CN114904574A - 一种铂单原子/簇修饰的光敏化体系及制备方法和用途 - Google Patents

一种铂单原子/簇修饰的光敏化体系及制备方法和用途 Download PDF

Info

Publication number
CN114904574A
CN114904574A CN202210716855.9A CN202210716855A CN114904574A CN 114904574 A CN114904574 A CN 114904574A CN 202210716855 A CN202210716855 A CN 202210716855A CN 114904574 A CN114904574 A CN 114904574A
Authority
CN
China
Prior art keywords
cluster
sample
phytic acid
platinum monoatomic
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210716855.9A
Other languages
English (en)
Other versions
CN114904574B (zh
Inventor
施伟东
黄元勇
冯硕
贾玉璟
郭舒卉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202210716855.9A priority Critical patent/CN114904574B/zh
Publication of CN114904574A publication Critical patent/CN114904574A/zh
Priority to PCT/CN2022/123089 priority patent/WO2023245910A1/zh
Application granted granted Critical
Publication of CN114904574B publication Critical patent/CN114904574B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • B01J31/0258Phosphoric acid mono-, di- or triesters ((RO)(R'O)2P=O), i.e. R= C, R'= C, H
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及近红外光全分解水光催化剂,特指一种铂单原子/簇修饰的光敏化体系及制备方法和用途。首先采用原位螯合作用或静电吸附手段实现植酸镍配合物在氮化碳表面的构筑得到植酸镍/氮化碳复合体系,然后在近红外光的条件下通过光敏化作用在植酸镍/氮化碳复合体系中选择性地光照沉积铂单原子/簇在氮化碳表面上得到光催化剂,并将其用于近红外光全分解水反应。本发明的优点在于不需要额外高温和额外电场以及不需要昂贵复杂的设备即可获得铂单原子/簇,而且所得到的催化活性位点不是随意分布的,而是与催化反应过程一一相对应的,首次通过低能耗的近红外光实现了铂单原子/簇在光敏化体系中的负载。

Description

一种铂单原子/簇修饰的光敏化体系及制备方法和用途
技术领域
本发明涉及近红外光全分解水光催化剂,特指一种铂单原子/簇修饰的光敏化体系及制备方法和用途。利用原位光照沉积的方法在植酸镍/氮化碳复合体系中选择性地将铂单原子/簇原位光沉积在氮化碳上,可用于近红外光(波长大于800nm以上)光催化全分解水。
背景技术
近年来,在能源枯竭问题日趋紧张以及环境问题日趋严峻的大背景下,利用光催化全分解水制取氢气作为绿色燃料被认为是未来可再生能源技术应用的基础(D.M.Zhao,Y.Q.Wang,C.L.Dong,Y.C.Huang,J.Chen,F.Xue,S.H.Shen,L.J.Guo,Nat.Energy 2021,6,388-397)。在实际应用中,充分利用太阳光以获得较高的效率仍然是一个巨大的挑战。根据太阳光响应的范围,目前已开发的能全分解水的材料基本上都是紫外光或者可见光响应的半导体材料,绝大部分光催化剂不能在近红外光条件下进行全分解水反应。从太阳光谱组成来看,近红外光区达50%以上(Z.C.Lian,M.Sakamoto,J.Vequizo,C.Ranasinghe,A.Yamakata,T.Nagai,K.Kimoto,Y.Kobayashi,N.Tamai,T.Teranishi,J.Am.Chem.Soc.2019,141,2446-2450.)。因此,为最大限度利用太阳能,开发近红外光响应的光催化全分解水光催化剂成为当前化学反应工程领域研究的热点。
近年来,国内外学者们围绕着近红外光全分解水光催化剂开展了系列研究工作,取得了一些突破性研究进展。所报道的催化剂设计思路基本可以分为能带调控和异质复合两类。能带调控思路通过能带结构的设计和调控,直接构建近红外光响应的窄带隙半导体催化剂。2017年华东理工大学杨化桂教授等人报道的氮化钨(WN)光催化剂带隙为1.55eV,可以实现近红外光(λ=765nm)全分解水性能(Y.L.Wang,T.Nie,Y.H.Li,X.L.Wang,L.R.Zheng,A.P.Chen,X.Q.Gong,H.G.Yang,Angew.Chem.Int.Ed.2017,129,7538-7542.)。但由于自身带隙中存在杂质能级,往往使得该类窄带隙半导体催化剂催化活性表现较不理想,稳定性也较差(Y.H.Sang,Z.H.Zhao,M.W.Zhao,P.Hao,Y.H.Leng,H.Liu,Adv.Mater.2015,27,363-369.)。异质复合思路主要是通过在紫外或可见光响应的宽带隙催化剂上复合构建近红外光响应的助催化剂,实现近红外光条件下的全分解水。由于催化剂体系的调控空间较大、性能优异,这种思路已成为当前主流的研究思路。2020年中国科学院兰州化学物理研究所吕功煊教授等人率先利用NaYF4–Yb3+/Er3+稀土元素上转换效应与半导体CdS和rGO复合实现了特定波长在980nm的近红外光全分解水性能(W.Gao,Y.Q.Wu,G.X.Lu,Catal.Sci.Technol.2020,10,2389-2397.)。与稀土元素上转换光催化体系相比,窄带隙半导体复合光催化体系不仅价格更为低廉,而且能够吸收更宽范围的近红外光,最近也更为受到关注。所以之后,2021年吕功煊教授等人首次利用窄带隙半导体磷化硼(BP)与C3N4复合实现了λ=730nm近红外条件下的全分解水性能(B.Tian,Y.Q.Wu,G.X.Lu,Appl.Catal.B-Environ.2021,280,119410.)。此外,2021年上海电力大学李和兴教授等人构建W2N窄带隙半导体与C和TiO2一起复合的光催化体系实现了波长大于700nm的近红外光全分解水性能(S.Q.Gong,J.C.Fan,V.Cecen,C.P.Huang,Y.L.Min,Q.J.Xu,H.X.Li,Chem.Eng.J.2021,405,126913.)。2020年苏州大学康振辉教授等人将WO2半导体(带隙为0.6eV)与碳量子点和NaxWO3复合,首次实现了波长大于760nm的近红外光全分解水性能(J.Zhao,C.A.Liu,H.B.Wang,Y.J.Fu,C.Zhu,H.Huang,F.Liao,Y.Liu,M.W.Shao,Z.H.Kang,Catal.Today 2020,340,152-160.)。尽管上述工作已经极大地推动了该研究领域迅速发展,但在长波长(特别是800nm以上)近红外光响应全分解水光催化剂体系上仍存在活性低、稳定性差等问题。因此,开发800nm以上近红外光响应的高效稳定全分解水光催化剂体系仍然是一个巨大挑战。
对于半导体要实现波长大于800nm的全分解水性能是非常具有挑战性的工作,不仅需要理论带隙窄于1.55eV,而且导价带必须横跨水分解的氧化还原电位(1.23eV),这几乎到达了半导体改性的极限。因此,需要寻找其他在近红外区具有光电响应的材料来替代这类窄带隙半导体。近年来,金属有机配合物光敏化剂在近红外区表现出独特的光物理和化学特征,因此在水分解领域颇具潜力(Y.J.Yuan,Z.T.Yu,D.Q.Chen,Z.G.Zou,Chem.Soc.Rev.2017,46,603-631.)。比如:2015年中国科学院长春光学精密机械与物理研究所孔祥贵教授等人首次结合有机铂光敏化剂在过硫酸盐作牺牲剂的情况实现了λ=980nm水分解产氧半反应(X.M.Liu,H.C.Chen,X.G.Kong,Y.L.Zhang,L.P.Tu,Y.L.Chang,F.Wu,T.T.Wang,J.N.H.Reek,A.M.Brouwer,H.Zhang,Chem.Commun.2015,51,13008-13011.)。2014年,北京大学李兴国教授课题组利用有机锌配体与石墨相氮化碳结合构建的光催化体系,首次在乳酸作牺牲剂的条件下实现了在近红外光下(λ=700nm)的水分解产氢性能(X.H.Zhang,L.J.Yu,C.S.Zhuang,T.Y.Peng,R.J.Li,X.G.Li,ACS Catal.2014,4,162.)。最近,我们课题组利用有机镍配体(植酸镍)与石墨相氮化碳结合构建的光催化体系,首次在甲醇作牺牲剂的条件下实现了波长大于900nm的光催化水分解产氢性能(Y.Y.Huang,Y.P.Jian,L.H.Li,D.Li,Z.Y.Fang,W.X.Dong,Y.H.Lu,B.F.Luo,R.J.Chen,Y.C.Yang,M.Chen,W.D.Shi,Angew.Chem.Int.Ed.2021,60,5245-5249.)。受到之前这些工作的启发,利用金属有机配合物光敏化剂去实现近红外光下的全分解水性能理论上是可行的。然而目前金属有机配合物光敏化剂还面临着在近红外光条件下光电荷分离效果差的问题。最近,负载贵金属单原子(noble metal single atom:NM-SA)助催化剂可以有效促进光催化剂的光电荷分离效率,从而提高全分解水的性能。比如:武汉大学化学与分子科学学院彭天右教授等人通过级联电荷转移和Pt单原子催化位点,将卟啉共轭聚合物接枝到BiVO4上,用于高效的Z-Scheme全水分解(J.M.Wang,L.Xu,T.X.Wang,R.J.Li,Y.X.Zhang,J.Zhang,T.Y.Peng,Adv.Energy Mater.2021,11,2003575.)。陕西科技大学环境科学与工程学院王传义教授等人在CdS纳米催化剂上负载了Pd单原子助催化剂从而实现了高效地全分解水性能(W.Li,X.S.Chu,F.Wang,Y.Y.Dang,X.Y.Liu,T.H.Ma,J.Y.Li,C.Y.Wang,Appl.Catal.B-Environ.2022,304,121000)。考虑到金属有机配合物光敏化剂和贵金属单原子的特点和优势,如果使用贵金属单原子助催化剂来促进近红外响应的金属有机配合物光敏化剂的光电荷分离效率,就有可能能够实现近红外光(λ>800nm)全分解水的性能。
发明内容
本发明的目的在于提供一个新的方向和思路去合成近红外光(λ>800nm)全分解水的光催化剂。首先采用原位螯合作用或静电吸附手段实现植酸镍(PA-Ni)配合物在氮化碳(PCN)表面的构筑得到植酸镍/氮化碳复合体系,然后在近红外光(λ>800nm)的条件下通过光敏化作用在植酸镍/氮化碳复合体系中选择性地光照沉积铂单原子/簇(Pt-SAC)在氮化碳表面上得到光催化剂,并将其用于近红外光(λ>800nm)全分解水反应。
本发明具体的技术方案,包括以下几个步骤:
步骤1:尿素研磨均匀放入坩埚内,然后置于马弗炉中煅烧得到样品A。
所述的尿素质量为10.0g,研磨时间为5min,坩埚容量为50.0mL,升温速率为2.3℃/min,煅烧温度为550℃,煅烧时间为3h。
步骤2:量取植酸溶液,向植酸溶液中加入无水乙醇,得到植酸和乙醇的混合溶液B。
所述的植酸溶液的浓度为70wt%,植酸溶液与无水乙醇的体积比为1:4。
步骤3:称取四水醋酸镍置于烧杯中,然后加入无水乙醇和样品A。接下来超声使得四水醋酸镍完全溶解,然后加入已配置好的植酸/乙醇的混合溶液B,搅拌、离心,乙醇洗涤,最后烘箱中烘干,得到样品C记为PA-Ni1.1@PCN。
所述四水醋酸镍、无水乙醇、样品A和植酸/乙醇的混合溶液B的比例为1.1mmol:50mL:200mg:25mL,超声时间为15min,搅拌时间为6h,离心转数7000r/min,洗涤5遍,烘箱温度为60℃。
步骤4:向样品C加入超纯水,然后超声待样品C分散均匀,接着加入氯铂酸溶液,并抽真空排除溶液中的空气,在λ>800nm的近红外光条件下光照沉积5h,得到的催化剂经离心、乙醇洗涤、干燥后得到的样品记为PA-Ni1.1@PCN/Pt5hNIR
样品C、超纯水和氯铂酸溶液的比例为1g:50mL:2.68mL,氯铂酸溶液的浓度为1.15×10-2M,离心转数为7000r/min,乙醇洗涤5遍,干燥温度为60℃。
本发明的优点在于不需要额外高温和额外电场以及不需要昂贵复杂的设备即可获得铂单原子/簇,而且所得到的催化活性位点不是随意分布的,而是与催化反应过程一一相对应的。首次通过低能耗的近红外光实现了铂单原子/簇在光敏化体系中的负载。
附图说明
图1为本发明实施例中样品的扩展X射线吸收精细结构谱,从图中可以看到在R空间中展示出两个主要的峰,分别是2.04和
Figure BDA0003709920990000041
其分别归因于Pt-N配位和Pt-Pt键(形成了铂簇)。
图2为本发明实施例中所制备样品的紫外可见漫反射吸收光谱(UV-Vis),从图上可以看到PA-Ni1.1@PCN/Pt5hNIR三元复合体系表现出良好的近红外光吸收(λ>800nm)。
图3为本发明实施例中PA-Ni1.1@PCN/Pt5hNIR三元复合体系的近红外全分解水性能图。从图中可以看到该体系在波长大于800nm的近红外光下表现出良好的全分解水性能,其中在24h后所产生的的氢气和氧气的量分别是1.4μmol和0.65μmol,其非常接近理论上水分解产氢产氧的摩尔比。持续照射48h光催化活性并没有衰减,表明催化剂具有很好的稳定性。
图4为本发明实施例中PA-Ni1.1@PCN/Pt5hNIR三元复合体系在同位素水(H2 18O,98%)中使用近红外光(λ>800nm)照射48h后的18O-同位素标记图。从图中可以看到18O2作为主要地信号,这意味着O2来源于水分解。
具体实施方式
下面结合实施例对本发明进行详细说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。
实施例1
步骤1:10.0g尿素研磨5min后均匀放入50.0mL坩埚内,然后置于马弗炉以550℃,2.3℃/min,煅烧3h,得到样品A。
步骤2:量取5.0mL的植酸溶液(70wt%)加入20mL的无水乙醇,得到植酸/乙醇混合溶液B。
步骤3:称取1.1mmol的四水醋酸镍置于烧杯中,然后加入50mL的无水乙醇和200mg的样品A。接下来超声15min待四水醋酸镍完全溶解,然后加入25mL已配置好的植酸/乙醇混合溶液B。充分搅拌6h。然后7000r/min进行离心,并用乙醇洗涤5遍,最后在60℃烘箱中烘干,得到样品C记为PA-Ni1.1@PCN。
步骤4:将样品C加入50mL的超纯水,然后超声5min待样品C分散均匀,接着加入2.68mL浓度为1.15×10-2M的氯铂酸溶液,并抽真空数次排除溶液中的空气,在近红外光(λ>800nm)的条件下光照沉积5h后所得到的催化剂经7000r/min进行离心、乙醇洗涤5遍、60℃烘箱中干燥得到的样品记为PA-Ni1.1@PCN/Pt5hNIR
通过铂单原子/簇(Pt-SAC)促进PA-Ni/PCN光敏化体系中光生电荷的分离,从而实现在波长大于800纳米以上的光催化全分解水性能,而且连续照射48h光催化活性并没有衰减,具有很好的稳定性。

Claims (6)

1.一种铂单原子/簇修饰的光敏化体系的制备方法,其特征在于,具体步骤如下:
步骤1:尿素研磨均匀放入坩埚内,然后置于马弗炉中煅烧得到样品A;
步骤2:量取植酸溶液,向植酸溶液中加入无水乙醇,得到植酸和乙醇的混合溶液B;
步骤3:称取四水醋酸镍置于烧杯中,然后加入无水乙醇和样品A;接下来超声使得四水醋酸镍完全溶解,然后加入已配置好的植酸/乙醇的混合溶液B,搅拌、离心,乙醇洗涤,最后烘箱中烘干,得到样品C记为PA-Ni1.1@PCN;
步骤4:向样品C加入超纯水,然后超声待样品C分散均匀,接着加入氯铂酸溶液,并抽真空排除溶液中的空气,在λ>800nm的近红外光条件下光照沉积5h,得到的催化剂经离心、乙醇洗涤、干燥后得到的样品为铂单原子/簇修饰的光敏化体系。
2.如权利要求1所述的一种铂单原子/簇修饰的光敏化体系的制备方法,其特征在于,步骤1中,所述的尿素质量为10.0g,研磨时间为5min,坩埚容量为50.0mL,升温速率为2.3℃/min,煅烧温度为550℃,煅烧时间为3h。
3.如权利要求1所述的一种铂单原子/簇修饰的光敏化体系的制备方法,其特征在于,步骤2中,所述的植酸溶液的浓度为70wt%,植酸溶液与无水乙醇的体积比为1:4。
4.如权利要求1所述的一种铂单原子/簇修饰的光敏化体系的制备方法,其特征在于,步骤3中,所述四水醋酸镍、无水乙醇、样品A和植酸/乙醇的混合溶液B的比例为1.1mmol:50mL:200mg:25mL,超声时间为15min,搅拌时间为6h,离心转数7000r/min,洗涤5遍,烘箱温度为60℃。
5.如权利要求1所述的一种铂单原子/簇修饰的光敏化体系的制备方法,其特征在于,步骤4中,样品C、超纯水和氯铂酸溶液的比例为1g:50mL:2.68mL,氯铂酸溶液的浓度为1.15×10-2M,离心转数为7000r/min,乙醇洗涤5遍,干燥温度为60℃。
6.如权利要求1-5任一所述制备方法制备的铂单原子/簇修饰的光敏化体系的用途,其特征在于,作为光催化剂用于λ>800nm的近红外光下全分解水反应。
CN202210716855.9A 2022-06-23 2022-06-23 一种铂单原子/簇修饰的光敏化体系及制备方法和用途 Active CN114904574B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210716855.9A CN114904574B (zh) 2022-06-23 2022-06-23 一种铂单原子/簇修饰的光敏化体系及制备方法和用途
PCT/CN2022/123089 WO2023245910A1 (zh) 2022-06-23 2022-09-30 一种铂单原子/簇修饰的光敏化体系及制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210716855.9A CN114904574B (zh) 2022-06-23 2022-06-23 一种铂单原子/簇修饰的光敏化体系及制备方法和用途

Publications (2)

Publication Number Publication Date
CN114904574A true CN114904574A (zh) 2022-08-16
CN114904574B CN114904574B (zh) 2023-10-10

Family

ID=82772206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210716855.9A Active CN114904574B (zh) 2022-06-23 2022-06-23 一种铂单原子/簇修饰的光敏化体系及制备方法和用途

Country Status (2)

Country Link
CN (1) CN114904574B (zh)
WO (1) WO2023245910A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245910A1 (zh) * 2022-06-23 2023-12-28 江苏大学 一种铂单原子/簇修饰的光敏化体系及制备方法和用途
CN117772261A (zh) * 2024-02-27 2024-03-29 南开大学 g-C3N4支撑的PtCo双原子光催化剂作为氨硼烷水解产氢催化剂的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180185825A1 (en) * 2015-06-23 2018-07-05 South China University Of Technology Low-platinum catalyst based on nitride nanoparticles and preparation method thereof
CN111330638A (zh) * 2020-02-27 2020-06-26 江苏大学 一种近红外响应的光敏化剂配体及制备方法和用途
CN113413907A (zh) * 2021-07-19 2021-09-21 浙江省科创新材料研究院 一种复配型近红外光光催化剂及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108479841B (zh) * 2018-04-17 2020-09-22 天津大学 一种复合助催化剂修饰的氮化碳基光催化剂、其制备方法及用途
JP2021133326A (ja) * 2020-02-28 2021-09-13 住友金属鉱山株式会社 光触媒粒子及びその製造方法、並びに光触媒粒子を用いた水素と酸素の製造方法
CN114377724B (zh) * 2022-01-27 2023-07-28 山东大学 卤化物钙钛矿基铂单原子光催化材料及其制备方法与应用
CN114904574B (zh) * 2022-06-23 2023-10-10 江苏大学 一种铂单原子/簇修饰的光敏化体系及制备方法和用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180185825A1 (en) * 2015-06-23 2018-07-05 South China University Of Technology Low-platinum catalyst based on nitride nanoparticles and preparation method thereof
CN111330638A (zh) * 2020-02-27 2020-06-26 江苏大学 一种近红外响应的光敏化剂配体及制备方法和用途
CN113413907A (zh) * 2021-07-19 2021-09-21 浙江省科创新材料研究院 一种复配型近红外光光催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUANYONG HUANG, ET AL: "A NIR-Responsive Phytic Acid Nickel Biomimetic Complex Anchored on Carbon Nitride for Highly Efficient Solar Hydrogen Production" *
黄元勇: "氮化碳基光催化剂材料的制备及光解水产氢性能的研究" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245910A1 (zh) * 2022-06-23 2023-12-28 江苏大学 一种铂单原子/簇修饰的光敏化体系及制备方法和用途
CN117772261A (zh) * 2024-02-27 2024-03-29 南开大学 g-C3N4支撑的PtCo双原子光催化剂作为氨硼烷水解产氢催化剂的应用
CN117772261B (zh) * 2024-02-27 2024-04-26 南开大学 g-C3N4支撑的PtCo双原子光催化剂作为氨硼烷水解产氢催化剂的应用

Also Published As

Publication number Publication date
WO2023245910A1 (zh) 2023-12-28
CN114904574B (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
Shi et al. Rare‐earth‐based metal–organic frameworks as multifunctional platforms for catalytic conversion
CN114904574A (zh) 一种铂单原子/簇修饰的光敏化体系及制备方法和用途
CN104549500B (zh) 一种非金属液相掺杂制备B掺杂g-C3N4光催化剂的方法
CN108067281B (zh) 多孔g-C3N4光催化剂及其制备方法和应用
Kong et al. A novel amorphous CoSn x O y decorated graphene nanohybrid photocatalyst for highly efficient photocatalytic hydrogen evolution
CN109876843B (zh) 铜合金修饰二氧化钛/氮化碳异质结光催化剂及制备方法
CN103521252A (zh) 氮掺杂石墨烯复合半导体纳米粒子的光催化剂及制备方法
CN111871465B (zh) 一种双配体金属有机骨架光催化剂及其制备方法
CN109364933A (zh) 一种铜-铋/钒酸铋复合光催化剂的制备和应用
CN111790408B (zh) 一种铋/锑基钙钛矿、光催化材料及其制备方法和应用
CN111151246A (zh) 一种金原子/二氧化钛复合材料、其制备方法及用途
CN114950402A (zh) TiO2/CeO2异质结光催化剂及其制备方法
CN110152701B (zh) 一种Bi2O2CO3/Bi2WO6:Yb3+、Er3+光催化剂及其制备方法和应用
CN114618537A (zh) 一种红磷/钛酸锶异质结光催化剂及制备方法及应用
CN112588324B (zh) 一锅法制备复合光催化剂CdS/ZIF-8的方法及其应用
Pichaimuthu et al. Inserting Co and P into MoS 2 photocathodes: enhancing hydrogen evolution reaction catalytic performance by activating edges and basal planes with sulfur vacancies
CN110026224A (zh) 一种四氧化三钴修饰介孔氮化碳纳米复合材料的制备方法
CN113600221A (zh) 一种Au/g-C3N4单原子光催化剂及其制备方法和应用
CN116173987A (zh) CdIn2S4/CeO2异质结光催化剂及其制备方法和应用
CN113413907B (zh) 一种复配型近红外光光催化剂及其制备方法和应用
CN112007663B (zh) 一种MoS2@CrOx/La,Al-SrTiO3/CoOOH光催化剂及制备方法
CN114570385A (zh) 一种太阳光催化水分解制氢制氧半导体催化剂的制备方法
CN111617778B (zh) 一种水热合成花棒状的硫铟锌光催化剂的制备方法
CN113797940A (zh) 一种硒化钴石墨氮化碳复合材料及其制备方法和应用
CN113976157A (zh) 一种三维多孔原位碳掺杂g-C3N4催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant