种金属有机骨架吸附材料及其制备方法与应用
CN107226913B (zh) 一种以四核钴为节点的框架配位材料及其制备方法
CN118616022A (zh) 一种金属有机框架材料在液相分离己烷异构体中的应用
CN113908808A (zh) 一种mof分离材料在n2/o2分离中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant