CN115010145A - 一种新型zsm-5沸石纳米片的制备方法及其在催化反应中的应用 - Google Patents

一种新型zsm-5沸石纳米片的制备方法及其在催化反应中的应用 Download PDF

Info

Publication number
CN115010145A
CN115010145A CN202210599106.2A CN202210599106A CN115010145A CN 115010145 A CN115010145 A CN 115010145A CN 202210599106 A CN202210599106 A CN 202210599106A CN 115010145 A CN115010145 A CN 115010145A
Authority
CN
China
Prior art keywords
zsm
zeolite
aluminum
nanosheet
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210599106.2A
Other languages
English (en)
Other versions
CN115010145B (zh
Inventor
刘毅
周田莉
刘益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202210599106.2A priority Critical patent/CN115010145B/zh
Publication of CN115010145A publication Critical patent/CN115010145A/zh
Application granted granted Critical
Publication of CN115010145B publication Critical patent/CN115010145B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/38Base treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种新型ZSM‑5沸石纳米片的制备方法及其在催化反应中的应用。采用有机季铵碱和铝源作反应介质对形貌均匀的ZSM‑5晶种母体进行水热处理,经冷却、离心、洗涤、干燥、焙烧,即得到ZSM‑5沸石纳米片。通过本发明,可以实现对ZSM‑5沸石纳米片诸多物化性质的精确调控。本发明制备的ZSM‑5沸石纳米片具有高长深比、单分散性和均一性好、表面光滑、硅铝比可调、结晶度高、水热稳定性好和兼具等级孔结构等特性;此外,纳米片具有丰富的B酸位点、较大的比表面积和发达的等级孔结构,在合成高附加值轻质芳烃等反应中表现出优异的催化性能。

Description

一种新型ZSM-5沸石纳米片的制备方法及其在催化反应中的 应用
技术领域
本发明属于分子筛合成技术领域,涉及一种新型ZSM-5沸石纳米片的制备方法及其在催化反应中的应用。
背景技术
ZSM-5沸石分子筛是一类具有MFI型拓扑结构的无机微孔晶体材料,其硅铝比可在很宽范围内调变。ZSM-5分子筛骨架由两种相互交叉的十元环孔道体系,即平行于b轴方向的直线形孔道和平行于a轴方向的Z字形孔道组成。ZSM-5沸石分子筛独特的孔道结构和可调的硅铝比,使其具有显著的形状选择性、适宜的酸性和疏水性以及良好的水热稳定性,在催化、吸附和膜分离领域具有广阔的应用前景。然而,单一微孔结构产生的扩散限制和空间位阻,极大降低其催化性能。因此开发新的合成策略来缓解或消除扩散限制就变得日益迫切。
沸石纳米片的制备是一种缩短骨架内扩散路径长度的有效方法。通过减小沸石b轴方向的厚度,在不改变客体分子于Z字形孔道扩散速率的同时,显著提高其在直孔道的扩散速率,有利于提高其催化性能和产物选择性。目前合成沸石纳米片的主要策略包括传统水热合成、模板剂导向合成、层状沸石前体剥离、添加剂辅助合成、晶种导向合成以及气体膨胀合成。考虑到有机结构导向剂的成本较高、制备过程复杂、脱除对环境产生污染以及工业化应用困难等问题,开发绿色可持续且能大规模生产沸石纳米片的新工艺就变得尤为重要。
次级孔隙的引入是一种有效缩短本体沸石扩散路径长度的方法。通过在晶体内部构建等级孔结构可提高分子筛活性位点的可及性和降低焦炭的形成速率,从而提高其催化性能。目前,广泛用于合成等级沸石的制备工艺可分为两类,即直接水热合成和后处理合成。相较于水热合成法涉及昂贵且难处理的模板剂,后处理是一种简单、有效和经济的方法,但容易破坏沸石的骨架结构。因此,亟待设计有效的合成策略,用以制备高结晶度且互连介孔的等级结构沸石。
为克服传统微孔沸石产生的扩散限制,等级孔结构沸石和具有可控厚度沸石纳米片合成得到了广泛的开发和研究,然而,兼具纳米片厚度和晶内等级结构特性沸石的研究还鲜有报道。
发明内容
本发明提供了一种简单高效的碱刻蚀法制备具有可调硅铝比和优异稳定性的单晶单分散等级结构ZSM-5纳米片,该技术制备的等级结构ZSM-5沸石纳米片兼具高长深比、丰富的强B酸位和发达的晶内介孔,在甲醇制烃、催化裂化、烷基化、芳构化、酰化和异构化等反应中表现出较高的反应稳定性、产物选择性以及抗结焦性能,从而有效解决了沸石纳米片在实际工业应用中所面临的制备成本高和稳定性差等问题。
本发明的技术方案是:
一种新型ZSM-5沸石纳米片的制备方法,将块状ZSM-5沸石分子筛经水热碱刻蚀处理获得,具体包括如下步骤:
S1将铝源、有机季铵碱和蒸馏水混合均匀,得到刻蚀液A,其中有机季铵碱的浓度为0.05~2M,铝源的浓度为0.005~0.2M;
S2将块状ZSM-5沸石加入到上述刻蚀液A中,经机械运动的冲击作用和剪切作用使粉末均匀分散在刻蚀液A中,得到悬浮液B;悬浮液B中有机季铵碱溶液(有机季铵碱与蒸馏水)与块状ZSM-5沸石的质量比为20~500;所述块状ZSM-5沸石的晶粒形貌规则有序、粒径分布均一、无孪晶,且尺寸为0.4μm及以上;
S3将悬浮液B进行晶化反应;
S4将S3所得产物经冷却、离心、洗涤、干燥、焙烧,即得到等级结构ZSM-5沸石纳米片。
优选所述块状ZSM-5沸石的硅铝比为20~∞。
优选步骤S1中所述有机季铵碱为四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵或四丁基氢氧化铵;铝源为偏铝酸钠、氟铝酸铵、硫酸铝十八水合物、氧化铝、硝酸铝九水合物、异丙醇铝、假勃姆石、氢氧化铝、二乙酸铝、拟薄水铝石、溴化铝、磷酸铝、三仲丁醇铝或氯化铝。
优选步骤S3中晶化温度为60~200℃;加热方式为传统水热、旋转烘箱加热、微波辅助加热、内搅拌加热、水浴加热、油浴加热、超临界加热或等离子加热;晶化时间为0.5~240h。进一步地,晶化温度为170℃,加热方式为旋转烘箱加热和单模微波加热,晶化时间为2~50h,以便获得尺寸分布均一的ZSM-5沸石纳米片。
所述块状ZSM-5沸石的制备方法包括如下步骤:
S01将铝源、硅源、模板剂和去离子水混合老化,得到前驱体溶液A;
S02将前驱体溶液A进行水热晶化,经冷却、离心、洗涤、干燥、焙烧,即得到块状ZSM-5沸石。
步骤S01中所述铝源为偏铝酸钠、氟铝酸铵、硫酸铝十八水合物、氧化铝、硝酸铝九水合物、异丙醇铝、假勃姆石、氢氧化铝、二乙酸铝、拟薄水铝石、溴化铝、磷酸铝、三仲丁醇铝或氯化铝;硅源为正硅酸四乙酯、硅溶胶、粗孔硅胶、二氧化硅、气相二氧化硅、铁尾矿、硅酸钠、氧化硅、水玻璃、六氟硅酸或六氟硅酸铵;模板剂为四甲基铵根离子、四乙基铵根离子、四丙基铵根离子、四丁基铵根离子、乙二胺或正丁铵,进一步地,铝源为偏铝酸钠,硅源为正硅酸四乙酯,模板剂为四丙基氢氧化铵。
ZSM-5沸石分子筛中由铝原子同晶取代硅原子产生的
Figure BDA0003669257510000031
酸位点,将显著影响其催化性能。进一步地,通过调整铝源的加入量,控制硅铝比的进料量,以得到具有高催化活性、高产物选择性和抗结焦性能的ZSM-5分子筛催化剂。
优选步骤S4中所述等级结构ZSM-5沸石纳米片的总比表面积大于400m2/g,孔体积大于0.5cm3/g,介孔体积大于0.4cm3/g。
本发明还提供一种H型等级结构ZSM-5沸石纳米片在催化反应中的应用,所述H型等级结构ZSM-5沸石纳米片由等级结构ZSM-5沸石纳米片经离子交换得到;所述应用为甲醇制烃、催化裂化、烷基化、芳构化、酰化或异构化反应。本发明在刻蚀剂存在下进行脱硅制得纳米片,大幅度提高分子筛的B酸强度,在相同的反应条件下,与H型块状ZSM-5沸石以及相近硅铝比值的H型商用ZSM-5沸石相比,较大程度上提高了催化活性、产物选择性和抗结焦性能。
优选所述应用为甲醇芳构化、正辛烷催化裂解或甲苯甲醇烷基化反应。
与现有技术相比,本发明的有益效果为:
本发明采用廉价且环境友好的有机季铵碱和铝源作反应介质,对规则形貌的ZSM-5沸石分子筛进行传统的水热碱处理,简单高效制得等级结构ZSM-5沸石纳米片。以四丙基氢氧化铵溶液和偏铝酸钠作反应介质为例,其反应机理为:在水热反应早期,由于Si-O-Si键的水解速率高于Si-O-Al键且晶体内部结晶度较低,块状ZSM-5沸石分子筛内部优先溶解,形成等级结构的中空ZSM-5晶体且晶体边缘保存完好。在碱性刻蚀过程中偏铝酸钠会引起沸石水热铝化的产生,并在沸石表面形成氢氧化铝沉淀,从而避免沸石骨架中硅或铝原子的过度浸出,保证纳米片形貌完整性。进一步地,四丙基氢氧化铵和偏铝酸钠的协同作用使得沸石骨架中可控硅物种的浸出,同时偏铝酸钠衍生的铝物种重新插入沸石骨架中,分子筛硅铝比大幅度降低,导致纳米片B酸位点浓度提高,增强了其酸性。进一步延长蚀刻时间,使晶体壁在各个方向上逐渐变薄。由于垂直于b轴方向的块状ZSM-5晶体的晶面最大,最后仅保留了块状ZSM-5沸石分子筛的[0k0]晶面,获得尺寸分布均一、形貌完整且表面光滑的单分散ZSM-5纳米片。本发明提供的ZSM-5沸石纳米片的制备方法具有成本低、步骤简单、重复性好和环境友好等特点。本发明制备的ZSM-5沸石纳米片为单晶结构,具有单分散性和均一性好、表面光滑、硅铝比可调、结晶度高、水热稳定性好且兼具完整纳米片形貌、等级孔结构和丰富的B酸位点、较大的比表面积等特性,在催化、离子交换和吸附分离领域具有广阔的工业应用前景。
附图说明
图1是对比实施例1制得硅铝比为80的ZSM-5沸石分子筛母体的SEM图。
图2是对比实施例1制得ZSM-5沸石分子筛的SEM图。
图3是对比实施例2制得ZSM-5沸石分子筛的SEM图。
图4是对比实施例3采用商用H型ZSM-5沸石的SEM图。
图5是对比实施例3采用商用H型ZSM-5沸石的甲醇芳构化性能评价图。
图6是实施例1制得硅铝比为200的ZSM-5沸石分子筛母体的SEM图。
图7是实施例1制得ZSM-5沸石纳米片的SEM图。
图8是实施例1制得ZSM-5沸石纳米片的XRD图。
图9是实施例2制得ZSM-5沸石纳米片的SEM图。
图10是实施例2制得ZSM-5沸石纳米片的XRD图。
图11是实施例3制得ZSM-5沸石纳米片的SEM图。
图12是实施例3制得ZSM-5沸石纳米片的XRD图。
图13是实施例4制得ZSM-5沸石纳米片的SEM图。
图14是实施例4制得ZSM-5沸石纳米片的XRD图。
图15是实施例5制得H型ZSM-5沸石纳米片的SEM图。
图16是实施例5制得H型ZSM-5沸石纳米片的XRD图。
图17是实施例5制得H型ZSM-5沸石纳米片的TEM图。
图18是实施例5制得H型ZSM-5沸石纳米片的SAED图。
图19是实施例5制得H型ZSM-5沸石纳米片的氮气吸附-脱附等温线。
图20是实施例5制得H型ZSM-5沸石纳米片的NH3-TPD图。
图21是实施例5制得H型ZSM-5沸石纳米片的Py-IR图。
图22是实施例6制得ZSM-5沸石分子筛的SEM图。
图23是实施例7制得ZSM-5沸石分子筛的SEM图。
图24是实施例8制得ZSM-5沸石分子筛的SEM图。
图25是实施例5制得H型ZSM-5沸石纳米片的甲醇芳构化性能评价图。
具体实施方式
本发明提供了一种新型ZSM-5沸石纳米片的制备方法及其在催化反应中的应用,以下实施例对本发明作进一步阐释。但本发明并不局限于以下实施例中。
对比实施例1(非本发明)
(1)25.369g正硅酸乙酯滴加到2.034g四丙基氢氧化铵水溶液(25wt.%)中,然后加入2.6g偏铝酸钠水溶液(1wt.%),在室温下剧烈搅拌12h后,得到前驱体溶液A;
(2)将上述前驱体溶液A转移至带有聚四氟乙烯内衬的不锈钢高压釜中。高压釜置于135℃,在旋转对流烘箱中晶化36h。晶化完成后,取出并冷激至室温。所得产品经离心分离并用大量去离子水洗涤产物至中性,在70℃的烘箱中过夜干燥,最后在马弗炉中于550℃下煅烧5h,即得到硅铝比为80的块状ZSM-5沸石分子筛,标记为Z5-B-80;
(4)将17.815g四丙基氢氧化铵(25wt.%)和12.186g蒸馏水混合均匀,得到刻蚀液B(四丙基氢氧化铵的浓度为0.73M);
(5)将1.0g制得的规则板砖状ZSM-5沸石分子筛母晶加入到上述刻蚀液B中,搅拌均匀,得到均匀分散的悬浮液C;
(6)将上述悬浮液C转移至聚四氟乙烯内衬的不锈钢高压釜中,于170℃旋转对流烘箱中晶化反应18h;
(7)待步骤(6)晶化完成后,将晶化釜取出并冷激至室温,所得产品经离心分离并用大量去离子水洗涤产物至中性,在70℃的烘箱中过夜干燥,最后在马弗炉中于550℃下煅烧5h。
硅铝比为80的ZSM-5沸石分子筛扫描电镜表征如图1所示,晶种表现出均匀棺材状形貌,晶种尺寸为3.1μm,晶种沿a/c面形成了高度粗糙的表面形貌,这可能是沉积在其外表面的ZSM-5纳米颗粒在二次成核过程中过度生长所导致,通过电感耦合等离子体发射光谱技术测定其硅铝比为79.0。经碱刻蚀获得产品扫描电镜表征结果如图2所示,样品为表面凹凸不平的片状形貌,这说明纳米片存在大量介观缺陷,导致其稳定性较差,通过电感耦合等离子体发射光谱技术测定其硅铝比为21.2。
对比实施例2(非本发明)
(1)将17.815g四丙基氢氧化铵(25wt.%)、1.2g偏铝酸钠水溶液(1wt.%)及12.186g蒸馏水混合均匀,得到刻蚀液A(四丙基氢氧化铵的浓度为0.73M);
(2)将1.0g对比实施例1制得的规则板砖状ZSM-5沸石分子筛母晶加入到上述刻蚀液A中,搅拌均匀,得到均匀分散的悬浮液B;
(3)将上述悬浮液B转移至聚四氟乙烯内衬的不锈钢高压釜中,于170℃旋转对流烘箱中晶化反应18h;
(4)待步骤(3)晶化完成后,将晶化釜取出并冷激至室温,所得产品经离心分离并用大量去离子水洗涤产物至中性,在70℃的烘箱中过夜干燥,最后在马弗炉中于550℃下煅烧5h。所得产物扫描电镜表征结果如图3所示,由于偏铝酸钠产生氢氧根离子浓度过高导致样品发生过度刻蚀,从而无法维持片状形貌。
对比实施例3(非本发明)
将商用ZSM-5沸石催化剂(天津南化催化剂有限公司),采用与实施例5相同的离子交换过程得到H型商用ZSM-5沸石催化剂,进行甲醇芳构化反应性能评价。催化剂装填量为500mg,反应前在30ml/min氮气氛围于500℃下预处理1h,随后降至反应温度400℃,常压反应。采用甲醇和氮气共进料的方式(甲醇和氮气的摩尔比为1),使用微量进样泵HPLC将甲醇泵入反应器中,甲醇进入到反应器前通过预热将其汽化,加热温度180℃,质量空速为1h-1
样品的扫描电镜表征结果如图4所示,H型商用ZSM-5沸石形貌不规则,硅铝比为18。甲醇芳构化性能评价图如图5所示,在反应11h后,商用H型ZSM-5沸石催化剂的甲醇转化率低于90%,BTX的选择性从28.9%迅速降至14.4%。
实施例1
(1)25.369g正硅酸四乙酯滴加到2.034g四丙基氢氧化铵水溶液(25wt.%)中,然后加入0.95g偏铝酸钠水溶液(1wt.%),在室温下剧烈搅拌12h后,得到前驱体溶液A;
(2)将上述前驱体溶液A转移至带有聚四氟乙烯内衬的不锈钢高压釜中。高压釜置于135℃,在旋转对流烘箱中晶化36h。晶化完成后,取出并冷激至室温。所得产品经离心分离并用大量去离子水洗涤产物至中性,在70℃的烘箱中过夜干燥,最后在马弗炉中于550℃下煅烧5h,即得到硅铝比为200的块状ZSM-5沸石分子筛,标记为Z5-B-200;
(3)将1.75g四甲基氢氧化铵(25wt.%)、0.2g偏铝酸钠水溶液(1wt.%)及28.248g蒸馏水混合均匀,得到刻蚀液B(四甲基氢氧化铵的浓度为0.16M);
(4)将0.2g制得的规则板砖状ZSM-5沸石分子筛母晶加入到上述刻蚀液B中,超声处理20min,得到均匀分散的悬浮液C;
(5)将上述悬浮液C转移至聚四氟乙烯内衬的不锈钢高压釜中,于170℃旋转对流烘箱中晶化反应18h;
(6)待步骤(5)晶化完成后,将晶化釜取出并冷激至室温,所得产品经离心分离并用大量去离子水洗涤产物至中性,在70℃的烘箱中过夜干燥,最后在马弗炉中于550℃下煅烧5h,即得到等级结构ZSM-5沸石纳米片,标记为Z5-TMA(0.16M,170℃)。
ZSM-5沸石分子筛母晶的扫描电镜表征如图6所示,晶种形貌为规则的板砖状,晶粒表面光滑,尺寸分布均一,约为4.2μm。所得ZSM-5纳米片的扫描电镜表征如图7所示,纳米片为叶片形单分散的结构,其沿b轴厚度为280nm,c轴尺寸为3.98μm,长深比约为14.2。X射线衍射表征如图8所示,虽然纳米片具有典型的MFI拓扑结构,但其结晶度下降非常明显,说明经过四甲基氢氧化铵碱水热处理,导致纳米片趋向于无定形化。
实施例2
(1)将3.181g四乙基氢氧化铵(25wt.%)、0.3g偏铝酸钠水溶液(1wt.%)及26.821g蒸馏水混合均匀,得到刻蚀液A(四乙基氢氧化铵的浓度为0.18M);
(2)将0.2g实施例1制得的规则板砖状ZSM-5沸石分子筛母晶加入到上述刻蚀液A中,超声处理20min,得到均匀分散的悬浮液B;
(3)将上述悬浮液B转移至聚四氟乙烯内衬的不锈钢高压釜中,于170℃旋转对流烘箱中晶化反应18h;
(4)待步骤(3)晶化完成后,将晶化釜取出并冷激至室温,所得产品经离心分离并用大量去离子水洗涤产物至中性,在70℃的烘箱中过夜干燥,最后在马弗炉中于550℃下煅烧5h,即得到等级结构ZSM-5沸石纳米片,标记为Z5-TEA(0.18M,170℃)。
所得ZSM-5沸石纳米片的扫描电镜表征如图9所示,纳米片为椭圆形单分散的片状结构,其沿b轴厚度为150nm,横向尺寸为4.18μm,长深比约为27.9。X射线衍射表征如图10所示,纳米片为纯相的MFI拓扑结构且具有较好的结晶度。
实施例3
(1)将4.392g四丙基氢氧化铵(25wt.%)、0.3g偏铝酸钠水溶液(1wt.%)与25.604g蒸馏水混合均匀,得到刻蚀液A(四丙基氢氧化铵的浓度为0.18M);
(2)将0.2g实施例1制得的规则板砖状ZSM-5沸石分子筛母晶加入到上述刻蚀液A中,超声处理20min,得到均匀分散的悬浮液B;
(3)将上述悬浮液B转移至聚四氟乙烯内衬的不锈钢高压釜中,于170℃旋转对流烘箱中晶化反应18h;
(4)待步骤(3)晶化完成后,将晶化釜取出并冷激至室温,所得产品经离心分离并用大量去离子水洗涤产物至中性,在70℃的烘箱中过夜干燥,最后在马弗炉中于550℃下煅烧5h,即得到等级结构ZSM-5沸石纳米片,标记为Z5-TPA(0.18M,170℃)。
所得ZSM-5沸石纳米片的扫描电镜表征如图11所示,纳米片为椭圆形单分散的片状结构,其沿b轴厚度为120nm,c轴尺寸为3.90μm,长深比约为32.5。X射线衍射表征如图12所示,纳米片保持MFI拓扑结构,证实纳米片的晶体结构未发生明显的变化。电感耦合等离子发射光谱结果表明,分子筛的硅铝比从202降至34.9。
实施例4
(1)将5.605g四丁基氢氧化铵(25wt.%)、0.35g偏铝酸钠水溶液(1wt.%)及24.397g蒸馏水混合均匀,得到刻蚀液A(四丁基氢氧化铵的浓度为0.18M);
(2)将0.2g实施例1制得的规则板砖状ZSM-5沸石分子筛母晶加入到上述刻蚀液A中,超声处理20min,得到均匀分散的悬浮液B;
(3)将上述悬浮液B转移至聚四氟乙烯内衬的不锈钢高压釜中,于170℃旋转对流烘箱中晶化反应18h;
(4)待步骤(3)晶化完成后,将晶化釜取出并冷激至室温,所得产品经离心分离并用大量去离子水洗涤产物至中性,在70℃的烘箱中过夜干燥,最后在马弗炉中于550℃下煅烧5h,即得到等级结构ZSM-5沸石纳米片,标记为Z5-TBA(0.18M,170℃)。
所得ZSM-5沸石纳米片的扫描电镜表征如图13所示,纳米片为椭圆形单分散的片状结构,其沿b轴厚度为340nm,c轴尺寸为3.84μm,长深比约为11.3。X射线衍射表征如图14所示,纳米片的衍射峰表现出典型的MFI五指峰型,表明经四丁基氢氧化铵处理并未破坏纳米片结构。
实施例5
(1)将17.815g四丙基氢氧化铵(25wt.%)、0.8g偏铝酸钠水溶液(1wt.%)及12.186g蒸馏水混合均匀,得到刻蚀液A(四丙基氢氧化铵的浓度为0.73M);
(2)将1.0g对比实施例1制得的规则板砖状ZSM-5沸石分子筛母晶加入到上述刻蚀液A中,搅拌均匀,得到均匀分散的悬浮液B;
(3)将上述悬浮液B转移至聚四氟乙烯内衬的不锈钢高压釜中,于170℃旋转对流烘箱中晶化反应18h;
(4)待步骤(3)晶化完成后,将晶化釜取出并冷激至室温,所得产品经离心分离并用大量去离子水洗涤产物至中性,在70℃的烘箱中过夜干燥,最后在马弗炉中于550℃下煅烧5h,即得到等级结构ZSM-5沸石纳米片。
(5)将Na型ZSM-5沸石纳米片加入到0.8M氯化铵水溶液,液固比为30mL/g,85℃搅拌2h,冷却至室温离心,重复上述步骤3次,随后水洗至中性,在70℃的烘箱中过夜干燥,并在空气的氛围下于550℃下煅烧5h,即得到H型ZSM-5沸石纳米片样品,标记为Z5-HNS-80*。
所得H型ZSM-5沸石纳米片的扫描电镜表征如图15所示,纳米片为椭圆形单分散的片状结构,表面形貌光滑且沿b轴厚度为100nm。通过电感耦合等离子体发射光谱技术测定其硅铝比为17.0。X射线衍射表征如图16所示,纳米片的特征衍射峰位置与母晶一致,说明样品为较高结晶度的纯相ZSM-5分子筛。透射电镜表征如图17所示,证实纳米片中存在大量的介孔,这意味着理想的等级结构已经形成。随机选择的H型ZSM-5纳米片的SAED表征显示出离散的衍射斑点(图18),从而清楚地证明了纳米片的单晶性质。氮气物理吸附-脱附表征如图19所示,纳米片具有典型的IV型等温线,其在高比压区具有明显的回滞环,这进一步说明在H型ZSM-5纳米片晶体内部引入了丰富的介孔。样品的比表面积和孔体积等织构性质数据如表1所示,与H型ZSM-5母晶(记作H型Z5-B-80,Z5-B-80经相同过程的离子交换后获得)相比,获得纳米片的外表面积(从303.5增加到435.6m2 g-1)和孔体积(从0.02增加到0.17cm3 g-1)急剧增加,微孔面积和体积并未有明显的变化,这说明该碱水热处理条件未破坏分子筛原有的微孔结构。样品的化学吸附表征结果如图20所示,在低温区(100~300℃)和高温区(400~500℃)可以观察到两个明确的氨气解吸峰,分别对应于氨气在弱酸位和强酸位的脱附,这表明两个样品均存在一定的酸强度。此外与母体相比,纳米片的解吸峰向温度较高的区域偏移,表明其酸中心强度较高。吡啶红外表征结果如图21所示,纳米片获得了更多的B酸量,这是由于更多的铝物种插入到沸石骨架中所导致。
表1样品的织构性能参数
Figure BDA0003669257510000101
实施例6
(1)将17.815g四丙基氢氧化铵(25wt.%)、0.8g氧化铝(1wt.%)及12.186g蒸馏水混合均匀,得到刻蚀液A(四丙基氢氧化铵的浓度为0.73M);
(2)将1.0g对比实施例1制得的规则板砖状ZSM-5沸石分子筛母晶加入到上述刻蚀液A中,搅拌均匀,得到均匀分散的悬浮液B;
(3)将上述悬浮液B转移至聚四氟乙烯内衬的不锈钢高压釜中,于170℃旋转对流烘箱中晶化反应18h;
(4)待步骤(3)晶化完成后,将晶化釜取出并冷激至室温,所得产品经离心分离并用大量去离子水洗涤产物至中性,在70℃的烘箱中过夜干燥,最后在马弗炉中于550℃下煅烧5h。所得样品的扫描电镜表征如图22所示,样品形貌为表面疏松的片状结构。
实施例7
(1)将17.815g四丙基氢氧化铵(25wt.%)、0.8g九水合硝酸铝(1wt.%)及12.186g蒸馏水混合均匀,得到刻蚀液A(四丙基氢氧化铵的浓度为0.73M);
(2)将1.0g对比实施例1制得的规则板砖状ZSM-5沸石分子筛母晶加入到上述刻蚀液A中,搅拌均匀,得到均匀分散的悬浮液B;
(3)将上述悬浮液B转移至聚四氟乙烯内衬的不锈钢高压釜中,于170℃旋转对流烘箱中晶化反应18h;
(4)待步骤(3)晶化完成后,将晶化釜取出并冷激至室温,所得产品经离心分离并用大量去离子水洗涤产物至中性,在70℃的烘箱中过夜干燥,最后在马弗炉中于550℃下煅烧5h。所得样品的扫描电镜表征如图23所示,样品形貌为表面光滑的片状结构。
实施例8
(1)将17.815g四丙基氢氧化铵(25wt.%)、0.8g偏铝酸钠(1wt.%)及12.186g蒸馏水混合均匀,得到刻蚀液A(四丙基氢氧化铵的浓度为0.73M);
(2)将1.0g对比实施例1制得的规则板砖状ZSM-5沸石分子筛母晶加入到上述刻蚀液A中,搅拌均匀,得到均匀分散的悬浮液B;
(3)将上述悬浮液B转移至单模微波管中,于110℃微波反应器中晶化反应1h;
(4)待步骤(3)晶化完成后,将单模微波管取出,所得产品经离心分离并用大量去离子水洗涤产物至中性,在70℃的烘箱中过夜干燥,最后在马弗炉中于550℃下煅烧5h。所得样品的扫描电镜表征如图24所示,样品为充分刻蚀且沿b轴生长变厚的单分散纳米片,同时有少量结晶性良好的条状产物产生。
实施例9
采用实施例5中制备的H型等级结构ZSM-5纳米片(Z5-HNS-80*)和H型ZSM-5母晶(H型Z5-B-80)进行甲醇芳构化反应性能评价。催化剂装填量为500mg,反应前在30ml/min氮气氛围于500℃下预处理1h,随后降至反应温度400℃,常压反应。采用甲醇和氮气共进料的方式(甲醇和氮气的摩尔比为1),使用微量进样泵HPLC将甲醇泵入反应器中,甲醇进入到反应器前通过预热将其汽化,加热温度180℃,质量空速为1h-1
样品的催化活性评价结果如图25所示,在酸催化的甲醇芳构化反应中,纳米片展现出优异的甲醇转化率、BTX选择性、催化稳定性和抗结焦性能,甲醇转化率在99%以上的持续时间可达56.3h,BTX的选择性高达30.5%。
实施例10
采用实施例5中制备的等级结构ZSM-5纳米片进行正辛烷催化裂化反应性能评价。催化剂装填量为500mg,反应温度为400~500℃,当反应器温度到达预设温度时,使用微量进样泵HPLC将正辛烷泵入反应器中,30mL/min高纯氮气作载气,正辛烷的质量空速为5h-1
表2为H型块状ZSM-5沸石母晶和H型ZSM-5纳米片的正辛烷催化裂化性能评价表。从表中结果可以看出,随着温度的升高,H型ZSM-5母晶和H型ZSM-5纳米片的转化率、产物选择性呈先增长后减少趋势,同时纳米片的催化性能远大于块状ZSM-5沸石母晶。
表2正辛烷催化裂化性能评价数据
Figure BDA0003669257510000121
Figure BDA0003669257510000131
实施例11
对实施例5中制备的等级结构ZSM-5纳米片进行甲苯甲醇烷基化反应性能评价。催化剂装填量为500mg,反应前在30ml/min氮气氛围于500℃下预处理1h,随后降至反应温度450℃,常压反应。使用微量进样泵HPLC将甲苯和甲醇组成的混合物泵入反应器中(甲苯和甲醇的摩尔比为1),质量空速为3h-1
表3为H型块状ZSM-5沸石母晶和H型ZSM-5纳米片在持续反应8h的甲苯甲醇烷基化性能评价表。从表中可知,纳米片的转化率和对二甲苯的选择性远大于H型ZSM-5母晶,甲苯转化率可达到17.2%,对二甲苯选择性高达97.3%。
表3甲苯甲醇烷基化反应性能评价数据
Figure BDA0003669257510000132
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (5)

1.一种新型ZSM-5沸石纳米片的制备方法,其特征在于:包括如下步骤:
S1将铝源、有机季铵碱和蒸馏水混合均匀,得到刻蚀液A,其中有机季铵碱的浓度为0.05~2M,铝源的浓度为0.005~0.2M;
S2将块状ZSM-5沸石加入到上述刻蚀液A中,经机械运动的冲击作用和剪切作用使粉末均匀分散在刻蚀液A中,得到悬浮液B;悬浮液B中有机季铵碱溶液与块状ZSM-5沸石的质量比为20~500;所述块状ZSM-5沸石的晶粒形貌规则、粒径分布均一、无孪晶,尺寸为0.4μm及以上;
S3将悬浮液B进行晶化反应;
S4将S3所得产物经冷却、离心、洗涤、干燥、焙烧,即得到等级结构ZSM-5沸石纳米片。
2.根据权利要求1所述的一种新型ZSM-5沸石纳米片的制备方法,其特征在于:所述块状ZSM-5沸石的硅铝比为20~∞。
3.根据权利要求1所述的一种新型ZSM-5沸石纳米片的制备方法,其特征在于:步骤S1中所述有机季铵碱为四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵或四丁基氢氧化铵;铝源为偏铝酸钠、氟铝酸铵、硫酸铝十八水合物、氧化铝、硝酸铝九水合物、异丙醇铝、假勃姆石、氢氧化铝、二乙酸铝、拟薄水铝石、溴化铝、磷酸铝、三仲丁醇铝或氯化铝。
4.根据权利要求1所述的一种新型ZSM-5沸石纳米片的制备方法,其特征在于:步骤S3中晶化温度为60~200℃;加热方式为传统水热、旋转烘箱加热、微波辅助加热、内搅拌加热、水浴加热、油浴加热、超临界加热或等离子加热;晶化时间为0.5~240h。
5.一种H型等级结构ZSM-5沸石纳米片在催化反应中的应用,其特征在于:所述H型等级结构ZSM-5沸石纳米片是由权利要求1所述方法得到的等级结构ZSM-5沸石纳米片经离子交换制得;所述应用为甲醇制烃、催化裂化、烷基化、芳构化、酰化和异构化反应中的任意一种。
CN202210599106.2A 2022-05-30 2022-05-30 一种zsm-5沸石纳米片的制备方法及其在催化反应中的应用 Active CN115010145B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210599106.2A CN115010145B (zh) 2022-05-30 2022-05-30 一种zsm-5沸石纳米片的制备方法及其在催化反应中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210599106.2A CN115010145B (zh) 2022-05-30 2022-05-30 一种zsm-5沸石纳米片的制备方法及其在催化反应中的应用

Publications (2)

Publication Number Publication Date
CN115010145A true CN115010145A (zh) 2022-09-06
CN115010145B CN115010145B (zh) 2023-08-11

Family

ID=83070732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210599106.2A Active CN115010145B (zh) 2022-05-30 2022-05-30 一种zsm-5沸石纳米片的制备方法及其在催化反应中的应用

Country Status (1)

Country Link
CN (1) CN115010145B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107128947A (zh) * 2017-06-30 2017-09-05 华南理工大学 一种中微双孔zsm‑5沸石分子筛的制备方法
CN107840349A (zh) * 2016-09-19 2018-03-27 中国石油化工股份有限公司 纳米zsm‑5多级孔聚集体的制备方法
CN109437232A (zh) * 2018-12-13 2019-03-08 东莞理工学院 一种多级结构的zsm-5分子筛的制备方法
CN110330029A (zh) * 2019-07-05 2019-10-15 中国石油大学(北京) 一种多级孔zsm-5沸石及其制备方法与应用
CN110372000A (zh) * 2019-07-31 2019-10-25 大连理工大学 一种多级孔结构沸石纳米片的合成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107840349A (zh) * 2016-09-19 2018-03-27 中国石油化工股份有限公司 纳米zsm‑5多级孔聚集体的制备方法
CN107128947A (zh) * 2017-06-30 2017-09-05 华南理工大学 一种中微双孔zsm‑5沸石分子筛的制备方法
CN109437232A (zh) * 2018-12-13 2019-03-08 东莞理工学院 一种多级结构的zsm-5分子筛的制备方法
CN110330029A (zh) * 2019-07-05 2019-10-15 中国石油大学(北京) 一种多级孔zsm-5沸石及其制备方法与应用
CN110372000A (zh) * 2019-07-31 2019-10-25 大连理工大学 一种多级孔结构沸石纳米片的合成方法

Also Published As

Publication number Publication date
CN115010145B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
US10822242B2 (en) ZSM-35 molecular sieve and preparation method thereof
KR20110042740A (ko) 나노 크기의 결정성 zsm-5 핵을 사용한 zsm-5의 제조 방법
CN113649064B (zh) 一种沸石分子筛负载金属催化剂及其合成方法与应用
WO2018205841A1 (zh) 中孔NaY型沸石分子筛的制备方法
CN110372000B (zh) 一种多级孔结构沸石纳米片的合成方法
CN114014334A (zh) 一种中硅铝比zsm-5杂合纳米片分子筛及其制备方法
WO2022165911A1 (zh) 一种单晶梯级孔 hzsm-5 分子筛及其绿色制备方法
CN110860307A (zh) Beta分子筛催化剂、制备方法及其在酰基化法制备芳香酮中的应用
CN113353954A (zh) 一种基于天然矿物绿色合成梯级孔sapo-11分子筛及其制备方法
WO2022148416A1 (zh) Zsm-23分子筛及其制备方法
CN109867293B (zh) 一种形貌可调控NaP型分子筛的合成方法
CN109694086B (zh) 纳米zsm-5沸石分子筛聚集体的制备方法
CN114751426A (zh) B-Al-ZSM-5分子筛的制备方法与应用
CN115010145B (zh) 一种zsm-5沸石纳米片的制备方法及其在催化反应中的应用
CN107892308B (zh) Zsm-5分子筛及其制备方法
TWI826894B (zh) 一種zsm-23分子篩及其製備方法和用途
CN111689505A (zh) 一种介-微多级孔结构zsm-5分子筛的制备方法
CN108793187B (zh) 一种高分散沸石的制备方法
CN1318302C (zh) 在没有有机模板下采用可变温度制备zsm-5的方法
KR101603610B1 (ko) 2,5-디메틸퓨란과 에틸렌으로부터 파라자일렌의 합성공정에 사용되는 나노기공성 스폰지 또는 시트 형태의 제올라이트 촉매
CN115397777A (zh) 鳍状沸石晶体的合成
CN113336240A (zh) 基于高岭土矿物调控制备单/双晶zsm-5沸石的方法
CN115043414B (zh) 一种多级孔分子筛及其制备方法和应用
WO2020227888A1 (zh) 一种zsm-57分子筛及其制备方法
CN106608631A (zh) 片状sapo分子筛及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant