CN114959181B - 一种螺纹钢快速升温精炼方法、螺纹钢生产方法和螺纹钢 - Google Patents

一种螺纹钢快速升温精炼方法、螺纹钢生产方法和螺纹钢 Download PDF

Info

Publication number
CN114959181B
CN114959181B CN202210609421.9A CN202210609421A CN114959181B CN 114959181 B CN114959181 B CN 114959181B CN 202210609421 A CN202210609421 A CN 202210609421A CN 114959181 B CN114959181 B CN 114959181B
Authority
CN
China
Prior art keywords
power
steel bar
deformed steel
refining
dolomite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210609421.9A
Other languages
English (en)
Other versions
CN114959181A (zh
Inventor
朱军
刘敏
徐利军
张威
周长健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baowu Group Echeng Iron and Steel Co Ltd
Original Assignee
Baowu Group Echeng Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baowu Group Echeng Iron and Steel Co Ltd filed Critical Baowu Group Echeng Iron and Steel Co Ltd
Priority to CN202210609421.9A priority Critical patent/CN114959181B/zh
Publication of CN114959181A publication Critical patent/CN114959181A/zh
Application granted granted Critical
Publication of CN114959181B publication Critical patent/CN114959181B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明公开了一种螺纹钢快速升温精炼方法、螺纹钢生产方法和螺纹钢,涉及冶炼技术领域;该螺纹钢快速升温精炼方法包括:钢水进站,进站温度为1500‑1530℃,底吹氩气,并将氩气的流量调至送电模式开始送电;以第一功率送电,待弧流稳定后加入白云石;以第二功率送电5‑8min后停电;其中,第二功率大于第一功率,且整个送电过程每吨钢水消耗3.3‑5.3kg的白云石。该方法能在短时间内迅速提高钢水温度,从而使得钢水进站前的转炉冶炼步骤中出钢温度可相对低一些,进而使得转炉冶炼步骤中废钢的加入量可相对提高,进而能降低铁钢比,降低成本。

Description

一种螺纹钢快速升温精炼方法、螺纹钢生产方法和螺纹钢
技术领域
本发明涉及冶炼技术领域,具体而言,涉及一种螺纹钢快速升温精炼方法、螺纹钢生产方法和螺纹钢。
背景技术
钢铁是一个规模经济的行业,有规模,才可能有高效率和高效益。凭借现有的装备、能力和工艺技术条件,只有优化生产组织、提高效率,才能扩大规模、提升效益。作为一个重要的衡量指标,铁钢比的意义凸显。铁钢比是指生产每吨合格钢材所消耗的铁水。钢厂铁钢比的高低,取决于炼钢工序,因为炼钢工序是整个钢铁联合企业的“咽喉”,承上启下,是保证质量、产量的最关键工序。铁钢比越低,就说明同样的铁水产出的钢材就越多。
现有技术提出了一些降低铁钢比的措施,例如可通过优化炼钢生产组织、优化钢铁料入炉结构、铁水包加废钢、铁水包烘烤、合金烘烤等一系列举措来降低铁钢比,但这些方法改善铁钢比的效果已经到达了极致,如何从其他维度进一步地改善铁钢比成为行业研究的新方向。
鉴于此,特提出本发明。
发明内容
本发明的目的在于提供一种精炼升温速率高的螺纹钢快速升温精炼方法、螺纹钢生产方法和螺纹钢,其能在短时间内迅速提高钢水温度,从而使得钢水进站前的转炉冶炼步骤中出钢温度可相对低一些,进而使得转炉冶炼步骤中废钢的加入量可相对提高,进而能降低铁钢比,降低成本。
本发明的实施例是这样实现的:
第一方面,本发明提供一种螺纹钢快速升温精炼方法,包括:
钢水进站,进站温度为1500-1530℃,底吹氩气,并将氩气的流量调至送电模式开始送电;
以第一功率送电,待弧流稳定后加入白云石;
以第二功率送电5-8min后停电;
其中,第二功率大于第一功率,且整个送电过程每吨钢水消耗3.3-5.3kg的白云石。
在可选的实施方式中,第一功率为额定功率的80%,第二功率为额定功率的100%。
在可选的实施方式中,以第一功率送电时的送电弧压为350-362.5V,弧流为43110A;以第二功率送电时的送电弧压为375-387.5V,弧流为43110A。
在可选的实施方式中,以第一功率送电,待弧流稳定后加入白云石的步骤具体包括:
在第一功率下送电第一预设时间,待弧流稳定后加入第一剂量的白云石;
在第一功率下继续送电第二预设时间,待弧流稳定后加入第二剂量的白云石;
其中,第一预设时间小于或等于第二预设时间,第二预设时间小于或等于3min,第一剂量小于或等于第二剂量。
在可选的实施方式中,第一预设时间为1-3min;和/或;第二预设时间为1-3min。
在可选的实施方式中,第二剂量和第一剂量的用量比为1-3:1。
在可选的实施方式中,当钢水进站总量为140-150t时,白云石在整个送电过程的总加入量为462-795kg,且第一剂量200-300kg,第二剂量为300-500kg。
在可选的实施方式中,以第二功率送电,待温度升至1550-1580℃后停电的步骤具体包括:
将功率从第一功率升至第二功率;
在第二功率下继续送电5-8min使温度升至1550-1580℃后停电。
在可选的实施方式中,停电后,炉内渣样包括按照质量分数计的40-42%的SiO2、39-40%的CaO、10-20%的MgO、7-8%的Al2O3、0.1-0.14%的S、0.02-0.04%的P2O5、1.5-1.6%的TiO2、3-3.5%的MnO以及1.2-1.4%的Fe。
第二方面,本发明提供一种螺纹钢生产方法,包括:
依次进行高炉熔铁、转炉冶炼、LF炉精炼以及连铸;其中,LF炉精炼按照前述实施方式中任一项的螺纹钢快速升温精炼方法进行。
第三方面,本发明提供一种螺纹钢,通过前述实施方式的螺纹钢生产方法生产得到。
本发明的实施例至少具有以下优点或有益效果:
本发明的实施例提供了一种螺纹钢快速升温精炼方法,其包括:钢水进站,进站温度为1500-1530℃,底吹氩气,并将氩气的流量调至送电模式开始送电;以第一功率送电,待弧流稳定后加入白云石;以第二功率送电5-8min后停电;其中,第二功率大于第一功率,且整个送电过程每吨钢水消耗3.3-5.3kg的白云石。
一方面,该螺纹钢快速升温精炼方法通过白云石的加入,能分解出二氧化碳以在渣中形成泡沫渣,利于进行埋弧送电,能减少弧流对钢包渣线的辐射,提高钢包渣线寿命和送电效率,从而能在短时间内迅速提高钢水温度,进而使得钢水进站前的转炉冶炼步骤中出钢温度可相对低一些,继而使得转炉冶炼步骤中废钢的加入量可相对提高,进而能降低铁钢比,降低成本;另一方面,该方法加入的白云石分解形成的氧化镁还能对钢包渣线起到保护作用,大幅提高渣线使用寿命,减少了因渣线穿漏而产生的安全及设备损坏事故;另外,加入白云石的过程以较低的第一功率送电,加完白云石后按照第二功率送电,能通过第一功率稳定弧流,提高安全性,且通过第一功率保证化渣效果,以便于能在第二功率下快速升温,从而能进一步地保证送电效率,以降低铁钢比。
本发明的实施例还提供了一种螺纹钢生产方法,其利用了上述的螺纹钢快速升温精炼方法。因此,其也具有能降低铁钢比,降低成本,提高安全性能的优点。
本发明的实施例还提供了一种螺纹钢,其通过上述螺纹钢的生产方法生产得到。因此,其也具有成本低,铁钢比低的优点。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
本发明的实施例提供了一种螺纹钢,其通过螺纹钢的生产方法制备得到,该螺纹钢的生产方法具体包括:
依次进行高炉熔铁、转炉冶炼、LF炉精炼以及连铸。其中,高炉熔铁是进行熔铁作业形成铁水,而转炉冶炼步骤是将退税和废钢在炉内进行冶炼的过程,LF炉精炼按照螺纹钢快速升温精炼方法进行,是将转炉冶炼后出钢的铁水进行精炼的步骤,连铸步骤是对LF炉精炼后的钢水进行连铸的过程。当然,螺纹钢的生产工艺在连铸至售卖之前还包括依次进行的定尺切割、入库、轧钢加热炉、轧钢加热炉、棒材轧机、控轧控冷、冷床、定尺剪切、收集打捆、称重以及挂牌入库等步骤,但这些步骤并未进行实质改进,因此此处不再赘述。
详细地,螺纹钢快速升温精炼方法具体包括以下步骤:
S1:钢水进站,进站温度为1500-1530℃,底吹氩气,并将氩气的流量调至送电模式开始送电;
详细地,在步骤S1中,钢水进站后,打开底吹系统,揭盖,开至处理位,压下炉盖,将氩气流量调至送电模式,即可开始送电作业。
S2:以第一功率送电,待弧流稳定后加入白云石;且整个送电过程每吨钢水消耗3.3-5.3kg的白云石;
详细地,钢水是从转炉冶炼步骤出钢的钢水,钢水进站的温度为1500-1530℃,意味着钢水从转炉冶炼步骤出钢的温度也大致为1500-1530℃。由于转炉冶炼步骤中铁水的温度很大程度决定了出钢温度,而废钢加入铁水后会降低整体温度,因而废钢的用量越多,则会导致转炉冶炼步骤出钢的温度越低。但废钢用量越多,则铁水用量少,使得铁钢比越低,成本越低。基于此,本发明的实施例在升温精炼过程中加入了白云石,白云石能分解出二氧化碳(CaMg(CO3)2=CaO+MgO+2CO2↑)以在渣中形成泡沫渣,利于进行埋弧送电,能减少弧流对钢包渣线的辐射,提高钢包渣线寿命和送电效率,从而能在短时间内迅速提高钢水温度,进而使得钢水进站前的转炉冶炼步骤中出钢温度可相对低一些,继而使得转炉冶炼步骤中废钢的加入量可相对提高,进而能降低铁钢比,降低成本。
同时,该方法加入的白云石分解形成的氧化镁还能对钢包渣线起到保护作用,大幅提高渣线使用寿命,减少了因渣线穿漏而产生的安全及设备损坏事故。
更详细地,步骤S2具体包括:
S21:在第一功率下送电第一预设时间,待弧流稳定后加入第一剂量的白云石;
S22:在第一功率下继续送电第二预设时间,待弧流稳定后加入第二剂量的白云石;
其中,第一预设时间小于或等于第二预设时间,第二预设时间小于或等于3min,第一剂量小于或等于第二剂量。
一方面,将白云石分批次加入有利于其充分反应,能充分利用其在高温作用下分解出CO2在渣中形成泡沫渣利于埋弧送电,以减少弧流对钢包渣线的辐射,提高钢包渣线寿命及送电效率。也能充分利用其在高温作用下,分解出MgO可以对钢包渣线起到保护作用,大幅提高渣线使用寿命。另一方面,由于第一剂量小于或者等于第二剂量,因而与之对应,第一预设时间也小于或等于第二预设时间,能进一步地提高升温速率,保证达到预设温度。
需要说明的是,在本发明的实施例中,第一预设时间为1-3min;同时第二预设时间也大致为1-3min。通过白云石的加入,使得第一预设时间和第二预设时间均相对较短,能快速提高升温速率。当然,在本发明的其他实施例中,还可以根据环境或其他影响因素调整时间,本发明的实施例不再赘述。
还需要说明的是,第二剂量和第一剂量的用量比为1-3:1。例如,当钢水进站总量为140-150t时,白云石在整个送电过程的总加入量为462-795kg,且第一剂量200-300kg,第二剂量为300-500kg。保证整个送电过程每吨钢水消耗3.3-5.3kg的白云石即可。将白云石的消耗量控制在此范围内,能节省成本,又能保证提速效果。
S3:以第二功率送电5-8min后停电;其中,第二功率大于第一功率。
在步骤S3中,加入白云石的过程以较低的第一功率送电,加完白云石后按照第二功率送电,第一功率相对第二功率低一些,第一功率相对交底,能稳定弧流,提高加入白云石过程的安全性,但第一功率的设置又能利于化渣,能保证化渣效果,以便于能在较高的第二功率下快速升温至1550-1580℃左右,从而能进一步地保证送电效率,以降低铁钢比。
需要说明的是,通常第一功率为额定功率的80%,第二功率为额定功率的100%。在其他实施例中,也可以通过调节档位以降低或提高功率,但也需要满足第一功率小于第二功率,以充分保证提速效果和质量。
还需要说明的是,在本发明的实施例中,为了实现上述功率,通常而言,以第一功率送电时的送电档位为7档或6档,弧压为350-362.5V,一般采用7档,弧压为350V,弧流为43110A;以第二功率送电时的送电档位为5档或4档,弧压为375-387.5V,一般采用5档,弧压为375V,弧流为43110A。
详细地,步骤S3具体包括:
S31:将功率从第一功率升至第二功率;
在步骤S31中,在加入白云石1-3min后再提升功率的原因在于,刚加入白云石后,需要通过稳定弧流来保证安全性。而第一功率相对第一功率较低,选择在第一功率下稳定1-3min,更利于安全的保证。
S32:在第二功率下继续送电5-8min,使温度升至1550-1580℃后停电。
在步骤S32中,在第二功率下能快速升温至所需温度,能有效地提升升温速率,能在短时间内迅速提高钢水温度,进而使得钢水进站前的转炉冶炼步骤中出钢温度可相对低一些,继而使得转炉冶炼步骤中废钢的加入量可相对提高,进而能降低铁钢比,降低成本。
同时,在停电后,待送电6-10min后,可以按规定加钢筋切头进行降铁钢比工作。直至达到目标,成分温度合格,上铸机浇铸即可。另外,停电后,炉内渣样包括按照质量分数计的40-42%的SiO2、39-40%的CaO、10-20%的MgO、7-8%的Al2O3、0.1-0.14%的S、0.02-0.04%的P2O5、1.5-1.6%的TiO2、3-3.5%的MnO以及1.2-1.4%的Fe。碱度R大致在0.95-1.1之间,满足要求。本发明的实施例通过加入白云石,使得LF精炼炉在加入白云石前后渣中MgO含量有明显提高,平均可增加约4.58%,从而使渣中MgO可达到15%以上,钢包渣线寿命平均可提高至45次以上。
下面结合具体实施例数据进行更详细地说明:
实施例1
本实施例提供了一种螺纹钢,其通过依次进行高炉熔铁、转炉冶炼、LF炉精炼以及连铸后得到,其中,螺纹钢快速升温精炼方法具体包括以下步骤:
S1:采用130t的精炼炉,钢水进站,实际装入量为146t,进站温度为1515℃,底吹氩气,并将氩气的流量调至送电模式开始送电;
S2:在额定功率的80%,弧压为350V,弧流为43110A的条件下送电2min,待弧流稳定后加入230kg的白云石;在额定功率的80%,弧压为350V,弧流为43110A的条件下继续送电2min,待弧流稳定后加入300kg的白云石;
S3:将功率从额定功率的80%升至额定功率的100%,并在弧压为375V,弧流为43110A的条件下继续送电7min后停电。
实施例2
本实施例提供了一种螺纹钢,其与实施例1的制备方法的区别在于,螺纹钢快速升温精炼方法具体包括以下步骤:
S1:采用130t的精炼炉,钢水进站,实际装入量为148t,进站温度为1519℃,底吹氩气,并将氩气的流量调至送电模式开始送电;
S2:在额定功率的80%,弧压为350V,弧流为43110A的条件下送电1.5min,待弧流稳定后加入260kg的白云石;在额定功率的80%,弧压为350V,弧流为43110A的条件下继续送电1min,待弧流稳定后加入330kg的白云石;
S3:将功率从额定功率的80%升至额定功率的100%,并在弧压为375V,弧流为43110A的条件下继续送电6min后停电。
实施例3
本实施例提供了一种螺纹钢,其与实施例1的制备方法的区别在于,螺纹钢快速升温精炼方法具体包括以下步骤:
S1:采用130t的精炼炉,钢水进站,实际装入量为149t,进站温度为1516℃,底吹氩气,并将氩气的流量调至送电模式开始送电;
S2:在额定功率的80%,弧压为350V,弧流为43110A的条件下送电3min,待弧流稳定后加入330kg的白云石;在额定功率的80%,弧压为350V,弧流为43110A的条件下继续送电1.5min,待弧流稳定后加入420kg的白云石;
S3:将功率从额定功率的80%升至额定功率的100%,并在弧压为375V,弧流为43110A的条件下继续送电8min后停电。
实施例4
本实施例提供了一种螺纹钢,其与实施例1的制备方法的区别在于,螺纹钢快速升温精炼方法具体包括以下步骤:
S1:采用130t的精炼炉,钢水进站,实际装入量为140t,进站温度为1500℃,底吹氩气,并将氩气的流量调至送电模式开始送电;
S2:在额定功率的80%,弧压为350V,弧流为43110A的条件下送电1.5min,待弧流稳定后加入200kg的白云石;在额定功率的80%,弧压为350V,弧流为43110A的条件下继续送电2.5min,待弧流稳定后加入350kg的白云石;
S3:将功率从额定功率的80%升至额定功率的100%,并在弧压为375V,弧流为43110A的条件下继续送电7min后停电。
实施例5
本实施例提供了一种螺纹钢,其与实施例1的制备方法的区别在于,螺纹钢快速升温精炼方法具体包括以下步骤:
S1:采用130t的精炼炉,钢水进站,实际装入量为150t,进站温度为1530℃,底吹氩气,并将氩气的流量调至送电模式开始送电;
S2:在额定功率的80%,弧压为350V,弧流为43110A的条件下送电1min,待弧流稳定后加入280kg的白云石;在额定功率的80%,弧压为350V,弧流为43110A的条件下继续送电2.5min,待弧流稳定后加入500kg的白云石;
S3:将功率从额定功率的80%升至额定功率的100%,并在弧压为375V,弧流为43110A的条件下继续送电6min后停电。
对比例1
对比例1提供了一种螺纹钢,其与实施例1提供的螺纹钢的精炼方法存在以下不同:
在精炼方法中,对比例1采用130t的LF精炼炉,实际装入量为143t,生产钢种HRB400。转炉氩站加钢筋切头6吨,钢水进站温度为1513℃。钢水进站座包后打开底吹氩至软吹。开至揭盖位揭盖,至处理位,压下炉盖;将氩气流量调至送电模式;开始送电,选择7档、曲线5进行供电,送电至3min后加入石灰500kg,继续送电,待弧流稳定后切换5档、曲线3继续供电快速提温,约10分钟后停电。
对比例2
对比例2提供了一种螺纹钢,其与实施例1提供的螺纹钢的精炼方法的不同之处在于,整个送电过程每吨所述钢水消耗2kg的所述白云石。
对比例3
对比例3提供了一种螺纹钢,其与实施例1提供的螺纹钢的精炼方法的不同之处在于,整个送电过程白云石为一次加入,并未分批次加入。
对比例4
对比例4提供了一种螺纹钢,其与实施例1提供的螺纹钢的精炼方法的不同之处在于,第一功率和第二功率相等,且均为额定功率的80%。
实验例1对本发明的实施例1-5,以及对比例1-4所提供的螺纹钢LF精炼结束后的温度进行测定,测定结果如表1所示。
表1.温度结果
Figure BDA0003671495130000101
Figure BDA0003671495130000111
根据表1中实施例1-5与对比例1-4的对比可知,采用本发明的实施例采用的精炼方法能在短时间内将温度提高至1550以上,从而以能满足加钢筋切头降铁钢比条件。同时,根据表1中实施例1-5与对比例1的对比可知,对比例1未采用本发明的实施例提供的白云石,因而其在送电结束后,还需要继续送电3min左右才能满足加钢筋切头降铁钢比条件。根据表1中实施例1-5与对比例2-4的对比可知,对比例2-4采用了本发明的实施例的精炼方法,参数选择未在本发明的实施例内,其相较于未采用白云石的对比例1而言能一定程度提高温度,但效果弱于本实施例1-5的效果。
实验例2
根据实验例1的测温,计算实施例1-5以及对比例1-4的升温速率。结果如表2所示。
表2.升温速率
Figure BDA0003671495130000112
Figure BDA0003671495130000121
根据表2中实施例1-5与对比例1-4的对比可知,采用本发明的实施例采用的精炼方法能有效地提高升温速率,因而使得钢水进站前的转炉冶炼步骤中出钢温度可相对低一些,继而使得转炉冶炼步骤中废钢的加入量可相对提高,进而能降低铁钢比,降低成本。同时,根据表1中实施例1-5与对比例1的对比可知,对比例1未采用本发明的实施例提供的白云石,因而其在送电结束后,升温速率较低,还需要继续送电3min左右才能满足加钢筋切头降铁钢比条件,无法有效地降低铁钢比。根据表1中实施例1-5与对比例2-4的对比可知,对比例2-4采用了本发明的实施例的精炼方法,参数选择未在本发明的实施例内,其相较于未采用白云石的对比例1而言能一定程度提高升温速率,以降低铁钢比,但效果弱于本实施例1-5的效果。
实验例3
将对比例1采用石灰的方案与实施例1-5采用白云石的方案均用于制备1t的螺纹钢,其成本如表3所示。
表3.成本核算
Figure BDA0003671495130000122
Figure BDA0003671495130000131
根据表3显示的数据可知,本发明的实施例采用的方案能有效地降低生产成本。其根本原因在于,白云石价格115元/吨,而石灰价格540元/吨,差价为435元/吨,因而采用白云石能有效地降低生产成本。
实验例4
对本发明的实施例1-5,以及对比例1-4所提供的螺纹钢LF精炼结束后的渣样进行分析,分析结果如表4所示。
表4.渣样分析
编号 SiO2 CaO MgO AL2O3 S P2O5 TiO2 MnO Fe R
实施例1 40.78 38.62 16.89 7.99 0.135 0.03 1.57 3.26 1.34 0.947
实施例2 38.74 37.26 17.03 8.29 0.124 0.06 1.67 4.73 2.22 0.962
实施例3 35.94 36.16 20.12 8.28 0.178 0.02 1.67 3.58 1.51 1.01
实施例4 39.63 37.65 17.28 8.36 0.157 0.05 1.68 4.62 1.68 0.95
实施例5 37.68 39.52 18.39 7.98 0.168 0.05 1.59 4.62 1.38 1.05
对比例1 32.32 31.78 12.31 5.33 0.017 1.17 2.13 13.63 4.87 0.98
对比例2 40.62 36.54 14.48 8.12 0.146 0.04 1.58 8.95 2.36 0.899
对比例3 38.57 39.42 16.55 8.36 0.164 0.08 1.57 7.69 1.89 1.02
对比例4 37.88 40.23 15.89 7.63 0.182 0.07 1.68 7.68 1.85 1.06
根据表4中实施例1-5与对比例1-4的对比可知,采用本发明的实施例采用的精炼方法能有效地提高渣样中氧化镁的含量,平均可增加约4.58%,从而使渣中MgO可达到15%以上,从而能大幅提高渣线使用寿命,减少了因渣线穿漏而产生的安全及设备损坏事故。
综上所述,本发明的实施例提供了一种精炼升温速率高的螺纹钢快速升温精炼方法、螺纹钢生产方法和螺纹钢,其能在短时间内迅速提高钢水温度,从而使得钢水进站前的转炉冶炼步骤中出钢温度可相对低一些,进而使得转炉冶炼步骤中废钢的加入量可相对提高,进而能降低铁钢比,降低成本。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种螺纹钢快速升温精炼方法,其特征在于,包括:
钢水进站,进站温度为1500-1530℃,底吹氩气,并将所述氩气的流量调至送电模式开始送电;
以第一功率送电,待弧流稳定后加入白云石;
以第二功率送电5-8min后停电;
其中,所述第二功率大于所述第一功率,且整个送电过程每吨所述钢水消耗3.3-5.3kg的所述白云石;
以第一功率送电,待弧流稳定后加入所述白云石的步骤具体包括:
在所述第一功率下送电第一预设时间,待弧流稳定后加入第一剂量的白云石;
在所述第一功率下继续送电第二预设时间,待弧流稳定后加入第二剂量的白云石;
其中,所述第一预设时间小于或等于所述第二预设时间,所述第二预设时间小于或等于3min,所述第一剂量小于或等于第二剂量。
2.根据权利要求1所述的螺纹钢快速升温精炼方法,其特征在于:
所述第一功率为额定功率的80%,所述第二功率为额定功率的100%。
3.根据权利要求1所述的螺纹钢快速升温精炼方法,其特征在于:
以所述第一功率送电时的送电弧压为350-362.5V,弧流为43110A;以所述第二功率送电时的送电弧压为375-387.5V,弧流为43110A。
4.根据权利要求1所述的螺纹钢快速升温精炼方法,其特征在于:
所述第一预设时间为1-3min;和/或;所述第二预设时间为1-3min。
5.根据权利要求1所述的螺纹钢快速升温精炼方法,其特征在于:
所述第二剂量和所述第一剂量的用量比为1-3:1。
6.根据权利要求1所述的螺纹钢快速升温精炼方法,其特征在于:
当所述钢水进站总量为140-150t时,所述白云石在整个送电过程的总加入量为462-795kg,且所述第一剂量200-300kg,所述第二剂量为300-500kg。
7.根据权利要求1至6中任一项所述的螺纹钢快速升温精炼方法,其特征在于:
停电后,炉内渣样包括按照质量分数计的40-42%的SiO2、39-40%的CaO、10-20%的MgO、7-8%的Al2O3、0.1-0.14%的S、0.02-0.04%的P2O5、1.5-1.6%的TiO2、3-3.5%的MnO以及1.2-1.4%的Fe。
8.一种螺纹钢生产方法,其特征在于,包括:
依次进行高炉熔铁、转炉冶炼、LF炉精炼以及连铸;其中,LF炉精炼按照权利要求1至7中任一项所述的螺纹钢快速升温精炼方法进行。
9.一种螺纹钢,其特征在于,通过权利要求8所述的螺纹钢生产方法生产得到。
CN202210609421.9A 2022-05-31 2022-05-31 一种螺纹钢快速升温精炼方法、螺纹钢生产方法和螺纹钢 Active CN114959181B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210609421.9A CN114959181B (zh) 2022-05-31 2022-05-31 一种螺纹钢快速升温精炼方法、螺纹钢生产方法和螺纹钢

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210609421.9A CN114959181B (zh) 2022-05-31 2022-05-31 一种螺纹钢快速升温精炼方法、螺纹钢生产方法和螺纹钢

Publications (2)

Publication Number Publication Date
CN114959181A CN114959181A (zh) 2022-08-30
CN114959181B true CN114959181B (zh) 2023-06-27

Family

ID=82958092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210609421.9A Active CN114959181B (zh) 2022-05-31 2022-05-31 一种螺纹钢快速升温精炼方法、螺纹钢生产方法和螺纹钢

Country Status (1)

Country Link
CN (1) CN114959181B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110616362A (zh) * 2019-09-30 2019-12-27 河钢股份有限公司 一种低温环境用高锰钢的炼钢方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2843682A1 (de) * 1978-10-06 1980-04-24 Stahl Consulting Gmbh Verfahren zum erhoehen der futterhaltbarkeit von lichtbogenoefen
JPH0790337A (ja) * 1993-07-27 1995-04-04 Kawasaki Steel Corp 溶銑の同時脱燐脱硫予備処理方法
JPH08165507A (ja) * 1994-12-12 1996-06-25 Nippon Steel Corp 高クロム鋼精錬炉のスラグコーティング方法
JP2002047508A (ja) * 2000-07-31 2002-02-15 Kobe Steel Ltd 転炉吹錬方法
BR0113896A (pt) * 2000-09-14 2004-07-06 Nippon Kokan Kk Agente e método de refinação
AT412349B (de) * 2003-06-25 2005-01-25 Voest Alpine Ind Anlagen Verfahren zur herstellung einer legierten metallschmelze und erzeugungsanlage hierzu
CN100564546C (zh) * 2008-04-11 2009-12-02 山西太钢不锈钢股份有限公司 一种预熔电炉前期熔渣方法
JP5515651B2 (ja) * 2009-11-10 2014-06-11 Jfeスチール株式会社 溶鋼の脱硫方法
CN103468863B (zh) * 2013-09-29 2016-02-03 武汉嘉特重型设备有限公司 电弧炉顶底吹炼系统和采用该系统的冶炼工艺
CN105177223B (zh) * 2015-08-25 2017-06-30 新疆中合大正商贸有限公司 一种镁钙碳球用于lf炼钢的工艺
CN107034421B (zh) * 2017-04-01 2019-04-12 江苏省沙钢钢铁研究院有限公司 高耐腐蚀性高强钢筋及其转炉制造方法
CN108486456B (zh) * 2018-05-09 2020-06-23 张家港荣盛特钢有限公司 高铬耐蚀钢的冶炼方法
CN108913999B (zh) * 2018-07-20 2020-10-27 首钢水城钢铁(集团)有限责任公司 一种φ36~40mm HRB500E螺纹钢筋的生产方法
CN110499450B (zh) * 2019-09-19 2020-07-24 广东韶钢松山股份有限公司 低碳高磷钢的冶炼方法
RU2761998C1 (ru) * 2020-07-15 2021-12-14 Общество с ограниченной ответственностью "Магнитогорский цементно-огнеупорный завод" Флюс известково-магнезиальный и способ его производства
CN113403448A (zh) * 2021-06-29 2021-09-17 宝武集团鄂城钢铁有限公司 一种低碱度渣条件下精炼炉快速升温的冶炼方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110616362A (zh) * 2019-09-30 2019-12-27 河钢股份有限公司 一种低温环境用高锰钢的炼钢方法

Also Published As

Publication number Publication date
CN114959181A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN102260822B (zh) 高磷低硫无取向电工钢的冶炼方法
CN102206730B (zh) 一种钢水控氧降氮的方法
CN113981167B (zh) 一种基于铁水分级制度的多模式冶炼方法
CN114959181B (zh) 一种螺纹钢快速升温精炼方法、螺纹钢生产方法和螺纹钢
CN110184539B (zh) 一种低成本高导电性电极扁钢及其冶炼方法
CN114535525B (zh) 一种超低硫无取向电工钢及生产方法
US5437706A (en) Method for operating a blast furnace
CN115305411A (zh) 一种超深冲冷轧搪瓷钢高效生产的方法
CN112011668B (zh) 一种提高eaf-lf钢液精炼过程脱硫效率的生产工艺
JP3002593B2 (ja) 極低炭素鋼の溶製方法
CN112593046A (zh) 一种提高含铌废料中铌回收率的冶炼方法
CN111996334A (zh) 电炉炼钢全流程控氮法
JP7447878B2 (ja) Cr溶湯の脱炭方法およびCr含有鋼の製造方法
KR100191010B1 (ko) 저탄소강의 산화정련방법
CN115198105B (zh) 一种废杂铜生产高纯低氧铜杆工艺中去除碲的方法
EP4261289A1 (en) Converter steel making method
CN114790503B (zh) 一种添加铁矿石的冶炼方法
CN115558737B (zh) 一种有效降低转炉终渣TFe含量的二次燃烧氧枪吹炼工艺
JP5047634B2 (ja) 擬似溶銑の製造方法
CN117187673A (zh) 一种低氮18Ni中间合金及其制备方法
JP3594757B2 (ja) 高純度高Ni溶鋼の溶製方法
JP2023093077A (ja) 電気炉における吸窒防止方法
KR100400869B1 (ko) 전기로에서의슬래그과산화방지방법
CN117904385A (zh) 一种低温高效转炉维护的控制方法
JP5413423B2 (ja) 擬似溶銑の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant