CN109115746A - 一种表面增强拉曼活性基底及其制备方法 - Google Patents

一种表面增强拉曼活性基底及其制备方法 Download PDF

Info

Publication number
CN109115746A
CN109115746A CN201811040132.1A CN201811040132A CN109115746A CN 109115746 A CN109115746 A CN 109115746A CN 201811040132 A CN201811040132 A CN 201811040132A CN 109115746 A CN109115746 A CN 109115746A
Authority
CN
China
Prior art keywords
carrier
nanostructure network
layer metal
active substrate
raman active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811040132.1A
Other languages
English (en)
Other versions
CN109115746B (zh
Inventor
刘桂强
汤莉
刘正奇
刘怡
李玉银
吴彪
杜国振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN201811040132.1A priority Critical patent/CN109115746B/zh
Publication of CN109115746A publication Critical patent/CN109115746A/zh
Application granted granted Critical
Publication of CN109115746B publication Critical patent/CN109115746B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/04Networks or arrays of similar microstructural devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/00373Selective deposition, e.g. printing or microcontact printing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及纳米材料、激光拉曼、生物传感及化学分析检测等领域,提供了一种表面增强拉曼活性基底及其制造方法。该表面增强拉曼活性基底由双层金膜纳米网状结构组成。制备方法包括初始准备、单层金属纳米网状结构制备、单层金属纳米网状结构剥离、表面增强拉曼活性基底制备等步骤;通过磁控溅射法在载体A上形成单层金属膜,再通过退火处理使之成为单层金属纳米网状结构,然后利用HF气相刻蚀法将单层金属纳米网状结构从载体A上剥离并转移到用同样方法制备覆盖有单层金属纳米网状结构的另一载体B上,最终获得表面增强拉曼活性基底。本发明摒弃了传统的化学合成技术,成本低、简单、易操作、重复性高、可大面积制备、稳定性强、拉曼信号增强显著。

Description

一种表面增强拉曼活性基底及其制备方法
技术领域
本发明设计光学及纳米材料领域,特别是涉及一种表面增强拉曼活性基底及其制备方法。
背景技术
表面增强拉曼散射现象从发现至今已有40多年历史。1927年,拉曼效应被发现;1974年,Fleischmann等率先发现粗糙银电极的表面增强拉曼散射效应;1977年,Duyne等和Albrecht等分别证实贵金属基底的纳米结构化特征是导致拉曼信号急剧增强的原因;1997年,Emory和Nie等研究组分别利用表面增强拉曼散射效应实现了单分子的检测。表面增强拉曼散射因具有超高的灵敏度、丰富的分子结构信息、良好的复用能力和快速的响应速度等许多优点,故而在反应动力学、艺术保护、医学诊断、生物传感与识别、痕量物质乃至单分子水平的分析检测等领域蕴藏着巨大的应用前景,已成为近年来的研究热点。
表面增强拉曼散射主要依赖于基底的结构特征,如组成、几何、大小和形状等。理论研究表明,由于局域表面等离激元的激发,在金属纳米颗粒的尖端、连接点或空隙中以及粗糙的金属表面会出现强的电磁场(即热点),吸附在热点附近的分子的拉曼信号将得到8~10个数量级的增强。
多年以来,大都是利用脱合金技术制备纳米多孔金来表面增强拉曼散射,形成的多孔金基底中,孔越小表面拉曼散射信号越强,但是增强因子较低且均匀性太差大大的限制了纳米多孔金在表面增强拉曼散射上的广泛应用。利用电化学的氧化还原反应以及湿化学方法合成纳米溶胶颗粒的自组装等各种方法制备出表面增强拉曼活性基底大多是不均匀的材料,而且其热点分布大多局限在具有一维、二维分布模型。有限的热点数量和热点空间分布对于被测物的拉曼信号增强有限。而关于高密度三维热点分布的表面增强拉曼基底的研究报道较少,且大都是利用复杂的制备技术,如电子束刻蚀技术、聚焦离子束刻蚀等制备获得,成本高、制备过程繁杂。因此,设计和发展一种具有高密度三维热点分布的表面增强拉曼散射基底结构且制备方法简单、经济成本低显得尤为重要。
发明内容
本发明的目的在于提供一种表面增强拉曼活性基底及其制备方法,解决现有技术制备的表面增强拉曼散射基底热点数量少、灵敏度低、制备工艺复杂、成本高且信号均一性差的问题。
本发明提供的一种表面增强拉曼活性基底,其特征在于:包括载体,以及设置在载体上的双层金属纳米网状结构。所述双层金属纳米网状结构由两层单层金属纳米网状结构组成。
优选的,所述的金属为金、银、铜、铂或钯等。所述的载体为玻璃片。
优选的,所述的单层金属纳米网状结构的网孔大小为20~100nm,厚度为10~40nm。
所述的表面增强拉曼活性基底的可用于检测溶液中的有机分子,如罗丹明R6G,浓度检测限可达到10-13mol/L。所述的表面增强拉曼活性基底对于溶液中有机分子进行检测的方法是:将表面增强拉曼活性基底插入10-7~10-13mol/L的罗丹明R6G有机分子溶液中,浸泡24小时后取出晾干后再进行拉曼检测。
本发明提供的一种表面增强拉曼活性基底的制备方法,包括以下步骤:
(1)通过磁控溅射仪,分别将金属材料溅射沉积在载体A和载体B上,分别得到覆盖有金属膜的载体A和载体B;
(2)将覆盖有金属膜的载体A和载体B在190~270℃的温度下退火,金属膜形成单层金属纳米网状结构,得到覆盖有单层金属纳米网状结构的载体A和载体B;
(3)利用HF气相刻蚀的方法,将覆盖有单层金属纳米网状结构的载体A置于HF酸气氛中促使单层金属纳米网状结构从载体A上完全剥离下来,然后浸入去离子水中,使得从载体A上剥离下来的单层金属纳米网状结构漂浮在水面上;
(4)利用覆盖有单层金属纳米网状结构的载体B,将步骤(3)中浮在水面上的单层金属纳米网状结构捞起,使其与载体B上的单层金属纳米网状结构结合,晾干后获得所述的表面增强拉曼活性基底。
优选的,所述的金属材料料为金、银、铜、铂或钯等。
优选的,所述的载体A和载体B均为洁净的玻璃片。可以将玻璃片用乙醇、去离子水清洗干净,再用氮气吹干,即得到洁净的玻璃片。
优选的,在步骤(1)中,在3.3Pa纯氩气的压强下、以32nm/min的镀膜速率分别将金属材料溅射沉积在载体A和载体B上,镀膜时间为19~75s。
优选的,在步骤(2)中,将覆盖有金属膜的载体A和载体B放入马弗炉中,在190~270℃的温度下退火处理30min。
本发明的技术效果是:利用本发明的表面增强拉曼散射基底,其光谱信号强、检测灵敏度高且信号响应均匀,可广泛用于低浓度有机分子和生物分子的快速无损检测。本发明中的表面增强拉曼活性基底的制备方法,工艺简单快速、价格、低廉,可以得到大面积的表面增强拉曼活性基底。本发明中,只用到了磁控溅射镀膜仪、马弗炉和HF气相刻蚀,无需任何其他外部条件和工艺,降低了制备工艺成本,且在较宽的动态范围内可获得可靠、稳定、均匀的表面增强拉曼散射信号。相对于单层金属纳米网状结构,由于采用了双层金属纳米网状结构,电磁热点的数量极大增加且呈准三维分布模型(单层结构的热点为准二维分布模型),有利于被测分子的大量吸附和拉曼信号的极大增强。实验表明,将本发明方法制备的表面增强拉曼散射活性基底浸入0.01μmol/L的罗丹明R6G溶液24小时后取出晾干后,用去离子水洗涤后再在高纯氩气中晾干,然后测量其拉曼特征峰强度为金属膜的30倍,且本发明方法制备的表面增强拉曼散射活性基底对罗丹明R6G溶液的检测极限可达到10- 13mol/L。
附图说明
图1为15nm单、双层金纳米网状结构的扫描电子显微图像。
图2为10nm表面增强拉曼活性基底,10nm单层金纳米网状结构和10nm未退火金膜的拉曼光谱。
图3为10nm、15nm、20nm、25nm、30nm、35nm和40nm的表面增强拉曼活性基底拉曼光谱。
图4为基于10nm双表面增强拉曼活性基底测得的不同罗丹明R6G分子浓度的拉曼光谱。
具体实施方式
下面结合附图和实施例对发明作进一步的详细说明,应理解这些实施例仅用于说明本发明而不限制本发明的范围。
实施例1:
一种表面增强拉曼活性基底的制备方法,包括以下步骤:
(1)初始准备:将载体A和载体B用乙醇、去离子水清洗干净,再用氮气吹干,然后使用磁控溅射仪,在3.3Pa纯氩气的压强下,以32nm/min的镀膜速率将金材料分别溅射沉积在载体A和载体B上,镀膜时间为19s,使得沉积在载体A和载体B上的金膜厚度均为10nm;
(2)单层金属纳米网状结构制备:将步骤(1)中制备的覆盖有金属膜的载体A和载体B放入马弗炉中,在190~270℃的温度下退火处理30min,金属膜形成单层金属纳米网状结构,得到覆盖有单层金属纳米网状结构的载体A和载体B;
(3)单层金属纳米网状结构剥离:利用HF气相刻蚀的方法,将步骤(2)中制备的覆盖有单层金属纳米网状结构的载体A置于HF酸气氛中促使单层金属纳米网状结构从载体A上完全剥离下来,然后浸入去离子水中,使得从载体A剥离下来的单层金属纳米网状结构漂浮在水面上;
(4)表面增强拉曼活性基底制备:将步骤(1)中制备的覆盖有单层金纳米网状结构的载体B将步骤(3)中浮在水面上的单层金纳米网状结构捞起,使其与载体B上的单层金属纳米网状结构结合,晾干后获得所述的表面增强拉曼活性基底。
实施例2:
一种表面增强拉曼活性基底的制备方法,基本与实施例1一致,差异之处在于:
步骤(1)初始准备:将载体A和载体B用乙醇、去离子水清洗干净,再用氮气吹干,然后使用磁控溅射仪,在3.3Pa纯氩气的压强下,以32nm/min的镀膜速率将金材料分别溅射沉积在载体A和载体B上,镀膜时间为28s,使得沉积在载体A和载体B上的金膜厚度均为15nm。
图1为最终获得的表面增强拉曼活性基底的扫描电子显微图像,单层、双层金纳米网状结构均匀,网孔大小为20~100nm。
实施例3:
一种表面增强拉曼活性基底的制备方法,基本与实施例1一致,差异之处在于:
步骤(1)初始准备:将载体A和载体B用乙醇、去离子水清洗干净,再用氮气吹干,然后使用磁控溅射仪,在3.3Pa纯氩气的压强下,以32nm/min的镀膜速率将金材料分别溅射沉积在载体A和载体B上,镀膜时间为38s,使得沉积在载体A和载体B上的金膜厚度均为20nm。
实施例4:
一种表面增强拉曼活性基底的制备方法,基本与实施例1一致,差异之处在于:
步骤(1)初始准备:将载体A和载体B用乙醇、去离子水清洗干净,再用氮气吹干,然后使用磁控溅射仪,在3.3Pa纯氩气的压强下,以32nm/min的镀膜速率将金材料分别溅射沉积在载体A和载体B上,镀膜时间为47s,使得沉积在载体A和载体B上的金膜厚度均为25nm。
实施例5:
一种表面增强拉曼活性基底的制备方法,基本与实施例1一致,差异之处在于:
步骤(1)初始准备:将载体A和载体B用乙醇、去离子水清洗干净,再用氮气吹干,然后使用磁控溅射仪,在3.3Pa纯氩气的压强下,以32nm/min的镀膜速率将金材料分别溅射沉积在载体A和载体B上,镀膜时间为56s,使得沉积在载体A和载体B上的金膜厚度均为30nm。
实施例6:
一种表面增强拉曼活性基底的制备方法,基本与实施例1一致,差异之处在于:
步骤(1)初始准备:将载体A和载体B用乙醇、去离子水清洗干净,再用氮气吹干,然后使用磁控溅射仪,在3.3Pa纯氩气的压强下,以32nm/min的镀膜速率将金材料分别溅射沉积在载体A和载体B上,镀膜时间为66s,使得沉积在载体A和载体B上的金膜厚度均为35nm。
实施例7:
一种表面增强拉曼活性基底的制备方法,基本与实施例1一致,差异之处在于:
步骤(1)初始准备:将载体A和载体B用乙醇、去离子水清洗干净,再用氮气吹干,然后使用磁控溅射仪,在3.3Pa纯氩气的压强下,以32nm/min的镀膜速率将金材料分别溅射沉积在载体A和载体B上,镀膜时间为75s,使得沉积在载体A和载体B上的金膜厚度均为40nm。
实施例8:
本实施例1中得到的表面增强拉曼活性基底放置在0.01μmol/L的罗丹明R6G溶液中浸泡24小时后取出,用去离子水洗涤后再在高纯氩气中晾干,然后测其拉曼信号,所得拉曼光谱如图2所示。作为对比,利用实施例1中的步骤(1)和步骤(2)分别制备10nm厚的金膜和单层金纳米网状结构,并放置在同样的罗丹明R6G溶液中作相同处理后测得的拉曼光谱也一并放在图2中,很明显,基于实施例1制备的表面增强拉曼活性基底测得的拉曼信号强很多。
实施例9:
将上述实施例1-7制备的表面增强拉曼活性基底放置在浓度为10-8mol/L的罗丹明R6G溶液中浸泡24小时后取出,用去离子水洗涤后再在高纯氩气中晾干,然后测其拉曼信号,所得拉曼光谱图如图3所示。由图3可见,制备的表面增强拉曼活性基底结构中的单层金纳米网状结构的厚度越小时,测得的被测分子的拉曼信号越强,且单层金纳米网状结构的厚度为10nm时测得的拉曼信号最强。
实施例10:
将上述实施例1制备的表面增强拉曼活性基底放置在浓度为10-7-10-13mol/L的罗丹明R6G溶液中浸泡24小时后取出,用去离子水洗涤后再在高纯氩气中晾干,然后测其拉曼信号,所得拉曼光谱图如图4所示。从图中可见,制备的表面增强拉曼活性基底的检测极限可达到10-13mol/L。
综上所述,本发明中制备工艺简单快速、可操作性强,能得到高密度热点呈准三维分布且拉曼信号强的表面增强拉曼活性基底。且整个制备过程中只利用了磁控溅射、马弗炉和HF气相刻蚀,无需任何外部条件和工艺,步骤简单易操作、制备工艺成本低。本发明中的制备过程摒弃了传统的脱合金方法,采用磁控溅射和退火处理的方法制备双层金属纳米网状结构样品,过程步骤简单易操作、成本较低、样品结构均匀、重复率高、稳定性好、测得拉曼增强效果显著,可以有效的解决背景技术中提出的各种问题。

Claims (10)

1.一种表面增强拉曼活性基底,其特征在于:包括载体,以及位于在载体上的双层金属纳米网状结构;所述双层金属纳米网状结构由两层单层金属纳米网状结构组成。
2.根据权利要求1所述的表面增强拉曼活性基底,其特征在于:所述的金属为金、银、铜、铂或钯;所述的载体为玻璃片。
3.根据权利要求1所述的表面增强拉曼活性基底,其特征在于:所述的单层金属纳米网状结构的网孔大小为20~100nm,厚度为10~40nm。
4.根据权利要求1所述的表面增强拉曼活性基底的应用,其特征在于:用于检测溶液中的有机分子。
5.根据权利要求4所述的应用,其特征在于:用于检测溶液中的罗丹明R6G。
6.一种表面增强拉曼活性基底的制备方法,包括以下步骤:
(1)通过磁控溅射仪,分别将金属材料溅射沉积在载体A和载体B上,分别得到覆盖有金属膜的载体A和载体B;
(2)将覆盖有金属膜的载体A和载体B在190~270℃的温度下退火,金属膜形成单层金属纳米网状结构,得到覆盖有单层金属纳米网状结构的载体A和载体B;
(3)利用HF气相刻蚀的方法,将覆盖有单层金属纳米网状结构的载体A置于HF酸气氛中促使单层金属纳米网状结构从载体A上完全剥离,然后浸入去离子水中,使得从载体A上剥离下来的单层金属纳米网状结构漂浮在水面上;
(4)利用覆盖有单层金属纳米网状结构的载体B,将步骤(3)中浮在水面上的单层金属纳米网状结构捞起,使其与载体B上的单层金属纳米网状结构结合,晾干后获得所述的表面增强拉曼活性基底。
7.根据权利要求6所述的方法,其特征在于:所述的金属材料料为金、银、铜、铂或钯。
8.根据权利要求6所述的方法,其特征在于:所述的载体A和载体B均为洁净的玻璃片。
9.根据权利要求6所述的方法,其特征在于:在步骤(1)中,在3.3Pa纯氩气的压强下、以32nm/min的镀膜速率分别将金属材料溅射沉积在载体A和载体B上,镀膜时间为19~75s。
10.根据权利要求6所述的方法,其特征在于:在步骤(2)中,将覆盖有金属膜的载体A和载体B放入马弗炉中,在190~270℃的温度下退火处理30min。
CN201811040132.1A 2018-09-07 2018-09-07 一种表面增强拉曼活性基底及其制备方法 Active CN109115746B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811040132.1A CN109115746B (zh) 2018-09-07 2018-09-07 一种表面增强拉曼活性基底及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811040132.1A CN109115746B (zh) 2018-09-07 2018-09-07 一种表面增强拉曼活性基底及其制备方法

Publications (2)

Publication Number Publication Date
CN109115746A true CN109115746A (zh) 2019-01-01
CN109115746B CN109115746B (zh) 2023-03-24

Family

ID=64858169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811040132.1A Active CN109115746B (zh) 2018-09-07 2018-09-07 一种表面增强拉曼活性基底及其制备方法

Country Status (1)

Country Link
CN (1) CN109115746B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229829A (zh) * 2020-09-30 2021-01-15 广东电网有限责任公司广州供电局 表面增强拉曼基底及其制备方法和应用
CN113324970A (zh) * 2021-04-25 2021-08-31 中国科学技术大学 一种结构可调的高热点三维网筛纳米拉曼基底及其制备、应用
CN114990494A (zh) * 2022-05-27 2022-09-02 江苏师范大学 一种金纳米层包覆银纳米棒阵列的松塔结构sers基底及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020151A (zh) * 2014-07-10 2014-09-03 苏州大学 一种表面增强拉曼金属纳米圆盘阵列基底的制备方法
CN104849259A (zh) * 2015-06-05 2015-08-19 中物院成都科学技术发展中心 一种柔性表面增强拉曼基底的制备方法
CN106995914A (zh) * 2017-05-24 2017-08-01 山东大学 一种制备自支撑多孔金属薄膜的方法
CN107226486A (zh) * 2016-03-25 2017-10-03 北京大学 一种二硫化钼的基底转移方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020151A (zh) * 2014-07-10 2014-09-03 苏州大学 一种表面增强拉曼金属纳米圆盘阵列基底的制备方法
CN104849259A (zh) * 2015-06-05 2015-08-19 中物院成都科学技术发展中心 一种柔性表面增强拉曼基底的制备方法
CN107226486A (zh) * 2016-03-25 2017-10-03 北京大学 一种二硫化钼的基底转移方法
CN106995914A (zh) * 2017-05-24 2017-08-01 山东大学 一种制备自支撑多孔金属薄膜的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONG FENG ET.AL: "A Facile Interfacial Self-Assembly of Crystalline Colloidal Monolayers by Tension Gradient", 《MICROMACHINES》 *
L. H. QIAN ET.AL: "Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements", 《APPLIED PHYSICS LETTERS》 *
LI TANG ET.AL: "A Novel SERS Substrate Platform: Spatially Stacking Plasmonic Hotspots Films", 《NANOSCALE RESEARCH LETTERS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229829A (zh) * 2020-09-30 2021-01-15 广东电网有限责任公司广州供电局 表面增强拉曼基底及其制备方法和应用
CN113324970A (zh) * 2021-04-25 2021-08-31 中国科学技术大学 一种结构可调的高热点三维网筛纳米拉曼基底及其制备、应用
CN114990494A (zh) * 2022-05-27 2022-09-02 江苏师范大学 一种金纳米层包覆银纳米棒阵列的松塔结构sers基底及其制备方法
CN114990494B (zh) * 2022-05-27 2024-02-09 江苏师范大学 一种金纳米层包覆银纳米棒阵列的松塔结构sers基底及其制备方法

Also Published As

Publication number Publication date
CN109115746B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
Tong et al. Recent progressive preparations and applications of silver-based SERS substrates
KR101448111B1 (ko) 표면 증강 라만 분광용 기판 및 이의 제조방법
Chen et al. Green synthesis of large-scale highly ordered core@ shell nanoporous Au@ Ag nanorod arrays as sensitive and reproducible 3D SERS substrates
Ikeda et al. Crystal face dependent chemical effects in surface-enhanced Raman scattering at atomically defined gold facets
CN108982474B (zh) 一种基于金属-介质复合等离激元共振结构的表面增强拉曼活性基底及其制备方法
Diao et al. Two-step fabrication of nanoporous copper films with tunable morphology for SERS application
Huang et al. Large surface-enhanced Raman scattering from nanoporous gold film over nanosphere
CN108277484A (zh) 一种中空Ag-Au合金复合结构微纳阵列的制备方法
CN109115746A (zh) 一种表面增强拉曼活性基底及其制备方法
Xu et al. Synthesis of the 3D AgNF/AgNP arrays for the paper-based surface enhancement Raman scattering application
CN101221130A (zh) 基于硅纳米孔柱阵列的表面增强拉曼散射活性基底的制备方法
Sanger et al. Large-scale, lithography-free production of transparent nanostructured surface for dual-functional electrochemical and SERS sensing
CN102944545A (zh) 层状三维结构纳米金表面增强拉曼活性基底及其制备方法
Xue et al. Shape controlled gold nanostructures on de-alloyed nanoporous gold with excellent SERS performance
Xiang et al. Gold nanoparticles/electrochemically expanded graphite composite: A bifunctional platform toward glucose sensing and SERS applications
CN104406953B (zh) 多孔膜增敏的大面积均匀拉曼检测芯片及其制备方法
Huang et al. Island-like nanoporous gold: smaller island generates stronger surface-enhanced Raman scattering
Jiang et al. A sensitive SERS substrate based on Au/TiO2/Au nanosheets
Huo et al. Template-assisted fabrication of Ag-nanoparticles@ ZnO-nanorods array as recyclable 3D surface enhanced Raman scattering substrate for rapid detection of trace pesticides
Xiong et al. In situ synthesis of MXene/Ag nanocomposites based flexible SERS substrates on PDMS for detection on fruit surfaces
Pisarek et al. Ag/ZrO2-NT/Zr hybrid material: A new platform for SERS measurements
Praig et al. Seed-mediated electrochemical growth of gold nanostructures on indium tin oxide thin films
Xu et al. Ultrasensitive SERS detection of crystal violet and malachite green based on high surface roughness copper nanocorns prepared via solid-state ionics method
Sun et al. The finite-difference time-domain (FDTD) guided preparation of Ag nanostructures on Ti substrate for sensitive SERS detection of small molecules
Zhang et al. Fabrication of Ag-nanosheet-assembled hollow tubular array and their SERS effect

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant