CN115010845A - 一种磁性铊离子印迹聚合物及其制备方法和应用 - Google Patents

一种磁性铊离子印迹聚合物及其制备方法和应用 Download PDF

Info

Publication number
CN115010845A
CN115010845A CN202210043897.0A CN202210043897A CN115010845A CN 115010845 A CN115010845 A CN 115010845A CN 202210043897 A CN202210043897 A CN 202210043897A CN 115010845 A CN115010845 A CN 115010845A
Authority
CN
China
Prior art keywords
magnetic
imprinted polymer
solution
ion imprinted
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210043897.0A
Other languages
English (en)
Inventor
王学谦
徐博文
王郎郎
马懿星
宁平
谢怡冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202210043897.0A priority Critical patent/CN115010845A/zh
Publication of CN115010845A publication Critical patent/CN115010845A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/044Elimination of an inorganic solid phase
    • C08J2201/0444Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种磁性铊离子印迹聚合物及其制备方法和应用,其制备方法包括以下步骤:步骤1,将TI(I)离子模板溶液与磁性纳米颗粒混合得混合液A;步骤2,向混合液A中加入功能单体、引发剂和交联剂,得混合液B;步骤3,将混合液B经过超声处理后置于40‑80℃的惰性气氛下进行聚合反应;步骤4,依次使用清洗剂、洗脱剂、去离子水清洗,干燥后即得磁性铊离子印迹聚合物。该磁性TI(I)离子印迹聚合物不仅对TI(I)具有高度选择性,同时,它的磁性使得在使用后易于分离。减少了后续洗脱过程中有机溶剂的使用量,在环保的同时减少有机溶剂消耗,降低了成本。

Description

一种磁性铊离子印迹聚合物及其制备方法和应用
技术领域
本发明涉及吸附分离技术领域,更具体的说是涉及一种磁性铊离子印迹聚合物及其制备方法和其在废液中一价铊分离上的应用。
背景技术
铊(TI)是一种剧毒的稀有重金属元素。早在18世纪,TI已经在众多领域得到了广泛的应用。TI的来源较为广泛。其中,有色金属冶炼厂、燃煤火力发电厂和水泥厂是人类活动中铊污染物的主要来源。TI的所有化合物都是剧毒物质,对哺乳动物的毒性远大于Hg、Pb、As等重金属。其中,铊的低价态卤素化合物具有其较高的挥发性、水溶性、剧毒性和传播能力,对于人体的危害极大。随着含铊矿物和煤炭的开采量增加,铊排放量呈逐年上升趋势,导致铊污染越来越严重。我国每年的铅锌生产量超过600t,生产过程中会产生大量含TI废水,对水体的污染极大。TI多以TI(I)的形式存在于水相中,在水中具有良好的流动性和稳定性。目前对于含铊废水治理技术,主要包括化学沉淀法、吸附法、离子交换法、生物制剂法、萃取法等。但多数去除方法由于其成本较高、选择性低等缺点,如普通萃取法,不仅成本较高,毒性大,易挥发,对废液中TI(I)的提取率较低,且萃取后的废液难处理,处理不当容易对环境造成二次污染。所以,金属离子的识别和选择性研究仍是当前水体金属离子污染分析中一大挑战。
离子印迹聚合物,是以某一特定的目标离子为模板,通过将目标金属离子与功能单体聚合和洗脱等,在聚合物内部留下与金属离子形状、大小以及功能团均互补的三维印迹腔穴,从而制备对该目标离子具有特异选择性的聚合物。离子印迹材料具有制备简单、结构稳定、识别性强、吸附速率快、吸附容量大和易回收等特点,在重离子分离领域受到广泛的关注。虽然离子印迹材料拥有较大比表面积和吸附容量,但由于其尺寸较小,废液难以实现分离。限制其应用范围。于是,出现了磁性离子印迹技术。磁性离子印迹聚合物由离子印迹聚合物和磁性物质组成,它不仅具备离子印迹聚合物的选择性吸附的特点,能够快速从复杂的体系中分离出目标分子,还由于其存在的磁性材料使其在外加磁场作用下易于样品分离。
发明内容
有鉴于此,本发明针对上述冶炼废液中铊分离技术存在的不足,提出了一种使用磁性TI(I)离子印迹聚合物将废液中的一价TI离子选择性萃取分离的方法。该磁性TI(I)离子印迹聚合物不仅对TI(I)具有高度选择性,同时,它的磁性使得在使用后易于分离。减少了后续洗脱过程中有机溶剂的使用量,在环保的同时减少有机溶剂消耗,降低了成本。
为了达到上述目的,本发明采用如下技术方案:
一种磁性铊离子印迹聚合物的制备方法,包括以下步骤:
步骤1,将TI(I)离子模板溶液与磁性纳米颗粒均匀混合得混合液A;
步骤2,向步骤1得到的混合液A中加入功能单体、引发剂和交联剂;
步骤3,将步骤2得到的混合液B经过超声处理后置于40-80℃的惰性气氛下进行聚合反应,得到带有TI(I)模板离子的磁性离子印迹聚合物前驱体;
步骤4,依次使用清洗剂、洗脱剂对带有TI(I)模板离子的磁性离子印迹聚合物前驱体进行清洗,然后用去离子水冲洗直至上层清液呈中性,干燥后即得到磁性铊离子印迹聚合物。
功能单体的作用主要是与模板离子通过离子键、配价键等作用形成高稳定性聚合物,从而增强对目标离子的吸附能力就会越强;交联剂的主要作用是在铊离子印迹聚合物的合成过程中通过使功能单体与模板离子发生反应更好的将其固定在模板离子周围的特定位置上,从而形成交联度和刚性很强的聚合物。惰性气体主要是阻隔磁性物质中的MFe2O4与空气的接触。
优选的,步骤1中磁性纳米颗粒为改性MFe2O4或MWCNT-MFe2O4(M=Fe2+、Mn2+、Co2+、Ni2+)磁性纳米颗粒,其制备方法为:在三口瓶中,将FeCl3·6H2O和MSO4·nH2O或FeCl3·6H2O、MSO4·nH2O、MWCNT溶于蒸馏水中,瓶中持续性通入惰性气体,然后加入氨水,使溶液pH保持在8-10,在60-90℃下持续搅拌后在150-250℃下反应8-12h,然后乙醇清洗,用强磁铁收集,最后真空干燥后使用亚麻酸进行改性得到改性MFe2O4或MWCNT-MFe2O4(M=Fe2+、Mn2+、Co2+、Ni2+)磁性纳米颗粒。
采用上述技术方案的有益效果:采用油酸改性的目的是在不影响其磁性的情况下隔绝其与空气或目标溶液中的其他氧化性较强的离子发生反应,防止其被空气中的氧气或目标溶液中的氧化性物质氧化,破坏其磁性。在后续重复使用过程中可再次使用油酸改性保护其磁性。
优选的,将TlCl与溶剂按质量体积之比为1g:50-100ml混合配置TI(I)离子模板溶液;所述溶剂为乙醇、乙腈、甲苯、异丙醇、甲醇中的一种或几种。
优选的,步骤1中TI(I)离子模板溶液与磁性纳米颗粒的质量比为1:80-120。
优选的,步骤2中功能单体选自甲基丙烯酸(MAA)、丙烯酰胺(AM)、1-乙基咪唑、2-烯丙硫基烟酸、2-乙酰氨基丙烯酸中的一种或几种;引发剂选自偶氮二异丁腈(AIBN)或过氧化苯甲酰(BPO);交联剂选自二甲基丙烯酸乙二醇酯(EGDMA)、二乙烯基苯-80(DVB-80)或乙二醇二甲基丙烯酸中的一种;所述TI(I)离子模板溶液与功能单体和交联剂的摩尔比为1:(1-5):(4-30);引发剂和交联剂的摩尔比为(5-10):1。
优选的,步骤3中超声处理时间为30-60min,聚合反应时间为8-12h。
优选的,所述步骤4中清洗剂选自1%甲醇溶液、1%-5%的盐酸溶液或乙二胺中的一种;所述洗脱剂为盐酸溶液、硝酸溶液或乙醇与醋酸以任意比例混合的混合液。
本发明还提供了根据上述方法制备得到的磁性铊离子印迹聚合物在废液中一价铊分离上的应用。
优选的,将所述磁性铊离子印迹聚合物直接投入目标废液中处理废水20-30min,后使用永磁体将磁性铊离子印迹聚合物回收,回收后使用蒸馏水清洗掉表面多余的废液,烘干后再依次使用洗脱剂、蒸馏水清洗掉吸附在磁性铊离子印迹聚合物上的目标TI离子,烘干后重复使用。
经由上述的技术方案可知,与现有技术相比,本发明具有以下有益效果:
(1)选择性高:磁性离子印迹聚合物以目标离子为模板制备而成。相较于传统去除方法,如活性炭吸附,或P204萃取技术等在重金属离子分离领域广泛使用的方法相比,磁性铊离子印迹聚合物对TI(I)离子识别度非常高。在环境复杂的废液中,可以有效地清除其他金属离子的干扰。
(2)分离度高:利用外加磁场可迅速将磁性铊离子印迹聚合物(MIIPs)与废液分离。
(3)处理效果好:选用的磁性纳米颗粒比表面积大,可以对废液中的目标离子有效吸附。
(4)便宜易得,且操作成本较低:材料制作成本低,且由于其磁性特点,可利用外加磁场迅速从水体中分离,减少过滤分离步骤时间和资金成本。
(5)绿色环保:可重复使用,由于其磁性特征简化了后续与样品溶液的分离步骤,减少了有机溶剂的使用消耗,且提升实验人员在实验操作过程中的健康保障。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明磁性铊离子印迹聚合物的制备流程图;
图2附图为本发明磁性纳米颗粒的制备示意图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种磁性铊离子印迹聚合物从锌矿冶炼废水中深度去除TI(I)离子。具体步骤如下:
a、在三口瓶中,将称取27g的FeCl3·6H2O和11.2g的MnSO4·4H2O溶于100ml蒸馏水中。三口瓶中持续通入N2。超声处理10-20min至溶液混合均匀。在60℃下,向溶液中加入氨水至溶液pH稳定在8-10之间。持续搅拌60min后转移至高压反应釜中于200℃下反应9h。得到的产物用乙醇清洗掉表面多余的溶剂,用强磁铁收集。最后置于60℃的真空烘箱中干燥后得到MnFe2O4纳米颗粒。后使用5ml油酸对制得的MnFe2O4纳米颗粒进行改性,使得有机溶剂聚合物更好的将MnFe2O4纳米颗粒包埋。
b、称取0.833g的TlCl溶于适量乙醇溶液中完全溶解后,定容至TI(I)浓度为5g/L。得到5g/L的TI(I)离子模板溶液。按质量比为1:100的配置TI(I)离子模板溶液与MnFe2O4纳米颗粒混合液A。
c、配置混合液A功能单体和交联剂、引发剂混合液B。将混合液A、5.806g的功能单体剂及66ml的交联剂混合均匀后向其中加入60.5g的引发剂。其中,混合液A、功能单体、交联剂摩尔比为1:5:20,引发剂为所述功能单体和交联剂的摩尔量之和的5%。功能单体选择甲基丙烯酸(MAA),交联剂选择二甲基丙烯酸乙二醇酯(EGDMA),引发剂选择过氧化苯甲酰(BPO)。
d、将上述混合溶液超声处理30min后置于40-80℃的N2气氛下进行12h的聚合反应。得到到带有TI(I)模板离子的磁性离子印迹聚合物前驱体。
e、使用1%的甲醇溶液对磁性TI离子印迹聚合物前驱体进行清洗,清洗掉表面多余的模板溶液,烘干后使用洗脱剂1mol·L-1的盐酸溶液清洗掉吸附在磁性离子印迹聚合物上的目标TI+,然后用去离子水冲洗直至上层清液呈中性,60-80℃下干燥后即得到磁性铊离子印迹聚合物。
f、将制得的磁性铊离子印迹聚合物投入目标锌矿废水中,30min后通过永磁铁对磁性铊离子印迹聚合物进行收集。使用蒸馏水清洗去除磁性铊离子印迹聚合物表面的残留废液后,烘干。烘干后使用洗脱剂1mol·L-1的盐酸溶液清洗掉吸附在磁性离子印迹聚合物上的目标TI+。再次使用蒸馏水清洗后烘干,即可重复使用。
g、再次对相同废液进行吸附处理,重复三次上述相同操作以后,对TI+的去除率仍能达到93%以上。
实验前后金属离子浓度采用ICP法进行测定,测定吸附前后溶液中部分离子浓度:
Figure BDA0003471410380000061
Figure BDA0003471410380000071
实施例2
一种磁性铊离子印迹聚合物从某铜矿冶炼废水中深度去除TI(I)离子。
具体步骤如下:
a、称取和14gFeSO4·4H2O和13.5g FeCl3·6H2O于三口瓶中,加入80ml去离子水将其溶解。三口瓶中持续通入N2以保持无氧环境。超声处理20min至溶液混合均匀。在60℃下,向溶液中加入氨水至溶液pH稳定在8-10之间。持续搅拌60min后转移至高压反应釜中于200℃下反应9h。得到的产物用乙醇清洗掉表面多余的溶剂,用强磁铁收集。用去离子水进行冲洗至中性,得到Fe3O4铁磁流体。后使用5ml亚麻酸对制得的Fe3O4铁磁流体进行改性。
b、同实例一中制作方法一样得到5g/L的TI(I)离子模板溶液。按质量比为1:100的配置TI(I)离子模板溶液与Fe3O4铁磁流体混合液A。
c、配置混合液A功能单体和交联剂、引发剂混合液B。将混合液A、4.81g的功能单体剂及49.2ml的交联剂混合均匀后向其中加入45.6g的引发剂。其中,混合液A、功能单体、交联剂摩尔比为1:5:30,引发剂为所述功能单体和交联剂的摩尔量之和的5%。功能单体选择1-乙基咪唑,交联剂选择二乙烯基苯-80(DVB-80),引发剂选择偶氮二异丁腈。
d、将上述混合溶液超声处理30min后置于40-80℃的N2气氛下进行12h的聚合反应。得到到带有TI(I)模板离子的磁性离子印迹聚合物前驱体。
e、使用0.5mol/L的乙二胺溶液对磁性TI离子印迹聚合物前驱体进行清洗,清洗掉表面多余的模板溶液,烘干后使用洗脱剂2mol·L-1的硝酸溶液清洗掉吸附在磁性离子印迹聚合物上的目标TI+。后用去离子水冲洗直至上层清液呈中性。60-80℃下干燥后即得到磁性铊离子印迹聚合物。
f、将制得的磁性TI(I)离子印迹聚合物投入目标锌矿废水中,30min后通过永磁铁对磁性铊离子印迹聚合物进行收集。使用蒸馏水清洗去除磁性铊离子印迹聚合物表面的残留废液后,烘干。烘干后使用洗脱剂2mol·L-1的硝酸溶液清洗掉吸附在磁性离子印迹聚合物上的目标TI+。再次使用蒸馏水清洗后烘干,即可重复使用。实验前后金属离子浓度采用ICP法进行测定,测定吸附前后溶液中部分离子浓度:
金属离子 TI<sup>+</sup> Cu<sup>2+</sup> Pb<sup>2+</sup> As<sup>3+</sup>
反应前浓度 0.7mg·L<sup>-1</sup> 181.7mg·L<sup>-1</sup> 167mg·L<sup>-1</sup> 4.9mg·L<sup>-1</sup>
反应后浓度 0.01mg·L<sup>-1</sup> 180.38mg·L<sup>-1</sup> 166.5mg·L<sup>-1</sup> 4.83mg·L<sup>-1</sup>
去除率 98.6% 0.7% 0.29% 1.4%
实施例3
一种磁性铊离子印迹聚合物从某铜矿冶炼废水中深度去除TI(I)离子。
具体步骤如下:
a、取0.1g经酸化处理后的MWCNT放入10mL去离子水中,超声处理10min。称取和28.1gCoSO4·7H2O和26g的FeCl3·6H2O,置于三口瓶中,通N2保护。搅拌的同时滴加质量分数25%的氨水和27ml的聚乙烯醇(PVA)分散剂,60℃反应30min。使用磁铁将产物与溶液分离,纯水反复洗至中性,将湿的沉淀物转移到干燥箱中干燥12h。干燥后得的MWCNT-CoFe2O4复合磁性纳米材料。后使用5ml亚麻酸对制得的MWCNT-CoFe2O4铁磁流体进行改性。
b、同实例一中制作方法一样得到5g/L的TI(I)离子模板溶液。按质量比为1:100的配置TI(I)离子模板溶液与Fe3O4铁磁流体混合液A。
c、配置混合液A功能单体和交联剂、引发剂混合液B。将混合液A、3.55g的功能单体剂及33ml的交联剂混合均匀后向其中加入19.5g的引发剂。其中,混合液A、功能单体、交联剂摩尔比为1:5:10,引发剂为所述功能单体和交联剂的摩尔量之和的5%。功能单体选择丙烯酰胺(AM),交联剂选择二甲基丙烯酸乙二醇酯(EGDMA),引发剂选择偶氮二异丁腈。
d、将上述混合溶液超声处理30min后置于40-80℃的Ar2气氛下进行12h的聚合反应。得到到带有TI(I)模板离子的磁性离子印迹聚合物前驱体。
e、使用1%的甲醇溶液对磁性TI离子印迹聚合物前驱体进行清洗,清洗掉表面多余的模板溶液,烘干后使用洗脱剂1mol·L-1的硫酸溶液清洗掉吸附在磁性离子印迹聚合物上的目标TI+。后用去离子水冲洗直至上层清液呈中性。60-80℃下干燥后即得到磁性铊离子印迹聚合物。
f、将制得的磁性TI(I)离子印迹聚合物投入目标含铊废水中,30min后通过永磁铁对磁性铊离子印迹聚合物进行收集。使用蒸馏水清洗去除磁性铊离子印迹聚合物表面的残留废液后,烘干。烘干后使用洗脱剂1mol·L-1的硫酸溶液清洗掉吸附在磁性离子印迹聚合物上的目标TI+。再次使用蒸馏水清洗后烘干,即可重复使用。实验前后TI(I)离子浓度采用ICP法进行测定,测定吸附前后溶液中部分离子浓度:
金属离子 TI<sup>+</sup> Zn<sup>2+</sup> Pb<sup>2+</sup> Cr<sup>3+</sup>
反应前浓度 0.5ppm 2ppm 0.3ppm 0.5ppm
反应前浓度 0.01ppm 1.92ppm 0.28ppm 0.49ppm
去除率 98% 4% 6% 2%
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种磁性铊离子印迹聚合物的制备方法,其特征在于,包括以下步骤:
步骤1,将TI(I)离子模板溶液与磁性纳米颗粒均匀混合得混合液A;
步骤2,向步骤1得到的混合液A中加入功能单体、引发剂和交联剂,得混合液B;
步骤3,将步骤2得到的混合液B经过超声处理后置于40-80℃的惰性气氛下进行聚合反应,得到带有TI(I)模板离子的磁性离子印迹聚合物前驱体;
步骤4,依次使用清洗剂、洗脱剂对带有TI(I)模板离子的磁性离子印迹聚合物前驱体进行清洗,然后用去离子水冲洗直至上层清液呈中性,干燥后即得到磁性铊离子印迹聚合物。
2.根据权利要求1所述的方法,其特征在于,步骤1中磁性纳米颗粒为改性MFe2O4或MWCNT-MFe2O4(M=Fe2+、Mn2+、Co2+、Ni2+)磁性纳米颗粒,其制备方法为:在三口瓶中,将FeCl3·6H2O和MSO4·nH2O或FeCl3·6H2O、MSO4·nH2O、MWCNT溶于蒸馏水中,瓶中持续性通入惰性气体,然后加入氨水,使溶液pH保持在8-10,在60-90℃下持续搅拌后在150-250℃下反应8-12h,然后乙醇清洗,用强磁铁收集,最后真空干燥后使用亚麻酸进行改性得到改性MFe2O4或MWCNT-MFe2O4(M=Fe2+、Mn2+、Co2+、Ni2+)磁性纳米颗粒。
3.根据权利要求1所述的方法,其特征在于,将TlCl与溶剂按质量体积之比为1g:50-100ml混合配置TI(I)离子模板溶液;所述溶剂为乙醇、乙腈、甲苯、异丙醇、甲醇中的一种或几种。
4.根据权利要求1所述的方法,其特征在于,步骤1中TI(I)离子模板溶液与磁性纳米颗粒的质量比为1:80-120。
5.根据权利要求1所述的方法,其特征在于,步骤2中功能单体选自甲基丙烯酸(MAA)、丙烯酰胺(AM)、1-乙基咪唑、2-烯丙硫基烟酸、2-乙酰氨基丙烯酸中的一种或几种;引发剂选自偶氮二异丁腈(AIBN)或过氧化苯甲酰(BPO);交联剂选自二甲基丙烯酸乙二醇酯(EGDMA)、二乙烯基苯-80(DVB-80)或乙二醇二甲基丙烯酸中的一种;所述的TI(I)离子模板溶液与功能单体和交联剂的摩尔比为1:(1-5):(4-30);引发剂和交联剂的摩尔比为(5-10):1。
6.根据权利要求1所述的方法,其特征在于,步骤3中超声处理时间为30-60min,聚合反应时间为10-12h。
7.根据权利要求1所述的方法,其特征在于,所述步骤4中清洗剂选自1%甲醇溶液、1%-5%的盐酸溶液或乙二胺中的一种;所述洗脱剂为盐酸溶液、硝酸溶液或乙醇与醋酸以任意比例混合的混合液。
8.一种根据权利要求1-7任一项所述的方法制备得到的磁性铊离子印迹聚合物。
9.权利要求8所述的磁性铊离子印迹聚合物在废液中一价铊分离上的应用。
10.根据权利要求9所述的应用,其特征在于,将所述磁性铊离子印迹聚合物直接投入目标废液中处理废水20-30min,后使用永磁体将磁性铊离子印迹聚合物回收,回收后使用蒸馏水清洗,烘干后再依次使用洗脱剂、蒸馏水清洗,烘干后重复使用。
CN202210043897.0A 2022-01-14 2022-01-14 一种磁性铊离子印迹聚合物及其制备方法和应用 Pending CN115010845A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210043897.0A CN115010845A (zh) 2022-01-14 2022-01-14 一种磁性铊离子印迹聚合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210043897.0A CN115010845A (zh) 2022-01-14 2022-01-14 一种磁性铊离子印迹聚合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115010845A true CN115010845A (zh) 2022-09-06

Family

ID=83067476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210043897.0A Pending CN115010845A (zh) 2022-01-14 2022-01-14 一种磁性铊离子印迹聚合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115010845A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080221248A1 (en) * 2007-03-05 2008-09-11 Sungkyunkwan University Foundation For Corporate Collaboration Method for preparing surface-imprinted polymer microspheres in the form of core-shell for selective separation of heavy metal ions
CN101905151A (zh) * 2010-08-12 2010-12-08 南昌航空大学 磁性金属离子表面印迹聚合物的制备方法和应用
CN103709341A (zh) * 2013-12-23 2014-04-09 河北工业大学 一种磁性锌离子表面印迹聚合物的制备方法
CN105884985A (zh) * 2016-05-13 2016-08-24 华南农业大学 一种磁性镉离子印迹聚合物及其制备方法
CN106432606A (zh) * 2016-11-11 2017-02-22 中国科学院青海盐湖研究所 一种磁性Cr(Ⅵ)离子印迹聚合物及其制备方法和应用
CN108559024A (zh) * 2018-03-21 2018-09-21 北京大学深圳研究生院 一种钯离子印迹聚合物及其制备方法和应用
CN111978469A (zh) * 2019-05-21 2020-11-24 中国药科大学 一种真菌毒素及隐蔽型毒素磁性埃洛石纳米管/分子印迹聚合物制备及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080221248A1 (en) * 2007-03-05 2008-09-11 Sungkyunkwan University Foundation For Corporate Collaboration Method for preparing surface-imprinted polymer microspheres in the form of core-shell for selective separation of heavy metal ions
CN101905151A (zh) * 2010-08-12 2010-12-08 南昌航空大学 磁性金属离子表面印迹聚合物的制备方法和应用
CN103709341A (zh) * 2013-12-23 2014-04-09 河北工业大学 一种磁性锌离子表面印迹聚合物的制备方法
CN105884985A (zh) * 2016-05-13 2016-08-24 华南农业大学 一种磁性镉离子印迹聚合物及其制备方法
CN106432606A (zh) * 2016-11-11 2017-02-22 中国科学院青海盐湖研究所 一种磁性Cr(Ⅵ)离子印迹聚合物及其制备方法和应用
CN108559024A (zh) * 2018-03-21 2018-09-21 北京大学深圳研究生院 一种钯离子印迹聚合物及其制备方法和应用
CN111978469A (zh) * 2019-05-21 2020-11-24 中国药科大学 一种真菌毒素及隐蔽型毒素磁性埃洛石纳米管/分子印迹聚合物制备及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张婷等: "磁性Fe3O4复合材料的制备及其在毒品检测中的应用", 《应用化工》 *
秦燕等: "环境介质中铊的检测及其影响因素研究进展", 《环境与健康杂志》 *

Similar Documents

Publication Publication Date Title
Khaydarov et al. Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites
CN110732307B (zh) 一种edta改性磁性纳米复合材料的制备方法及应用
CN107511132B (zh) 一种磁性四氧化三铁纳米粒子及其等离子体改性方法和应用
KR101206826B1 (ko) 금속 이온 각인된 미세다공성 고분자 입자의 제조방법
CN106552590A (zh) 一种重金属离子印迹磁性壳聚糖吸附剂的制备方法
CN112897627A (zh) 一种重金属废水的去除方法
CN103846076B (zh) 一种磁性氧化石墨烯的制备方法
CN105457599A (zh) 一种磁性纳米吸附材料的合成及其用于处理重金属废液的方法
CN106111064A (zh) 一种二乙烯三胺五乙酸改性磁性氧化石墨烯复合材料的制备方法与用途
CN104016434A (zh) 一种利用硅酸钙净化含重金属污水并回收重金属的方法
Li et al. Experimental and DFT studies on highly selective separation of indium ions using silica gel/graphene oxide based ion-imprinted composites as a sorbent
CN107983295A (zh) 核壳结构铁铜双金属材料及其制备方法和应用
CN111957301A (zh) 一种磁性壳聚糖镍离子分子印迹吸附剂及其制备方法和应用
CN103611503A (zh) α-酮戊二酸改性的磁性壳聚糖、制备方法及其在含镉废水处理领域中的应用
CN110732311A (zh) 一种交联壳聚糖包覆MoS2吸附剂、制备方法及其应用
CN115010845A (zh) 一种磁性铊离子印迹聚合物及其制备方法和应用
CN113304730A (zh) 一种用于废旧三元电池中钴回收的特种吸附剂的制备方法
CN113019334A (zh) 一种改性木质素磁性复合材料的制备及其去除废水中染料的方法
CN108503749B (zh) 一种铀酰离子印记聚合物材料的制备方法
CN106809908B (zh) 一种气体辅助下降解重金属离子的方法
CN114632498B (zh) 一种超支化巯基海绵吸附剂及其制备方法和应用
CN109277090A (zh) 一种同时快速吸附铬、镉和铅重金属离子的方法
CN115404350A (zh) 一种利用含氮碱基类化合物改性的吸附树脂回收金的方法
Hamada et al. Poly (vinyl diglycolic acid ester)-Grafted Polyethylene/Polypropylene Fiber Adsorbent for Selective Recovery of Samarium
CN115090275A (zh) 一种污水处理用纳米复合材料及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220906