CN114956032A - 一种碳包覆的kvpo4f多孔纳米片的制备方法及应用 - Google Patents

一种碳包覆的kvpo4f多孔纳米片的制备方法及应用 Download PDF

Info

Publication number
CN114956032A
CN114956032A CN202210508989.1A CN202210508989A CN114956032A CN 114956032 A CN114956032 A CN 114956032A CN 202210508989 A CN202210508989 A CN 202210508989A CN 114956032 A CN114956032 A CN 114956032A
Authority
CN
China
Prior art keywords
kvpo
carbon
coated
preparation
potassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210508989.1A
Other languages
English (en)
Other versions
CN114956032B (zh
Inventor
周小四
廖家英
包建春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN202210508989.1A priority Critical patent/CN114956032B/zh
Publication of CN114956032A publication Critical patent/CN114956032A/zh
Application granted granted Critical
Publication of CN114956032B publication Critical patent/CN114956032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种碳包覆的KVPO4F多孔纳米片的制备方法及应用,该方法为:通过水热法得到K2[(VO)2(HPO3)2(C2O4)]·3H2O(简称KVPC)前驱体纳米片;将含氟高分子材料和KVPC在溶液中均匀分散,并蒸发溶剂使两者均匀混合;将混合物在氩气气氛中煅烧后制得;本发明方法工艺简单,制得的KVPO4F/C材料具有优异的电化学性能,是一种有前景的钾离子电池正极材料。

Description

一种碳包覆的KVPO4F多孔纳米片的制备方法及应用
技术领域
本发明属于钾离子电池正极材料的技术领域,具体涉及一种钾离子电池正极材料的制备方法及应用,尤其涉及碳包覆的KVPO4F多孔纳米片材料的制备方法及应用。
背景技术
锂离子电池目前已经是便携式电子设备、电动汽车等领域的主要电源,并开始面向固定储能系统中应用。其优势在于具有高能量密度、长寿命周期和高能量转换效率等。然而,锂资源的稀缺、分布不平衡,以及日益增长的高价格是其面临的巨大挑战。近年来,钠、钾离子电池有望作为锂离子电池的替代品而引起了广泛的兴趣。钾与钠相较锂在自然界的含量更高、价格低廉,并且它们与锂离子电池的电化学机制相似。另外,钾的氧化还原电位(K+/K:–2.93V)比钠的(Na+/Na:–2.71V)更低,因此钾离子电池可能具有更高的能量密度,在实际应用中也具有更大的潜力。
KVPO4F是目前钾离子电池中备受关注的一种正极材料,其具有三维的离子通道、高理论比容量、高工作电压等优势。传统的KVPO4F材料合成需要两步法,首先固相法混合原料,通过高温煅烧制备VPO4,然后将VPO4与KF混合后再一次煅烧获得。但这种方法步骤繁琐、耗费时间长、耗能高,并且煅烧制备KVPO4F过程中极易造成氟挥发,形成非化学计量比的产物,导致比容量和工作电压的下降。其次,KVPO4F属于聚阴离子型化合物,其电子导电性较差。再者,由于KVPO4F的工作电压高,电极材料和电解液的界面处容易发生副反应,也会使其在循环过程中容量迅速衰减。以上三个问题是KVPO4F材料在面向应用前亟待解决的。
近年来,研究人员开始尝试通过碳包覆、碳材料复合、电极材料表面修饰等方式针对性的解决KVPO4F材料存在的问题。研究表明碳包覆可以显著改善材料的导电性,同时碳的存在也可以减少钒的氧化,在一定程度上抑制氟的挥发。而表面修饰则是通过包覆层阻隔电解液和电极材料的直接接触,进而减少副反应的发生。然而这些改性方式通常使合成步骤变得更为复杂。
发明内容
为解决上述问题,本发明公开了一种碳包覆的KVPO4F多孔纳米片材料的制备方法及应用。
本发明在合成过程中采用了水热法制备的KVPC纳米片作为前驱体和模板,原料混合更均匀,通过一步煅烧即可得到最终产物,也更利于产物保持纳米级的形貌,并且KVPC在热解过程中体积收缩会形成多孔结构。煅烧过程中使用氟化高分子同时作为氟源和碳源,其在热解过程中形成的含氟气氛可以抑制KVPO4F表面的氟挥发,并且碳包覆层和KVPO4F形成稳定的界面层,更利于得到化学计量比的纯相产物。
通过本发明方法可制得碳包覆的KVPO4F多孔纳米片材料(KVPO4F/C),该材料有利于电子沿着碳包覆层和KVPO4F界面传输,多孔结构可以提升电解液与电极材料的浸润性,大大促进材料容量的发挥,提高了KVPO4F/C材料的倍率性能。同时碳包覆层也可以阻隔电极材料与电解液的直接接触,减少界面副反应,进而提升循环稳定性。
为达到上述目的,本发明的技术方案如下:
本发明的一个目的是提供一种碳包覆的KVPO4F多孔纳米片的制备方法,包括以下步骤:
(1)将五氧化二钒、草酸、磷源、钾源溶于水,通过水热反应得到KVPC前驱体纳米片;
(2)将KVPC前驱体纳米片和含氟高分子均匀分散在分散溶剂中,得到分散液;
(3)将步骤(2)制备的分散液经搅拌加热蒸干分散溶剂,得到沉淀;蒸干分散溶剂温度为100~150℃;
(4)将步骤(3)中的沉淀在惰性气氛中煅烧,得到碳包覆的KVPO4F多孔纳米片材料。
进一步地,步骤(1)中五氧化二钒、草酸、磷源、钾源的V元素、草酸、P元素、K元素的摩尔比为1.0:1.5~2.0:3.0~4.0:3.0~4.0。
进一步地,步骤(1)中钒元素的浓度为0.4~0.8mol L-1
进一步地,所述磷源为亚磷酸、磷酸或磷酸二氢钾中的一种或两种以上;钾源为氢氧化钾、磷酸二氢钾、碳酸钾或草酸钾中的一种或两种以上。
进一步地,步骤(1)中,水热反应的温度为160~180℃,水热反应的时间为6~12小时。
进一步地,步骤(2)中,KVPC前驱体纳米片与含氟高分子的质量比为3:1~4:1。
进一步地,所述含氟高分子为聚偏二氟乙烯-六氟丙烯共聚物(PVDF-HFP)、聚偏二氟乙烯(PVDF)或聚四氟乙烯(PTFE)中的一种。
进一步地,步骤(2)中分散溶剂为N,N-二甲基甲酰胺(DMF)、N-甲基吡咯烷酮(NMP)或去离子水中的一种。
进一步地,步骤(4)中,煅烧条件为:升温至600~700℃,然后保温2~6小时;惰性气氛为氩气或氮气。
本发明的另一个目的是提供一种上述制备方法制备得到的碳包覆的KVPO4F多孔纳米片作为钾离子电池正极材料的应用。
本发明的有益效果为:
本发明与现有技术相比,取得如下显著效果:本发明方法仅需一步煅烧即可获得最终产物。制得的KVPO4F/C具有优异的电化学性能,作为钾离子电池的正极材料,KVPO4F/C在0.2C倍率(1C=100mA g-1)时,提供106.5mAh g-1可逆容量,平均工作电压达到4.28V。在100C的超大倍率下仍可提供73.8mAh g-1可逆容量,在10C倍率下1000次循环中表现出良好的循环稳定性,容量保持率为82.5%。因此,这种碳包覆的KVPO4F多孔纳米片材料作为高性能正极材料具有很好的应用潜力。
附图说明
图1为本发明实施例1的KVPO4F/C材料的XRD精修和晶体结构示意图;
图2为本发明实施例1的KVPO4F/C材料的XPS全谱图;
图3为本发明实施例1的KVPO4F/C材料的XANES谱图;
图4为本发明实施例1的KVPO4F/C材料的SEM图;
图5为本发明实施例1的KVPO4F/C材料的TEM图a、b,HRTEM图c和球差电镜的环形亮场(ABF)图像d;
图6为本发明实施例1的KVPO4F/C电极的循环伏安曲线图;
图7为本发明实施例1的KVPO4F/C和对比例1的材料在0.2C倍率下的充放电曲线;
图8为本发明实施例1的KVPO4F/C和对比例1的材料在0.5C倍率下的循环性能图;
图9为本发明实施例1的KVPO4F/C和对比例1的材料在不同电流密度下的倍率性能图a和充放电曲线图b;
图10为本发明实施例1的KVPO4F/C在10C倍率下的循环性能图;
图11为本发明实施例2的KVPO4F/C材料的SEM图a和TEM图b;
图12为本发明对比例1的KVPO4F材料的SEM图a和TEM图b;
图13为本发明对比例2的KVPO4F/C材料的SEM图。
具体实施方式
下面结合附图和具体实施方式,进一步阐明本发明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。
实施例1
KVPO4F/C材料的制备:
(1)溶液A:将3.638g五氧化二钒和7.564g二水合草酸加入到30mL去离子水中,70℃加热搅拌1h形成深蓝色溶液。溶液B:将6.733g氢氧化钾和9.84g亚磷酸缓慢加入到20mL去离子水中。待两溶液冷却至室温后混合,并加入到100ml聚四氟乙烯内衬的水热釜中,180℃恒温12h。待冷却至室温后,所得沉淀通过离心分离,并用水和乙醇洗3遍,最后60℃真空干燥得到KVPC;
(2)将1g PVDF-HFP与19g DMF混合,并在50℃加热6h形成透明溶液;随后将4gKVPC加入到PVDF-HFP和DMF的透明溶液中,室温下大力搅拌12h形成均匀分散液;
(3)将KVPC和PVDF-HFP的均匀分散液置于120℃加热搅拌,蒸发溶剂得到两者均匀混合的粉末;
(4)将步骤(3)所得的粉末置于氩气气氛管式炉中,以3℃min-1的速率升温至650℃煅烧6h,冷却后即为所得产物KVPO4F/C材料。
KVPO4F/C材料的表征:
图1为KVPO4F/C材料的XRD结构精修以及对应的晶体结构示意图,该图表明该材料是纯相的具有KTiOPO4结构的化合物;图2为KVPO4F/C的XPS全谱图,该图显示K、V、P、O、F和C元素的存在;图3为KVPO4F/C的X射线近边吸收结构谱,该图证明其中V的价态为+3,也表明F被O取代的比例很少。
利用SEM、TEM以及HRTEM图分析所得KVPO4F/C材料的尺寸、形貌和微观结构。图4为KVPO4F/C材料的SEM图,该图表明该材料为粒径为200-500nm,厚度为50-100nm左右的纳米片状颗粒。图5a和图5b为KVPO4F/C的TEM图,该图显示在片层状的结构中存在多孔的结构;图5c为KVPO4F/C的HRTEM图像,该图显示KVPO4F中(201)晶面的晶格间距为0.548nm,并且这些晶格条纹均匀的贯穿过孔结构。图5d为KVPO4F/C的球差电镜的环形亮场(ABF)图像,该图中显示KVPO4F/C表面有3.3nm左右的碳包覆层,在KVPO4F和C中间有1.7nm左右的过渡层,表明两者之间存在相互作用。
电化学性能测试:
以NMP作为溶剂,将本实施例制得的KVPO4F/C与导电碳黑、PVDF以70:20:10的质量比研磨混合均匀,将所得的均匀浆体涂抹在Al箔上并将其在80℃下真空干燥12h。使用1molL-1KPF6的碳酸乙烯(EC)和碳酸丙烯(PC)(体积比为1:1)+5wt%氟代碳酸乙烯酯(FEC)溶液作为钾离子电池电解液,玻璃纤维和金属钾分别作为钾离子电池隔膜和对电极。电化学性能的测试采用CR2032电池。电池组装在充满氩气气氛的手套箱中进行,水和氧浓度均小于0.1ppm。电池的恒电流充放电测试在室温下,用蓝电CT2001A多通道电池测试系统,在2.0–5.0V(vs.K+/K)固定电压范围内进行。具体的性能见图6至图10。
图6是KVPO4F/C电极在2.0–5.0V(vs.K+/K)电压区间,扫描速率为0.1mV s-1时前三圈的循环伏安曲线,曲线基本重合,表明材料脱嵌钾可逆性良好;图7为KVPO4F/C与对比例1中传统固相法合成的KVPO4F在2.0–5.0V(vs.K+/K)电压区间的充/放电曲线图,电流密度为0.2C,其中1C=100mA g-1;KVPO4F/C的可逆比容量达到106.5mAh g-1,平均工作电压为4.28V,而对比例的比容量较低,仅有94.2mAh g-1;图8为KVPO4F/C与对比例1的材料在0.5C电流密度下的循环性能图,经过100次循环后,两者的容量保持率分别为92.4%和77.4%,KVPO4F/C的性能明显更优;图9a为KVPO4F/C与对比例1中的KVPO4F在不同电流密度下的倍率性能图,可以看出,即使在100C的高电流密度下,KVPO4F/C的容量仍能达到73.8mAh g-1,而对比例1则几乎无容量;图9b为KVPO4F/C在不同电流密度下的充放电曲线;图10为KVPO4F/C在10C电流密度下的循环性能图,该图显示,KVPO4F/C循环1000圈后,容量保持率达到82.5%。
实施例2
KVPO4F/C材料的制备:
(1)将3.638g五氧化二钒和7.564g二水合草酸加入到50mL去离子水中,70℃加热搅拌1h形成深蓝色溶液。待溶液冷却至室温后,将16.331g磷酸二氢钾缓慢加入,溶解后转移到100ml聚四氟乙烯内衬的水热釜中,160℃恒温12h。待冷却至室温后,所得沉淀通过离心分离,并用水和乙醇洗3遍,最后60℃真空干燥得到KVPC;
(2)将1g PVDF-HFP与19g DMF混合,并在50℃加热6h形成透明溶液;随后将4gKVPC加入到PVDF-HFP和DMF的透明溶液中,室温下大力搅拌12h形成均匀分散液;
(3)将KVPC和PVDF-HFP的均匀分散液置于120℃加热搅拌,蒸发溶剂得到两者均匀混合的粉末;
(4)将步骤(3)所得的粉末置于氩气气氛管式炉中,以3℃min-1的速率升温至650℃煅烧6h,冷却后即为所得产物KVPO4F/C材料。
按照与实施例1相同的方法对所制得的KVPO4F/C材料进行结构表征与电化学性能测试。其形貌如图11所示,以磷酸二氢钾为原料制得的最终样品呈现不规则片状,厚度约为100-200nm,但同样具有多孔结构。前驱体KVPC为层状结构,在合成过程中磷酸根离子相较于实施例1中的亚磷酸根离子对层间的吸附力更强,使纳米片变厚。其电化学性能测试结果见表1。
实施例3
KVPO4F/C材料的制备:
(1)溶液A:将3.638g五氧化二钒和7.564g二水合草酸加入到30mL去离子水中,70℃加热搅拌1h形成深蓝色溶液。溶液B:将6.733g氢氧化钾和9.84g亚磷酸缓慢加入到20mL去离子水中。待两溶液冷却至室温后混合,并加入到100ml聚四氟乙烯内衬的水热釜中,180℃恒温12h。待冷却至室温后,所得沉淀通过离心分离,并用水和乙醇洗3遍,最后60℃真空干燥得到KVPC;
(2)将1g PVDF与19g NMP混合,并在50℃加热6h形成透明溶液;随后将4g KVPC加入到PVDF和NMP的透明溶液中,室温下大力搅拌12h形成均匀分散液;
(3)将KVPC和PVDF的均匀分散液置于150℃加热搅拌,蒸发溶剂得到两者均匀混合的粉末;
(4)将步骤(3)所得的粉末置于氩气气氛管式炉中,以3℃min-1的速率升温至650℃煅烧6h,冷却后即为所得产物。
按照与实施例1相同的方法对所制得的KVPO4F/C材料进行结构表征与电化学性能测试,其结构表征结果与实施例1基本相同,其电化学性能测试结果见表1。
实施例4
KVPO4F/C材料的制备:
(1)溶液A:将1.819g五氧化二钒和3.782g二水合草酸加入到30mL去离子水中,70℃加热搅拌1h形成深蓝色溶液。溶液B:将4.146g碳酸钾和4.92g亚磷酸缓慢加入到20mL去离子水中。待两溶液冷却至室温后混合,并加入到100ml聚四氟乙烯内衬的水热釜中,180℃恒温12h。待冷却至室温后,所得沉淀通过离心分离,并用水和乙醇洗3遍,最后60℃真空干燥得到KVPC;
(2)将2g含60wt%PTFE的浓缩分散液用10g去离子水稀释至10wt%;随后将3.6gKVPC加入到PTFE的浓缩分散液中,室温下大力搅拌12h形成均匀分散液;
(3)将KVPC和PTFE的均匀分散液置于100℃加热搅拌,蒸发溶剂得到两者均匀混合的粉末;
(4)将步骤(3)所得的粉末置于氩气气氛气管式炉中,以3℃min-1的速率升温至650℃煅烧2h,冷却后即为所得产物。
按照与实施例1相同的方法对所制得的KVPO4F/C材料进行结构表征与电化学性能测试,其结构表征结果与实施例1基本相同,其电化学性能测试结果见表1。
对比例1
传统固相法制备KVPO4F:
(1)将五氧化二钒,磷酸二氢铵和导电碳黑按照摩尔比1:2:2混合,以丙酮为分散剂球磨12h,经80℃干燥,然后将粉末压片,并在750℃氩气气氛中煅烧4h得到VPO4
(2)将步骤(1)所得VPO4与氟化钾按摩尔比1:1继续球磨12h,所得粉末干燥后再次压片,并在650℃氩气气氛中煅烧6h。
按照与实施例1相同的方法对所制得的KVPO4F材料进行结构表征与电化学性能测试。其形貌如图12所示,该方法获得的KVPO4F为亚微米级颗粒,颗粒表面光滑无孔结构,周围附着的纳米级小颗粒为剩余的导电碳黑。图8为实施例1中的KVPO4F/C和对比例合成的KVPO4F在0.5C电流密度下的循环性能图对比,该图显示,KVPO4F的循环稳定性较KVPO4F/C更差;图9a为KVPO4F/C与KVPO4F在不同电流密度下的倍率性能图,KVPO4F/C的可逆容量也要明显高于KVPO4F;由以上测试可知,传统方法合成的KVPO4F电化学性能远不如实施例1中的KVPO4F/C。
对比例2
低原料浓度下所制得的KVPO4F/C:
(1)溶液A:将0.909g五氧化二钒和1.891g二水合草酸加入到30mL去离子水中,70℃加热搅拌1h形成深蓝色溶液。溶液B:将1.683g氢氧化钾和2.46g亚磷酸缓慢加入到20mL去离子水中。待两溶液冷却至室温后混合,并加入到100ml聚四氟乙烯内衬的水热釜中,180℃恒温12h。待冷却至室温后,所得沉淀通过离心分离,并用水和乙醇洗3遍,最后60℃真空干燥得到KVPC;
(2)将0.5g PVDF-HFP与9.5g DMF混合,并在50℃加热6h形成透明溶液;随后将2gKVPC加入到PVDF-HFP和DMF的透明溶液中,室温下大力搅拌12h形成均匀分散液;
(3)将KVPC和PVDF-HFP的均匀分散液置于120℃加热搅拌,蒸发溶剂得到两者均匀混合的粉末;
(4)将步骤(3)所得的粉末置于氩气气氛管式炉中,以3℃min-1的速率升温至650℃煅烧6h,冷却后即为所得产物KVPO4F/C材料。
按照与实施例1相同的方法对所制得的KVPO4F/C材料进行结构表征与电化学性能测试。其形貌如图13所示,在原料浓度低于权利要求的范围时,水热的KVPC颗粒容易长大至微米级,进而影响性能的发挥。其电化学性能测试结果见表1,倍率性能相较于实施例1明显下降。
表1电化学性能数据
Figure BDA0003638534420000071
需要说明的是,以上内容仅仅说明了本发明的技术思想,不能以此限定本发明的保护范围,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰均落入本发明权利要求书的保护范围之内。

Claims (10)

1.一种碳包覆的KVPO4F多孔纳米片的制备方法,其特征在于,包括以下步骤:
(1)将五氧化二钒、草酸、磷源、钾源溶于水,通过水热反应得到KVPC前驱体纳米片;
(2)将KVPC前驱体纳米片和含氟高分子均匀分散在分散溶剂中,得到分散液;
(3)将步骤(2)制备的分散液经搅拌加热蒸干分散溶剂,得到沉淀;
(4)将步骤(3)中的沉淀在惰性气氛中煅烧,得到碳包覆的KVPO4F多孔纳米片材料。
2.根据权利要求1所述的一种碳包覆的KVPO4F多孔纳米片的制备方法,其特征在于,步骤(1)中,五氧化二钒、草酸、磷源、钾源的V元素、草酸、P元素、K元素的摩尔比为1.0:1.5~2.0:3.0~4.0:3.0~4.0。
3.根据权利要求1所述的一种碳包覆的KVPO4F多孔纳米片的制备方法,其特征在于,步骤(1)中钒元素的浓度为0.4~0.8mol L-1
4.根据权利要求2所述的一种碳包覆的KVPO4F多孔纳米片的制备方法,其特征在于,所述磷源为亚磷酸、磷酸或磷酸二氢钾中的一种或两种以上;钾源为氢氧化钾、磷酸二氢钾、碳酸钾或草酸钾中的一种或两种以上。
5.根据权利要求1所述的一种碳包覆的KVPO4F多孔纳米片的制备方法,其特征在于,步骤(1)中,水热反应的温度为160~180℃,水热反应的时间为6~12小时。
6.根据权利要求1所述的一种碳包覆的KVPO4F多孔纳米片的制备方法,其特征在于,步骤(2)中,KVPC前驱体纳米片与含氟高分子的质量比为3:1~4:1。
7.根据权利要求6所述的一种碳包覆的KVPO4F多孔纳米片的制备方法,其特征在于,所述含氟高分子为聚偏二氟乙烯-六氟丙烯共聚物、聚偏二氟乙烯和聚四氟乙烯中的一种。
8.根据权利要求1所述的一种碳包覆的KVPO4F多孔纳米片的制备方法,其特征在于,步骤(2)中分散溶剂为N,N-二甲基甲酰胺、N-甲基吡咯烷酮和去离子水中的一种。
9.根据权利要求1所述的一种碳包覆的KVPO4F多孔纳米片的制备方法,其特征在于,步骤(4)中,煅烧条件为:升温至600~700℃,然后保温2~6小时;惰性气氛为氩气或氮气。
10.一种如权利要求1-9任一项所述制备方法制备得到的碳包覆的KVPO4F多孔纳米片作为钾离子电池正极材料的应用。
CN202210508989.1A 2022-05-11 2022-05-11 一种碳包覆的kvpo4f多孔纳米片的制备方法及应用 Active CN114956032B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210508989.1A CN114956032B (zh) 2022-05-11 2022-05-11 一种碳包覆的kvpo4f多孔纳米片的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210508989.1A CN114956032B (zh) 2022-05-11 2022-05-11 一种碳包覆的kvpo4f多孔纳米片的制备方法及应用

Publications (2)

Publication Number Publication Date
CN114956032A true CN114956032A (zh) 2022-08-30
CN114956032B CN114956032B (zh) 2023-11-03

Family

ID=82980650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210508989.1A Active CN114956032B (zh) 2022-05-11 2022-05-11 一种碳包覆的kvpo4f多孔纳米片的制备方法及应用

Country Status (1)

Country Link
CN (1) CN114956032B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258219A (zh) * 2018-01-15 2018-07-06 桂林理工大学 一种钾离子电池正极材料氟磷酸钒钾/碳的制备方法
CN109473638A (zh) * 2018-09-19 2019-03-15 中山大学 一种碳包覆含氟电极材料Na3V2O2x(PO4)2F3-2x及其制备方法
CN110467170A (zh) * 2019-08-27 2019-11-19 清华大学深圳研究生院 一种钾离子电池高电位正极材料及其制备方法
CN111293307A (zh) * 2018-12-06 2020-06-16 中国科学院大连化学物理研究所 一种碳载氟磷酸钒钠及其制备和应用
CN112490421A (zh) * 2020-11-05 2021-03-12 西安交通大学 一种铯掺杂氟磷酸钒钾/碳正极材料及其制备方法及应用
CN112952047A (zh) * 2019-12-10 2021-06-11 中国科学院大连化学物理研究所 一种碳负载钒酸钾的制备方法及其在钾离子电池中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258219A (zh) * 2018-01-15 2018-07-06 桂林理工大学 一种钾离子电池正极材料氟磷酸钒钾/碳的制备方法
CN109473638A (zh) * 2018-09-19 2019-03-15 中山大学 一种碳包覆含氟电极材料Na3V2O2x(PO4)2F3-2x及其制备方法
CN111293307A (zh) * 2018-12-06 2020-06-16 中国科学院大连化学物理研究所 一种碳载氟磷酸钒钠及其制备和应用
CN110467170A (zh) * 2019-08-27 2019-11-19 清华大学深圳研究生院 一种钾离子电池高电位正极材料及其制备方法
CN112952047A (zh) * 2019-12-10 2021-06-11 中国科学院大连化学物理研究所 一种碳负载钒酸钾的制备方法及其在钾离子电池中的应用
CN112490421A (zh) * 2020-11-05 2021-03-12 西安交通大学 一种铯掺杂氟磷酸钒钾/碳正极材料及其制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANZHI XU ET AL.: "Facile synthesis of KVPO4F/reduced graphene oxide hybrid as a high-performance cathode material for potassium-ion batteries", 《JOURNAL OF ENERGY CHEMISTRY》, vol. 68, pages 284 *
ZHAOMENG LIU ET AL.: "Plum pudding model inspired KVPO4F@3DC as high-voltage and hyperstable cathode for potassium ion batteries", 《SCIENCE BULLETIN》, vol. 65, pages 1242 *

Also Published As

Publication number Publication date
CN114956032B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
US11990620B2 (en) Vanadium sodium phosphate positive electrode material, sodium ion battery, preparation method therefor, and use thereof
US8865349B2 (en) Method of producing positive electrode active material and nonaqueous electrolyte battery using the same
CN110416503B (zh) 一种软碳包覆磷酸钛钠介孔复合材料及其制备方法与应用
JP6188158B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池用負極スラリー、およびリチウムイオン二次電池
CN113839038A (zh) MOF衍生的Bi@C纳米复合电极材料及其制备方法
CN111564610B (zh) 一种碳纳米管修饰的碳包覆磷化亚铜-铜复合颗粒及其制备方法和应用
CN113479860A (zh) 一种SbPO4/氮掺杂碳复合材料的制备方法
CN116417598A (zh) 一种铁基聚阴离子型钠离子电池正极材料及其制备方法
CN110085854B (zh) 一种磷酸钒锂正极材料及其制备方法
CN110467170B (zh) 一种钾离子电池高电位正极材料及其制备方法
CN109904450B (zh) 一种碳包覆磷酸钒钠复合正极材料的制备方法
CN115050944B (zh) 一种三维纳米花结构的复合材料及其制备方法和应用
Liu et al. Synthesis and electrochemical properties of α-LiVOPO4 as cathode material for lithium-ion batteries
KR102522173B1 (ko) 나트륨이차전지용 질소-도핑된 탄소가 코팅된 음극 활물질 및 그 제조방법
CN114956032B (zh) 一种碳包覆的kvpo4f多孔纳米片的制备方法及应用
CN109461897B (zh) 一种纺锤形碳包覆钒基正极材料的制备方法
CN112467095A (zh) 氟磷酸钒钠/c双重修饰氟磷酸锰钠复合材料及制备和应用
CN114084882A (zh) 不同价态锰掺杂Na3V2(PO4)2F3碳包覆立方晶型材料及其制备方法和应用
CN111740095A (zh) 一种碳微球包裹氧化锌纳米片材料及其制备方法和应用
CN114735750B (zh) 一种铌盐材料、其制备方法及应用
CN112133899B (zh) 锡锑硫化物/石墨烯复合材料的制备方法及其在钠离子电池负极中的应用
CN115954468B (zh) 一种正极材料、其制备方法及应用
CN109455770B (zh) 一种电极材料钒酸钴、其制备方法及应用
CN106848188B (zh) 正极活性材料及其制备方法、正极片和锂离子电池
CN117810387A (zh) 电极材料及其制备方法与应用、碱金属电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant