CN114904744A - 一种制备铜铟硒薄膜的刮涂方法及其应用 - Google Patents

一种制备铜铟硒薄膜的刮涂方法及其应用 Download PDF

Info

Publication number
CN114904744A
CN114904744A CN202210391756.8A CN202210391756A CN114904744A CN 114904744 A CN114904744 A CN 114904744A CN 202210391756 A CN202210391756 A CN 202210391756A CN 114904744 A CN114904744 A CN 114904744A
Authority
CN
China
Prior art keywords
film
precursor
copper indium
blade coating
cuins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210391756.8A
Other languages
English (en)
Other versions
CN114904744B (zh
Inventor
辛颢
马乘风
闫伟博
刘新格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202210391756.8A priority Critical patent/CN114904744B/zh
Publication of CN114904744A publication Critical patent/CN114904744A/zh
Application granted granted Critical
Publication of CN114904744B publication Critical patent/CN114904744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • B05D2203/35Glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • General Chemical & Material Sciences (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

本发明提供了一种制备铜铟硒薄膜的刮涂方法及其应用。制备铜铟硒薄膜的刮涂方法包括以下步骤:将含有Cu、In、S元素的前驱体溶液刮涂到钼玻璃上,形成一层前驱体湿膜,将前驱体湿膜在低温下退火以除去薄膜中多余的溶剂来干燥薄膜,再将薄膜经过高温的热退火处理,得到表面平整、均一性良好的CuInS2前躯体薄膜,最后,将CuInS2前躯体薄膜高温硒化形成铜铟硒薄膜。本发明简化了铜铟硒薄膜的制备过程,避免了制造过程的溶液损失,极大的提高了材料的利用率,减少了制备成本,为实现溶液法制备大面积铜铟硒薄膜太阳能电池器件的工业化应用提供了技术支撑。

Description

一种制备铜铟硒薄膜的刮涂方法及其应用
技术领域
本发明涉及半导体材料技术领域,尤其涉及一种制备铜铟硒薄膜的刮涂方法及其应用,特别是在铜铟硒薄膜太阳能电池中的应用。
背景技术
铜铟镓硒是一种直接带隙半导体材料,具有较高的吸收系数(105 cm-1)、合适的禁带宽度(1.0 eV-1.7 eV)和具有良好的材料稳定性,被认为是一种极具应用前景的太阳能电池吸收层材料。目前,铜铟镓硒薄膜太阳电池已经步入到商业化应用阶段,并且实验室制备的铜铟镓硒薄膜太阳能电池的光电转换效率已经达到了23.35%,已经具备与传统的晶硅太阳能电池相抗衡的能力。但是,大多数高效的铜铟镓硒薄膜太阳能电池都是基于共蒸发法和溅射法等真空沉积技术制备的,而真空沉积技术一般需要昂贵的真空设备和高温的沉积条件,造成了能耗高、成本投资大、运行成本高等问题,而且很难控制成膜的均匀性和重复性,更难以实现大面积成膜。
溶液法,尤其是分子前驱体溶液法,由于其制备工艺简单、成本低、可扩展性强等优点,有望成为能够替代真空法的一项技术。近年来,采用溶液法制备效的铜铟镓硒薄膜太阳能电池成为了研究热点之一。迄今为止,使用溶液法制备的铜铟镓硒薄膜太阳能电池的效率达到了18.7%。效率逐渐接近于真空法,已具备商业化应用的条件。而下一个重要的工作是如何将实验室规模的高效率溶液基铜铟镓硒薄膜太阳能电池转变为具有较小效率损失的大面积铜铟镓硒薄膜太阳能电池器件,以实现工业化规模的高通量生产。然而,大多数报道的溶液法制备的高效率铜铟镓硒薄膜太阳能电池通常是在氮气或惰性气体的手套箱中使用旋涂技术制备的。旋涂技术的材料损失大,成本高,速率慢,适用面积小,不适合大规模工业生产。
综上,与真空法相比,溶液法的优势明显。但目前高效的铜铟镓硒薄膜太阳能都是依靠旋涂技术制备的,旋涂技术的材料利用率低,可扩展性小,易造成组分损失,不适合大规模工业生产。因此,开发一种可大面积制备铜铟镓硒薄膜的方法应用于太阳能电池领域具有重要意义。
发明内容
针对现有技术的不足,本发明提供了一种简单有效的制备铜铟硒薄膜的刮涂方法,解决了现有技术中单纯地旋涂前驱体溶液制备铜铟硒薄膜所造成的材料利用率低、大面积制备均匀性差等问题,以及真空沉积技术存在的能耗高、成本高等问题,可应用于大面积铜铟硒薄膜太阳能电池的制备。
为解决现有技术问题,本发明采取的技术方案如下:
一种制备铜铟硒薄膜的刮涂方法,包括以下步骤:
第一步,前驱体薄膜的制备
将含有Cu、In、S元素的前驱体溶液刮涂到钼玻璃上,形成一层前驱体湿膜,接着将前驱体湿膜在低温下退火,以除去薄膜中多余的溶剂来干燥薄膜,再将薄膜经过高温的热退火处理,得到表面平整、均一性良好的CuInS2前躯体薄膜;
第二步,制备铜铟硒薄膜
将CuInS2前躯体薄膜在管式炉中高温硒化形成铜铟硒薄膜。
优选的是,所述的前驱体溶液中金属离子Cu+和In3+的总浓度为1.2-1.8 mol/L;前驱体溶液中Cu、In、S的摩尔比为1:1:4.4。
作为改进的是,所述的CuInS2前驱体薄膜的制备方法如下:将清洗干净的钼玻璃固定到刮涂设备的基台上,设置基台温度50-100 ℃,设置刮刀移动速度2 mm/s,接着调节刮涂设备的刮刀位置使刮刀的刀尖与钼玻璃之间的间隙为0.2-0.6 mm;待基台温度上升到设定温度后,将前驱体溶液加入到间隙当中,每次刮涂的前驱体溶液量为2-4 μL/cm2;并启动刮涂设备,刮刀在钼玻璃上刮出一层均匀的液膜;接着将带有液膜的钼玻璃转移至热台上退火,生成CuInS2薄膜;重复刮涂操作,得到不同厚度的CuInS2薄膜。
优选的是,所述退火采用两步退火,具体为将刮涂的前驱体湿膜先放在160-200℃的热台上退火3-5min,以蒸干湿膜中多余的溶剂,然后将薄膜放在300-360℃的热台上退火1-3min,得到CuInS2薄膜。
基于上述任一种方法制备的前驱体薄膜,进一步经过硒化后形成铜铟硒薄膜。
上述的铜铟硒薄膜在制备太阳能电池上的应用。
优选的是,上述应用包括以下步骤:
步骤1,在铜铟硒薄膜上沉积CdS缓冲层;
步骤2,在CdS缓冲层上沉积ZnO/ITO窗口层;
步骤3,真空蒸镀Ni和Al作为阴极;
步骤4,真空蒸镀MgF2减反层。
有益效果:
与现有技术相比,本发明一种制备铜铟硒薄膜的刮涂方法及其应用,具有如下优势:
1.本发明提供了一种能大幅减少前驱体溶液用量的铜铟硒薄膜制备方法,该方法还可应用于大面积制备铜铟硒薄膜,通过将极少的溶液加入到刮刀与钼玻璃基底之间的间隙中,利用刮刀对溶液的牵引作用将前驱体溶液均匀的涂布到钼玻璃基底上,再经两步退火处理得到均匀、表面平整的CuInS2前驱体薄膜,最后经过高温硒化反应可获得大晶粒、少晶界和无孔隙的铜铟硒薄膜;
2.本发明制备方法简单可行,对设备要求比较低,可充分利用材料,最大程度上节约成本,实现绿色生产,以此薄膜为基础制备的铜铟硒薄膜太阳能电池可以获得超过12%的光电转换效率。
附图说明
图1为本发明实施例的刮涂制备铜铟硒薄膜太阳能电池流程示意图;
图2为本发明实施例1两步退火制备的前驱体薄膜的(a)表面和(b)截面SEM图像;
图3为本发明对比例1一步退火制备的前驱体薄膜的(a)表面和(b)截面SEM图像;
图4为本发明对比例2两步退火制备的前驱体薄膜的(a)表面和(b)截面SEM图像;
图5为本发明对比例3两步退火制备的前驱体薄膜的(a)表面和(b)截面SEM图像;
图6为本发明实施例2利用两步退火前驱体薄膜制备的铜铟硒薄膜的(a)表面和(b)截面SEM图像;
图7为本发明对比例4的对比例一步退火前驱体薄膜制备的铜铟硒薄膜的(a)表面和(b)截面SEM图像;
图8为本发明实施例3的应用刮涂制备的铜铟硒薄膜组装成电池器件的J-V曲线。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实例。
实施例1 制备前驱体薄膜
向10 mL的DMF中加入2.846 g硫脲(TU),25℃下磁力搅拌使其全部溶解,接着加入0.839 g的CuCl,搅拌至澄清透明,最后加入2.485 g的InCl3·4H2O,继续搅拌至透明后,即为前驱体溶液。该溶液中金属离子Cu+和In3+的总浓度为1.7 mol/L,Cu:In:S的摩尔比为1:1:4.4。前驱体溶液中所发生的反应如下:
CuCl+3TU→CuTU3Cl
InCl3+3TU→CuTU3Cl3
将上述溶液用于制备前驱体薄膜,其制备过程如图1所示。首先,将规格为2.5 cm×2.5 cm钼玻璃固定在刮涂设备的基台上,设置基台温度为70 ℃,设置刮涂设备的刮刀移动速度为2 mm/s,调整刮刀位置使刀尖位于钼玻璃的右侧且与钼玻璃表面的间隙为0.4mm。待基台温度上升到70 ℃后,将10 μL的前驱体溶液加入到间隙当中,启动刮涂设备,刮刀在钼玻璃表面形成一层均匀的液膜,然后将带有液膜的钼玻璃在温度为190 ℃的热台上退火5 min,再在300 ℃的热台上退火3min。上述的刮涂-退火步骤视为一个循环,将该循环重复4次。
图2为应用金属离子浓度为1.7 mol/L的前驱体溶液经两步退火制备的前驱体薄膜SEM图像,从图中可以看到,在制备过程中采用两步退火处理产生的前驱体薄膜的均匀性较好,表面较为平整。前驱体薄膜的厚度为1.7 μm,且两步退火形成的前驱体薄膜较疏松,有利于硒化过程中的硒蒸气进入薄膜内部并在薄膜底部成核,促进晶粒长大。
对比例1
将实施例1中前驱体薄膜的退火方式由两步退火改为直接在300 ℃下退火的一步退火,其余的条件保持不变,得到前驱体薄膜,其薄膜的SEM图像如图3所示。
一步退火的前驱体薄膜表面粗糙,有分散的团聚体出现。前驱体薄膜的厚度为1.2μm,且薄膜较为致密,不利于硒化过程中的硒蒸气进入薄膜内部,影响晶粒生长。
对比例2 制备前驱体薄膜
向10 mL的DMF中加入1.674 g硫脲,25 ℃下磁力搅拌使其全部溶解。接着加入0.494 g的CuCl,搅拌至澄清透明,最后加入1.462 g的InCl3·4H2O,继续搅拌至透明后,即为前驱体溶液。此时,溶液中金属离子浓度1.0 mol/L,Cu:In:S的摩尔比为1:1:4.4。将上述金属离子浓度为1.0 mol/L的前驱体溶液用于刮涂制备前驱体薄膜,其制备过程与实施例1相同。
图4为应用金属离子浓度为1.0 mol/L的前驱体溶液刮涂制备的前驱体薄膜SEM图像。从图中可以看到,使用1.0 mol/L的前驱体溶液制备前驱体薄膜表面均匀性较差,由许多团聚体堆积形成,且产生的裂缝较多。此外,前驱体薄膜的厚度较低,仅有0.37 μm,影响硒化后吸收层薄膜的光吸收。
对比例3 制备前驱体薄膜
向10 mL的DMF中加入3.348 g硫脲,25 ℃下磁力搅拌使其全部溶解。接着加入0.988 g的CuCl,搅拌至澄清透明,最后加入2.924 g的InCl3·4H2O,继续搅拌至透明后,即为前驱体溶液。此时,溶液中金属离子浓度2.0 mol/L,Cu:In:S的摩尔比为1:1:4.4。将上述金属离子浓度为2.0 mol/L的前驱体溶液用于刮涂制备前驱体薄膜,其制备过程与实施例1相同。
图5为应用金属离子浓度为2.0 mol/L的前驱体溶液经刮涂制备的前驱体薄膜SEM图像。从图中可以看到,使用2.0 mol/L的前驱体溶液制备的前驱体薄膜表面有大量的团聚体堆积,表面比较粗糙有孔洞,影响CdS的沉积和异质结的形成。前驱体薄膜厚度为2.3 μm,容易导致硒化后吸收层薄膜的电荷复合。
实施例2 制备铜铟硒薄膜
进一步将实施例1制备的前驱体薄膜进行硒化。硒化过程参照专利(CN108231925B)。具体过程为:将前驱体薄膜置于石墨盒中,称量约0.35-0.38 g的Se粒对称放入石墨盒中,再将石墨盒放入管式炉管内左侧,将阀门关紧,使用真空泵将管内的压强抽至50 Pa以下,再往管内通入氩气至0.1 Mpa。重复以上操作3次以排净管内的空气,最后将管式炉中充入氩气,压强为0.1 Mpa。待管式炉在右侧升温至560℃后,通入氩气调节管内的压强至0.16 MPa,然后移动管式炉至样品处,使样品在管式炉的恒温区位置,保持管式炉温度560 ℃、管内压力0.16 MPa的条件下硒化17 min,得到铜铟硒薄膜。
图6为刮涂制备的铜铟硒薄膜的SEM图像。从图中可以看到,用两步退火的前驱体薄膜制备的铜铟硒吸收层薄膜具有双层结构,上层由紧密堆积的大颗粒构成,没有任何空隙,薄膜表面的粗糙度较小,比较平整。下层是由紧密堆积的小颗粒构成,与上层界面接触十分紧密。致密且平整的上层薄膜有利于CdS缓冲层的沉积,形成异质结。且可以防止CdS缓冲层在薄膜内部的沉积,从而减少了分流通道,提高相应器件的短路电流密度。而上层和底层之间更好的接触可以减少界面复合,底层的大晶粒可以减少底层的晶界,从而改善太阳能电池的开路电压和填充因子。
对比例4 制备铜铟硒薄膜
将对比例1中一步退火形成的前驱体薄膜,按照实施例2的硒化条件进行硒化,得到铜铟硒薄膜,其薄膜的SEM图像如图7所示。
由一步退火前驱体薄膜制备的铜铟硒薄膜同样具有双层结构,但上层有大颗粒之间存在孔洞。在CBD过程中,上层的空隙可能导致溶液进入内部膜,导致CdS沉积在膜内,起到分流通道的作用。下层晶粒的尺寸比两步退火的铜铟硒薄膜要小,晶界更多,上下两层膜之间接触不够紧密,存在空隙,易造成电荷复合。
实施例5 组装太阳能电池
硒化反应结束后,将实施例2制备的铜铟硒吸收层薄膜应用于组装太阳能电池器件。器件的组装过程参照专利(CN 108231925B)。具体过程如下:将样品用(NH4)2S刻蚀15min后用超纯水冲洗干净,放入已经加入150 mL超纯水、28 mL氨水和22 mL的0.018 mol/LCdSO4水溶液和22 mL的0.75 mol/L硫脲水溶液的烧杯中并放入预先升温到65 ℃的水浴锅中反应16 min,制备成CdS缓冲层。接着采用磁控溅射仪溅射的方式沉积窗口层ZnO和ITO,ZnO溅射功率80 W,溅射时气体压力为0.5 Pa,溅射时间为12 min。ITO的溅射功率为120 W,溅射时气体压力为0.4 Pa,溅射时间为26 min。最后蒸镀50 nm的Ni和500 nm的Al作为电池阴极,蒸镀90 nm的MgF2作为减反层,即组装成铜铟硒薄膜太阳能电池。
图8为刮涂制备的铜铟硒薄膜组装成太阳能电池的电流密度-电压(J-V)特性曲线,参照《薄膜太阳电池的基础与应用-太阳能光伏发电的新发展》,对太阳能电池进行测试,具体测试过程如下:将制备的电池置于太阳能电池测试平台上,并将测试平台上的探针分别扎在电池的正极和负极,然后将探针的导线与数字源表Keithley 2400连接,打开计算机上配套的测试软件,在AAA太阳模拟器(CROWNTECH, Inc.)产生100 mW/cm2辐照度下(强度由NREL校准的Si参考电池校准),使用Keithley 2400源表测量J-V曲线。J-V测量在温度为300 K、湿度为40 %的空气中进行。所制备器件的光电转换效率达到了12.54 %,开路电压为488 mV,短路电流密度为39.80 mA·cm-2,填充因子为64.55 %。
综上所述,本发明解决现有技术中单纯地旋涂前驱体溶液制备铜铟硒薄膜所造成的材料利用率低、大面积制备均匀性差等问题,以及真空沉积技术存在的能耗高、成本高等问题,通过将极少的溶液加入到刮刀与钼玻璃基底之间的间隙中,利用刮刀对溶液的牵引作用将前驱体溶液均匀的涂布到钼玻璃基底上,再经两步退火处理得到均匀、表面平整的CuInS2前驱体薄膜,最后经过高温硒化反应可获得铜铟硒薄膜。本发明是基于专利(CN108231925B)的进一步改进,本发明中制备铜铟硒薄膜的工艺简单,所用溶液极少,极大的降低了材料的消耗,节约了成本,作为制备太阳能电池的材料,可获得超过12 %的光电转换效率,可应用于产业化制备大面积铜铟硒薄膜太阳能电池。
显然,上述实施例仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处在本发明创造的保护范围之中。

Claims (7)

1.一种制备铜铟硒薄膜的刮涂方法,其特征在于,包括以下步骤:
第一步,前驱体薄膜的制备
将含有Cu、In、S元素的前驱体溶液刮涂到钼玻璃上,形成一层前驱体湿膜,接着将前驱体湿膜在低温下退火,以除去薄膜中多余的溶剂来干燥薄膜,再将薄膜经过高温的热退火处理,得到表面平整、均一性良好的CuInS2前躯体薄膜;
第二步,制备铜铟硒薄膜
将CuInS2前躯体薄膜在管式炉中高温硒化形成铜铟硒薄膜。
2.根据权利要求1所述的制备铜铟硒薄膜的刮涂方法,其特征在于,所述的前驱体溶液中金属离子Cu+和In3+的总浓度为1.2-1.8 mol/L;前驱体溶液中Cu、In、S的摩尔比为1:1:4.4。
3.根据权利要求1所述的制备铜铟硒薄膜的刮涂方法,其特征在于,所述的CuInS2前驱体薄膜的制备方法如下:将清洗干净的钼玻璃固定到刮涂设备的基台上,设置基台温度50-100 ℃,设置刮刀移动速度2 mm/s,接着调节刮涂设备的刮刀位置使刮刀的刀尖与钼玻璃之间的间隙为0.2-0.6 mm;待基台温度上升到设定温度后,将前驱体溶液加入到间隙当中,每次刮涂的前驱体溶液用量为2-4 μL/cm2;并启动刮涂设备,刮刀在钼玻璃上刮出一层均匀的液膜;接着将带有液膜的钼玻璃转移至热台上退火,生成CuInS2薄膜;重复刮涂操作,得到不同厚度的CuInS2薄膜。
4.根据权利要求3所述的制备铜铟硒薄膜的刮涂方法,其特征在于,所述退火采用两步退火,具体为将刮涂的前驱体湿膜先放在160-200℃的热台上退火3-5min,以蒸干湿膜中多余的溶剂,然后将薄膜放在300-360℃的热台上退火1-3min,得到CuInS2薄膜。
5.基于权利要求1-4中任一种方法制备的CuInS2前驱体薄膜,进一步经过硒化后形成铜铟硒薄膜。
6.基于权利要求1-5所述的铜铟硒薄膜在制备太阳能电池上的应用。
7.根据权利要求6所述的应用,其特征在于,包括以下步骤:
步骤1,在铜铟硒薄膜上沉积CdS缓冲层;
步骤2,在CdS缓冲层上沉积ZnO/ITO窗口层;
步骤3,真空蒸镀Ni和Al作为阴极;
步骤4,真空蒸镀MgF2减反层。
CN202210391756.8A 2022-04-14 2022-04-14 一种制备铜铟硒薄膜的刮涂方法及其应用 Active CN114904744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210391756.8A CN114904744B (zh) 2022-04-14 2022-04-14 一种制备铜铟硒薄膜的刮涂方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210391756.8A CN114904744B (zh) 2022-04-14 2022-04-14 一种制备铜铟硒薄膜的刮涂方法及其应用

Publications (2)

Publication Number Publication Date
CN114904744A true CN114904744A (zh) 2022-08-16
CN114904744B CN114904744B (zh) 2023-07-04

Family

ID=82764709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210391756.8A Active CN114904744B (zh) 2022-04-14 2022-04-14 一种制备铜铟硒薄膜的刮涂方法及其应用

Country Status (1)

Country Link
CN (1) CN114904744B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090214763A1 (en) * 2008-02-27 2009-08-27 Korea Institute Of Science And Technology Preparation of thin film for solar cell using paste
KR20120009668A (ko) * 2010-07-20 2012-02-02 한국에너지기술연구원 급속열처리 공정을 사용한 cis계 화합물 박막의 제조방법 및 상기 cis계 화합물 박막을 이용한 박막 태양전지의 제조방법
CN102709381A (zh) * 2012-05-03 2012-10-03 北京工业大学 一种制备cis薄膜的方法
KR20120131535A (ko) * 2011-05-25 2012-12-05 한국에너지기술연구원 CIGS/CIS 나노입자의 셀렌화에 의한 치밀한 CIGSe/CISe 박막 제조방법
CN103337551A (zh) * 2013-05-28 2013-10-02 湘潭大学 一种不含碳层的CZTS或者CZTSe薄膜的非真空制备方法
CN103503170A (zh) * 2011-05-06 2014-01-08 原子能和代替能源委员会 刮涂铜铟基墨水的设备和方法
KR20140021805A (ko) * 2012-07-25 2014-02-21 한국에너지기술연구원 이성분계 나노입자를 포함하는 슬러리의 숙성 단계가 도입된 ci(g)s계 박막의 제조방법 및 그 방법에 의해 제조된 ci(g)s계 박막
US20140109966A1 (en) * 2012-10-24 2014-04-24 Korea Institute Of Science And Technology Bifacial thin film solar cell fabricated by paste coating method
CN105705596A (zh) * 2013-09-13 2016-06-22 纳米技术有限公司 用于薄膜光伏装置的无机盐-纳米粒子墨水及相关方法
CN108231925A (zh) * 2017-12-01 2018-06-29 南京邮电大学 一种高效cis/cigs太阳能电池的制备方法
CN111489958A (zh) * 2020-04-21 2020-08-04 哈尔滨理工大学 一种低温油墨法制备的铜铟镓硒吸收层
CN112531075A (zh) * 2020-11-24 2021-03-19 中山大学 一种基于分子式墨水刮涂制备柔性铜锌锡硫硒薄膜及其器件的方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090214763A1 (en) * 2008-02-27 2009-08-27 Korea Institute Of Science And Technology Preparation of thin film for solar cell using paste
KR20120009668A (ko) * 2010-07-20 2012-02-02 한국에너지기술연구원 급속열처리 공정을 사용한 cis계 화합물 박막의 제조방법 및 상기 cis계 화합물 박막을 이용한 박막 태양전지의 제조방법
CN103503170A (zh) * 2011-05-06 2014-01-08 原子能和代替能源委员会 刮涂铜铟基墨水的设备和方法
KR20120131535A (ko) * 2011-05-25 2012-12-05 한국에너지기술연구원 CIGS/CIS 나노입자의 셀렌화에 의한 치밀한 CIGSe/CISe 박막 제조방법
CN102709381A (zh) * 2012-05-03 2012-10-03 北京工业大学 一种制备cis薄膜的方法
KR20140021805A (ko) * 2012-07-25 2014-02-21 한국에너지기술연구원 이성분계 나노입자를 포함하는 슬러리의 숙성 단계가 도입된 ci(g)s계 박막의 제조방법 및 그 방법에 의해 제조된 ci(g)s계 박막
US20140109966A1 (en) * 2012-10-24 2014-04-24 Korea Institute Of Science And Technology Bifacial thin film solar cell fabricated by paste coating method
CN103337551A (zh) * 2013-05-28 2013-10-02 湘潭大学 一种不含碳层的CZTS或者CZTSe薄膜的非真空制备方法
CN105705596A (zh) * 2013-09-13 2016-06-22 纳米技术有限公司 用于薄膜光伏装置的无机盐-纳米粒子墨水及相关方法
CN108231925A (zh) * 2017-12-01 2018-06-29 南京邮电大学 一种高效cis/cigs太阳能电池的制备方法
CN111489958A (zh) * 2020-04-21 2020-08-04 哈尔滨理工大学 一种低温油墨法制备的铜铟镓硒吸收层
CN112531075A (zh) * 2020-11-24 2021-03-19 中山大学 一种基于分子式墨水刮涂制备柔性铜锌锡硫硒薄膜及其器件的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YING LIU ET.AL: "Synthesis and characteristics of Cu(In,Ga)Se2 thin films from nanoparticles by solvothermal method and selenisation process", 《MICRO & NANO LETTERS》 *
YING LIU ET.AL: "Synthesis and characteristics of Cu(In,Ga)Se2 thin films from nanoparticles by solvothermal method and selenisation process", 《MICRO & NANO LETTERS》, 10 August 2012 (2012-08-10), pages 1112 - 1116 *
龚元才等: "前驱体溶液法制备高效铜锌锡硫/铜铟镓硒薄膜太阳能电池", 《第五届新型太阳能电池学术研讨会》, pages 351 *

Also Published As

Publication number Publication date
CN114904744B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
CN102034898B (zh) 一种太阳电池用铜铟硫光电薄膜材料的制备方法
CN108598268B (zh) 环境条件下印刷制备平面异质结钙钛矿太阳电池的方法
KR101149474B1 (ko) 용액상 볼밀법을 이용한 cis계 또는 czts계 콜로이드 용액 및 이를 이용한 태양전지 광흡수층 cis계 또는 czts계 화합물 박막의 제조방법
CN112201725A (zh) 一种硒化锑薄膜太阳能电池的制备方法
CN101150151A (zh) 一种太阳能电池用铜铟硒薄膜的制备方法
WO2012161402A1 (en) Method of manufacturing cis-based thin film having high density
CN107134507B (zh) 具有梯度成分太阳能电池吸收层铜铟硫硒薄膜的制备方法
CN110165020B (zh) 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
CN113410340B (zh) CZTSSe薄膜太阳能电池吸收层改性方法
TW201327887A (zh) 光吸收層之改質方法
CN114904744B (zh) 一种制备铜铟硒薄膜的刮涂方法及其应用
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
CN102024858B (zh) 油墨、薄膜太阳能电池及其制造方法
CN114975653B (zh) 一种Zn(O,S)薄膜的制备方法及其应用
Zhu et al. New Route for Fabrication of High-Quality Zn (S, O) Buffer Layer at High Deposition Temperature on Cu (In, Ga) Se $ _2 $ Solar Cells
CN113078224A (zh) 透明导电玻璃铜铟硒薄膜太阳能电池器件及其制备方法与应用
CN112736161B (zh) 一种具有循环类量子阱结构的铜锌锡硫基薄膜前驱体及其制备方法
CN115101611B (zh) 一种基于AgSbS2的无机薄膜太阳能电池及其制备方法
CN110752272B (zh) 一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法
Ding et al. Fabrication of Buffer-Window Layer System for Cu (In, Ga) Se2 Thin Film Devices by Chemical Bath Deposition and Sol–Gel Methods
CN114988715B (zh) 一种铜锌锡硫薄膜的制备方法
Sun et al. Effects of Sb-doping on the grain growth of CIGS thin films fabricated by electrodeposition
CN113130711A (zh) 一种通过前驱体溶液进行铷掺杂提高cigs太阳能电池性能的方法
Jing et al. Selenisation optimization for nanoparticle based CIGSSe solar cells
Arnou et al. Solution-deposited CuIn (S, Se) 2 absorber layers from metal chalcogenides

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant