CN114990494B - 一种金纳米层包覆银纳米棒阵列的松塔结构sers基底及其制备方法 - Google Patents

一种金纳米层包覆银纳米棒阵列的松塔结构sers基底及其制备方法 Download PDF

Info

Publication number
CN114990494B
CN114990494B CN202210586777.5A CN202210586777A CN114990494B CN 114990494 B CN114990494 B CN 114990494B CN 202210586777 A CN202210586777 A CN 202210586777A CN 114990494 B CN114990494 B CN 114990494B
Authority
CN
China
Prior art keywords
nano
pine cone
sers substrate
rod array
silver nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210586777.5A
Other languages
English (en)
Other versions
CN114990494A (zh
Inventor
韩彩芹
李静文
刘正淋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202210586777.5A priority Critical patent/CN114990494B/zh
Publication of CN114990494A publication Critical patent/CN114990494A/zh
Application granted granted Critical
Publication of CN114990494B publication Critical patent/CN114990494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • C23C14/226Oblique incidence of vaporised material on substrate in order to form films with columnar structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种金纳米层包覆银纳米棒阵列的松塔结构SERS基底及其制备方法,属于纳米技术领域。该SERS基底的制备方法包括:利用倾斜角沉积技术制备均一性和重复度高的银纳米棒阵列结构,再通过动态阴影沉积技术蒸镀不同厚度的金纳米层,获得不同形貌的金层包覆银纳米棒阵列的“松塔”结构SERS基底。该SERS基底具有更好的化学稳定性和更高的SERS活性,比单一金属结构检测更有优势。本发明的“松塔”结构SERS基底具有十分优异的表面增强拉曼散射能力,制备过程简单、灵敏度高、增强效果显著、可修饰性及可重复性强、可大规模生产。

Description

一种金纳米层包覆银纳米棒阵列的松塔结构SERS基底及其制 备方法
技术领域
本发明属于纳米技术领域,涉及一种生化检测芯片,具体涉及一种金纳米层包覆银纳米棒阵列的松塔结构SERS基底及其制备方法。
背景技术
表面增强拉曼光谱(SERS)通过激发局域表面等离子体激元放大电磁场,从而获得分子结构信息以及灵敏的检测限。SERS技术被广泛认为是一种可以提供分子指纹信息的一种分析表征技术,主要是由于粗糙贵金属表面等离子体共振促使拉曼信号指数式增强的现象,其增强机制归因于电磁增强和化学增强。因为SERS具有灵敏度高、水干扰小、速度快等优点,这使得SERS技术成为时下研究热门,并在生物医学、食品安全以及环境监测等众多领域得到应用。然而,SERS技术和其他技术一样,既有它的优势也存在灵敏度不高、稳定性差等问题,研究者们尝试从新型SERS活性基底方面弥补其缺点和不足,拓宽SERS的应用范围。
发明内容
本发明的目的之一是提供一种金纳米层包覆银纳米棒阵列的松塔结构SERS基底的制备方法,工艺简单可靠。
本发明的目的之二是提供上述制备方法制得的金纳米层包覆银纳米棒阵列的松塔结构SERS基底,进行痕量物质检测时灵敏度高。
为实现上述目的,本发明采用的技术方案如下:
第一方面,本发明提供一种金纳米层包覆银纳米棒阵列的松塔结构SERS基底的制备方法,包括以下步骤:
(1)在电子束蒸发系统中,利用倾斜角沉积技术在洁净的玻璃片上制备银纳米棒阵列结构;
(2)利用动态阴影沉积效应在步骤(1)制备的银纳米棒阵列上蒸镀不同厚度的金纳米层;
(3)定量检测。
优选的,步骤(1)具体步骤如下:将玻璃片按设备要求尺寸进行切割,超声清洗后固定在沉积室中,对沉积室抽真空使内部压力小于5×10-7Torr;通过电子束蒸发系统,的沉积速率,先后沉积一层20nm钛薄膜和100-200nm银薄膜,然后旋转样品台使得基底法线与沉积方向夹角为85-87°,通过电子束蒸发,以0.1-0.3nm/s的速度生长实际棒长为990nm的银纳米棒阵列。
更优选的,所述超声清洗的步骤是:将切割后的玻璃片加入乙醇中,超声波清洗3-5min,重复三次,氮气吹干。
优选的,步骤(2)具体步骤如下:设置蒸汽源入射角度相对于样品台法线为θ=86°,以速率为0.05-0.1nm/s生长不同厚度的金纳米层,沉积开始时样品台面自转角度ψ启用,自转速率为1°/s。
优选的,步骤(3)具体步骤如下:设置激光波长、功率、积分时间,对基底上被测物进行扫描,得到的表面增强拉曼光谱中某处特征峰不随被测物浓度改变而受到影响,此特征峰即作为定量检测的参考峰。
第二方面,本发明还提供上述制备方法制得的金纳米层包覆银纳米棒阵列的松塔结构SERS基底。
通过SEM电镜分析,该SERS基底表面具有不同厚度的金纳米层和均匀分布的银纳米棒阵列结构。该“松塔”结构SERS基底具有十分优异的表面增强拉曼散射能力,检测限低,灵敏度高。
与现有技术相比,本发明具有如下有益效果:
1.制备过程简单、灵敏度高、增强效果显著、可修饰性及可重复性强、可大规模生产,且能检测较低浓度的探针分子,显示其较高灵敏度。
2.本发明制备的周期性纳米复合阵列结构是一种新颖的等离子体结构,相邻的金银结构单元间的间隙能构成“热点”,从而提高耦合能力,大幅度增强SERS效应。而金纳米层结构大大增加了提供的化学吸附的表面位点,这也显著的增强了SERS信号,从而提高SERS检测灵敏度。
附图说明
图1是本发明金纳米层包覆银纳米棒“松塔”结构的SERS基底的制备示意图;
图2是本发明金纳米层包覆银纳米棒“松塔”结构的扫描电子显微镜照片。其中,A是该复合基底的俯视图,B是该复合基底的截面图,右侧均为高倍率放大图;
图3是本发明金纳米层包覆银纳米棒“松塔”结构检测不同浓度BPE分子的表面增强拉曼图谱;
图4是本发明金纳米层包覆银纳米棒“松塔”结构检测BPE的浓度与强度的工作曲线;
图5是本发明金纳米层包覆银纳米棒“松塔”结构检测不同浓度BaP分子的表面增强拉曼图谱;
图6是本发明金纳米层包覆银纳米棒“松塔”结构检测BaP的浓度与强度的工作曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
步骤一,将玻璃片切割成0.8cm×0.8cm,放入乙醇中,再转移到超声波清洗机中清洗5min,重复三次,氮气吹干后固定在沉积室中;在压力小于5×10-7Torr真空沉积室中,通过电子束蒸发系统,利用倾斜角沉积技术在清洗干净的玻璃片上先后以0.2nm/s和0.3nm/s的速率沉积一层20nm的钛薄膜和一层100nm的银薄膜,然后旋转样品台使得基底法线与沉积方向夹角为86°,通过电子束蒸发,以0.3nm/s的速度生长实际棒长为990nm的银纳米棒阵列。
步骤二,设置蒸汽源入射角度相对于样品台法线为θ=86°,利用动态阴影沉积效应在银纳米棒阵列上以速率为0.05nm/s生长150nm金纳米层,沉积开始时样品台面自转角度ψ启用,自转速率为1°/s;以上参数均为机器端设置参数,且该速率与膜厚由石英晶体微天平在镀膜过程中实时监控。
步骤三,定量检测,选定激光波长为785nm、功率30mw、积分时间10s,以目的产物为SERS活性基底对不同浓度的BPE(反式1,2-双(4-吡啶基)乙烯)进行检测,得到一系列BPE的表面增强拉曼光谱图,并确定其检出限。
测试例1:电子显微镜扫描
对实施例1得到的金纳米层包覆银纳米棒“松塔”结构SERS基底进行扫描电子显微镜观察,得到表征结果如图2所示。其中金纳米层包覆于银纳米棒尖处,利用Image J计算出纳米棒的直径约为D=64±10nm,两个相邻棒之间的距离为l=78±10nm,纳米棒的长度为L=1100±50nm,所得的纳米复合结构的生长方向为68±2°。
测试例2:对BPE的检测应用分析
将一定量浓度范围为1×10-11~1×10-6M的BPE滴定于实施例1得到的金纳米层包覆银纳米棒“松塔”结构SERS基底表面,静置吸附,在空气中自然干燥后,利用光谱仪进行SERS性能测试,得到如图3和图4的拉曼光谱仪表征结果。图3为该复合结构对不同浓度BPE分子的表面增强拉曼图谱。图4为在1200cm-1特征峰处峰值强度与溶液浓度的线性拟合曲线,说明该复合基底的灵敏度高,可以检测到10-13M BPE。
实施例2
步骤一,将玻璃片切割成0.8cm×0.8cm,加入乙醇中,再转移到超声波清洗机中清洗5min,重复三次,氮气吹干后固定在沉积室中;在压力小于5×10-7Torr真空沉积室中,通过电子束蒸发,利用倾斜角沉积技术在清洗干净的玻璃片上先后以0.2nm/s和0.3nm/s的速率沉积一层20nm的钛薄膜和一层100nm的银薄膜,然后旋转样品台使得基底法线与沉积方向夹角为86°,通过电子束蒸发,以0.3nm/s的速度生长实际棒长为990nm的银纳米棒阵列。
步骤二,设置蒸汽源入射角度相对于样品台法线为θ=86°,利用动态阴影沉积效应在银纳米棒阵列上以速率为0.05nm/s生长150nm金纳米层,沉积开始时样品台面自转角度ψ启用,自转速率为1°/s;以上参数均为机器端设置参数,且该速率与膜厚由石英晶体微天平在镀膜过程中实时监控。
步骤三,定量检测,选定激光波长为785nm、功率30mw、积分时间10s,以目的产物为SERS活性基底对不同浓度的BaP(苯并芘)进行检测,得到一系列BaP的表面增强拉曼光谱图,确定其检出限。
测试例1:对BaP的SERS检测
为了进一步探索“松塔”结构基底检测方法的通用性以及其SERS性质,使用该基底检测不同浓度的BaP溶液。图5光谱中,不同浓度BaP水溶液在“松塔”结构上获得的SERS光谱特征峰位基本一致,即使在低浓度的情况下,BaP的主要特征峰也没用发生明显的偏移情况,这表明了“松塔”结构不会对BaP分子造成分子结构的改变。如图6所示,当BaP水溶液浓度为1-100ppb这一浓度范围时,特征峰1234cm-1均可被检出,随着浓度的降低,AuNL@AgNR“松塔”结构上存在的BaP分子就越少,因此探测器捕捉到的BaP分子指纹信息就相对减少,故得到的SERS特征峰强度也逐渐减小,这一现象表明浓度与峰强之间存在着一种线性递增的关系。1-100ppb浓度范围内,位于1234cm-1特征峰处峰值强度与BaP溶液浓度的关系为,I1234=0.352CBaP+15.341,R2=0.973,基于拉依达原则得知BaP水溶液的LOD为1ppb,其满足了环境污染物中BaP检测需求。表明“松塔”结构对BaP检测的高灵敏度。
以上所述仅仅是本发明的优选实施方案,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种金纳米层包覆银纳米棒阵列的松塔结构SERS基底的制备方法,其特征在于,包括以下步骤:
(1)在电子束蒸发系统中,利用倾斜角沉积技术在洁净的玻璃片上制备银纳米棒阵列结构;
(2)利用动态阴影沉积效应在步骤(1)制备的银纳米棒阵列上蒸镀不同厚度的金纳米层;具体步骤如下:设置蒸汽源入射角度相对于样品台法线为θ = 86°,以速率为0.05 -0.1 nm/s生长不同厚度的金纳米层,沉积开始时样品台面自转角度ψ启用,自转速率为1°/s;
(3)定量检测。
2.根据权利要求1所述的一种金纳米层包覆银纳米棒阵列的松塔结构SERS基底的制备方法,其特征在于,步骤(1)具体步骤如下:将玻璃片按设备要求尺寸进行切割,超声清洗后固定在沉积室中,对沉积室抽真空使内部压力小于5×10-7 Torr;通过电子束蒸发系统,在清洗干净的玻璃片上以0.1 - 0.3 nm/s的沉积速率,先后沉积一层20 nm钛薄膜和100 -200 nm银薄膜,然后旋转样品台使得基底法线与沉积方向夹角为85-87°,通过电子束蒸发,以0.1 - 0.3 nm/s的速度生长实际棒长为990 nm的银纳米棒阵列。
3.根据权利要求2所述的一种金纳米层包覆银纳米棒阵列的松塔结构SERS基底的制备方法,其特征在于,所述超声清洗的步骤是:将切割后的玻璃片加入乙醇中,超声波清洗3-5min,重复三次,氮气吹干。
4.根据权利要求1所述的一种金纳米层包覆银纳米棒阵列的松塔结构SERS基底的制备方法,其特征在于,步骤(3)具体步骤如下:设置激光波长、功率、积分时间,对基底上被测物进行扫描,得到的表面增强拉曼光谱中某处特征峰不随被测物浓度改变而受到影响,此特征峰即作为定量检测的参考峰。
5.权利要求1至4任一项所述的制备方法制得的金纳米层包覆银纳米棒阵列的松塔结构SERS基底。
CN202210586777.5A 2022-05-27 2022-05-27 一种金纳米层包覆银纳米棒阵列的松塔结构sers基底及其制备方法 Active CN114990494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210586777.5A CN114990494B (zh) 2022-05-27 2022-05-27 一种金纳米层包覆银纳米棒阵列的松塔结构sers基底及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210586777.5A CN114990494B (zh) 2022-05-27 2022-05-27 一种金纳米层包覆银纳米棒阵列的松塔结构sers基底及其制备方法

Publications (2)

Publication Number Publication Date
CN114990494A CN114990494A (zh) 2022-09-02
CN114990494B true CN114990494B (zh) 2024-02-09

Family

ID=83029073

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210586777.5A Active CN114990494B (zh) 2022-05-27 2022-05-27 一种金纳米层包覆银纳米棒阵列的松塔结构sers基底及其制备方法

Country Status (1)

Country Link
CN (1) CN114990494B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156005A (ja) * 2008-12-26 2010-07-15 Kanagawa Acad Of Sci & Technol 金属ナノ構造体アレーの製造方法および複合材料の製造方法
CN102156117A (zh) * 2011-03-22 2011-08-17 中国科学院长春应用化学研究所 一种用于表面增强拉曼散射的基底及其制备方法
CN103331440A (zh) * 2012-12-26 2013-10-02 中国科学院合肥物质科学研究院 银-金多孔纳米棒阵列及其制备方法和用途
CN104789939A (zh) * 2015-03-17 2015-07-22 清华大学 一种表面增强拉曼散射基底及其制备方法
JP2016099113A (ja) * 2014-11-18 2016-05-30 公立大学法人兵庫県立大学 表面増強ラマン測定方法および表面増強ラマン測定装置
CN107012428A (zh) * 2017-03-20 2017-08-04 徐州赛恩斯源新材料科技有限公司 一种表面增强基底的制备与标定性能的方法
CN107282918A (zh) * 2017-05-17 2017-10-24 宁波大学 一种银纳米棒/聚合物/银纳米片核壳纳米材料及其制备方法和应用
CN108075139A (zh) * 2016-11-18 2018-05-25 中国科学院大连化学物理研究所 基于金属氧化物纳米带的有序化膜电极及其制备和应用
CN108387563A (zh) * 2018-02-07 2018-08-10 浙江大学 基于纳米棒的荧光增强结构、荧光检测系统及自动进样检测芯片
CN108580921A (zh) * 2018-03-29 2018-09-28 江苏师范大学 一种金/银纳米球棒组装sers基底及制备方法
WO2018204963A1 (de) * 2017-05-11 2018-11-15 Technische Universität Wien Verfahren zur herstellung edelmetallmodifizierter silicium-nanowires
CN108982469A (zh) * 2018-08-01 2018-12-11 江苏师范大学 一种利用金银纳米球棒组装sers基底检测2,3,7,8-tcdd的方法
CN109115746A (zh) * 2018-09-07 2019-01-01 江西师范大学 一种表面增强拉曼活性基底及其制备方法
CN109358033A (zh) * 2019-01-08 2019-02-19 中国科学院烟台海岸带研究所 一种核-卫星型金银复合纳米sers基底及其制备方法
RO135058A0 (ro) * 2020-11-27 2021-06-30 Institutul Naţional De Cercetare-Dezvoltare Pentru Tehnologii Izotopice Şi Moleculare Procedeu de obţinere a unei reţele de nanopiloni poli- merici metalizaţi utilizată ca substrat sers
CN116577315A (zh) * 2023-05-19 2023-08-11 江苏师范大学 一种用于有机环境污染物检测的表面增强拉曼检测芯片及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7738096B2 (en) * 2004-10-21 2010-06-15 University Of Georgia Research Foundation, Inc. Surface enhanced Raman spectroscopy (SERS) systems, substrates, fabrication thereof, and methods of use thereof

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156005A (ja) * 2008-12-26 2010-07-15 Kanagawa Acad Of Sci & Technol 金属ナノ構造体アレーの製造方法および複合材料の製造方法
CN102156117A (zh) * 2011-03-22 2011-08-17 中国科学院长春应用化学研究所 一种用于表面增强拉曼散射的基底及其制备方法
CN103331440A (zh) * 2012-12-26 2013-10-02 中国科学院合肥物质科学研究院 银-金多孔纳米棒阵列及其制备方法和用途
JP2016099113A (ja) * 2014-11-18 2016-05-30 公立大学法人兵庫県立大学 表面増強ラマン測定方法および表面増強ラマン測定装置
CN104789939A (zh) * 2015-03-17 2015-07-22 清华大学 一种表面增强拉曼散射基底及其制备方法
CN108075139A (zh) * 2016-11-18 2018-05-25 中国科学院大连化学物理研究所 基于金属氧化物纳米带的有序化膜电极及其制备和应用
CN107012428A (zh) * 2017-03-20 2017-08-04 徐州赛恩斯源新材料科技有限公司 一种表面增强基底的制备与标定性能的方法
WO2018204963A1 (de) * 2017-05-11 2018-11-15 Technische Universität Wien Verfahren zur herstellung edelmetallmodifizierter silicium-nanowires
CN107282918A (zh) * 2017-05-17 2017-10-24 宁波大学 一种银纳米棒/聚合物/银纳米片核壳纳米材料及其制备方法和应用
CN108387563A (zh) * 2018-02-07 2018-08-10 浙江大学 基于纳米棒的荧光增强结构、荧光检测系统及自动进样检测芯片
CN108580921A (zh) * 2018-03-29 2018-09-28 江苏师范大学 一种金/银纳米球棒组装sers基底及制备方法
CN108982469A (zh) * 2018-08-01 2018-12-11 江苏师范大学 一种利用金银纳米球棒组装sers基底检测2,3,7,8-tcdd的方法
CN109115746A (zh) * 2018-09-07 2019-01-01 江西师范大学 一种表面增强拉曼活性基底及其制备方法
CN109358033A (zh) * 2019-01-08 2019-02-19 中国科学院烟台海岸带研究所 一种核-卫星型金银复合纳米sers基底及其制备方法
RO135058A0 (ro) * 2020-11-27 2021-06-30 Institutul Naţional De Cercetare-Dezvoltare Pentru Tehnologii Izotopice Şi Moleculare Procedeu de obţinere a unei reţele de nanopiloni poli- merici metalizaţi utilizată ca substrat sers
CN116577315A (zh) * 2023-05-19 2023-08-11 江苏师范大学 一种用于有机环境污染物检测的表面增强拉曼检测芯片及其制备方法

Also Published As

Publication number Publication date
CN114990494A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN111175284B (zh) 一种分层微/纳米结构的表面增强拉曼底物的制备方法
US11099133B2 (en) Flexible paper-based surface-enhanced Raman scattering substrate and method for preparing same
TWI404930B (zh) Biochemical sensing wafer substrate and its preparation method
EP1857810A1 (en) Optical sensor and process for producing the same
Zhao et al. Bioscaffold arrays decorated with Ag nanoparticles as a SERS substrate for direct detection of melamine in infant formula
WO2018200982A1 (en) Surface-functionalized nanostructures for molecular sensing applications
Liu et al. Ag-coated nylon fabrics as flexible substrates for surface-enhanced Raman scattering swabbing applications
CN111175285A (zh) 具有分层微/纳米结构的表面增强拉曼底物及其检测方法
CN114990494B (zh) 一种金纳米层包覆银纳米棒阵列的松塔结构sers基底及其制备方法
Hu et al. Preparation and SERS performance of gold nanoparticles-decorated patterned silicon substrate
CN108580921A (zh) 一种金/银纳米球棒组装sers基底及制备方法
CN116577315A (zh) 一种用于有机环境污染物检测的表面增强拉曼检测芯片及其制备方法
CN112113949B (zh) 间隙可动态调控的有序聚苯乙烯@金复合微球阵列及其制备方法和用途
KR101733664B1 (ko) 저중합체 유전층을 이용한 표면증강라만분석용 기판의 제조방법
CN110132936A (zh) 一种Al/Ag层状纳米结构的大面积SERS基底、制备方法及应用
Sun et al. Ag microlabyrinth/nanoparticles coated large-area thin PDMS films as flexible and transparent SERS substrates for in situ detection
CN108330441B (zh) 一种提高膜基结合力制备表面增强拉曼基底的方法
JP5971789B2 (ja) ファイバー用プローブの作製方法
Li et al. Development and optimization of SERS-based immuno-nanosensor for single cell analyses
Pham et al. Flexible, high-performance and facile PVA/cellulose/Ag SERS chips for in-situ and rapid detection of thiram pesticide in apple juice
TWI776149B (zh) 製備用於sers檢測的可撓式基板的方法
Yang et al. Rapid glucose detection by surface enhanced Raman scattering spectroscopy
CN113670892B (zh) 铜基表面增强拉曼散射基片及其制备方法和应用
CN213041742U (zh) 正弦光栅-金属纳米颗粒溶胶双增强基底
CN112014371B (zh) 一种柔性半透明表面增强拉曼基底的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant