CN114904535A - 一种活性优于天然漆酶的纳米酶制备方法 - Google Patents

一种活性优于天然漆酶的纳米酶制备方法 Download PDF

Info

Publication number
CN114904535A
CN114904535A CN202210443690.2A CN202210443690A CN114904535A CN 114904535 A CN114904535 A CN 114904535A CN 202210443690 A CN202210443690 A CN 202210443690A CN 114904535 A CN114904535 A CN 114904535A
Authority
CN
China
Prior art keywords
manganese
carbon
cobalt
nanoenzyme
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210443690.2A
Other languages
English (en)
Other versions
CN114904535B (zh
Inventor
穆建帅
杨晓婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Normal University
Original Assignee
Tianjin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Normal University filed Critical Tianjin Normal University
Priority to CN202210443690.2A priority Critical patent/CN114904535B/zh
Publication of CN114904535A publication Critical patent/CN114904535A/zh
Application granted granted Critical
Publication of CN114904535B publication Critical patent/CN114904535B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Library & Information Science (AREA)
  • Plasma & Fusion (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

本发明公开了一种活性优于天然漆酶的纳米酶制备方法。所述纳米酶的制备通过共沉淀和高温煅烧法合成。以硝酸钴、硝酸锰和二甲基咪唑为原料合成了高活性的钴锰/碳纳米酶。该方法制备得到的钴锰/碳纳米酶可通过氧气催化氧化酚类化合物,显示出优异的漆酶催化活性。该纳米酶的比活力高于市场所售天然漆酶(来源于云芝)一个数量级,是目前国内外报道的最高活性纳米漆酶。本发明具有合成简单、成本低廉、高活性和易储存等优点。

Description

一种活性优于天然漆酶的纳米酶制备方法
技术领域
本发明属于环保新材料技术领域,涉及纳米酶的制备,尤其涉及一种具有超高漆酶活性的纳米酶制备方法。所述纳米酶比活力高于市场所售天然漆酶(来源于云芝),大大超过目前国内外报道的其它纳米酶。该纳米酶超高的酶学活性和低廉的成本优势,使其在环境污染物去除等环保领域具有巨大的应用价值。
背景技术
天然酶能有效催化生命体中的化学反应,是一种重要的生物催化剂。它具有催化效率高、选择性强等优点,在生物、医学、环境、化学等领域有广泛的应用。然而,大多数天然酶属于蛋白质,在强酸碱或高温下很容易灭活,并且很容易被水解,加上成本高、制备困难等问题严重制约了天然酶的实际应用( P. Zhang, D. Sun, A. Cho, S. Weon, S. Lee,J. Lee, et al. Nat. Commun., 2019, 10, 940;J. Wu, X. Wang, Q. Wang, Z. Lou,S. Li, Y. Zhu, et al. Chem. Soc. Rev., 2019, 48, 1004e1076)。
近年来人们开发了一系列酶模拟物,称为人工酶。在这些人工酶中,纳米酶因其优良的催化活性、性能易调控、高稳定性和低成本等特点而受到广泛的关注(M. Lu, B. Li,L. Guan, K. Li and Y. Lin, ACS Sustainable Chem. Eng., 2019, 7, 15471-15478;H. Wei, E. Wang, Chem. Soc. Rev. 2013, 42, 6060-6093)。
目前已经报道出金属氧化物、贵金属、碳基和氮化碳等纳米材料,显示出过氧化物酶、氧化酶、超氧化物歧化酶和过氧化氢酶性质,且被广泛应用于各个领域。特别是金属纳米材料因其独特的电子结构和优良的酶模拟性能而被广泛研究。然而,大多数纳米颗粒有较高的表面能,催化过程中易团聚,进而导致活性降低。因此研发一种高活性高稳定的纳米酶是很有必要的(X.Y. Yu, Y. Feng, Y. Jeon, B. Guan, X.W. Lou, U. Paik, Adv. Mater., 2016, 28, 9006–9011;T. Zhan, J. Kang, X. Li, L. Pan, G. Li and W.Hou, Sens. Actuators, B, 2018, 255, 2635-2642;S. Oh, S. Lee and M. Oh, ACS Appl. Mater. Interfaces, 2020, 12, 18625-18633.)。
本专利制备的钴锰/碳纳米酶由C层包裹的钴锰双金属组成,表面包裹的C层使其分散性更好,负载的钴锰双金属大幅度提高了其催化活性(3.85 U/mg)。催化比活力远高于天然漆酶(来源于云芝,≥0.5 U/mg,阿拉丁试剂)。
综上所述,我们通过包裹碳层提高了材料的分散性;钴锰双金属协同催化提高了漆酶活性;综合利用以上两策略最终得到一种优于天然漆酶的钴锰/碳纳米酶。
发明内容
本发明目的在于解决目前面临的纳米漆酶研究少且活性低的问题,提供一种具有高活性钴锰/碳纳米酶的制备方法。
为达到上述目的,本发明所采用的技术方案是:
一种具有高活性钴锰/碳纳米酶的制备方法,其特征在于按如下的步骤进行:
(1)分别将六水硝酸钴和硝酸锰水溶液(50 wt%),二甲基咪唑溶于两份等体积的甲醇中,并在室温下搅拌10 min;然后将硝酸钴和硝酸锰的混合溶液用分液漏斗以1滴/秒的流速滴入二甲基咪唑的溶液中,并在室温下搅拌10 min,之后在室温下放置24 h,最后得到紫色物质。所述六水硝酸钴为1.2797~2.3280 g,所述硝酸锰水溶液为0~1.288 mL,所述二甲基咪唑为2.6272 g,所述甲醇为100 mL,所述硝酸锰与硝酸钴实际质量比为0:1~0.800:1;
(2)将得到的紫色溶液使用离心机离心分离固体沉淀物,并用甲醇洗涤3次,最后在真空干燥箱中烘干得到锰掺杂的ZIF-67固体;所述离心机转速为8500~15000 rpm,所述离心时间为3~10 min;
(3)将所得样品放入管式炉中,氮气氛围中进行碳化,在600~900℃保持3 h,升温速率为2~5 ℃/min,冷却至室温,取出所得粉末。
本发明所述具有高活性钴锰/碳纳米酶的制备方法,其特征在于步骤(1)所述六水硝酸钴为1.5124g,所述硝酸锰水溶液为1.001 mL,所述硝酸锰与硝酸钴实际质量比为0.526:1。
本发明所述具有高活性的钴锰/碳纳米酶的制备方法,其特征在于,所述离心机转速为14800 rpm,所述离心时间为10 min。
本发明所述具有高活性的钴锰/碳纳米酶的制备方法,其特征在于,所述温度800℃,升温速率为5℃/min。
本发明进一步公开了采用所述方法制备的具有高活性的钴锰/碳纳米酶在用于表面包裹碳层以及负载双金属方面的应用;所述表面包裹碳层以及负载双金属的应用指的是:催化氧气高效氧化2,4-二氯苯酚,提高了漆酶稳定性和催化活性。实验结果显示:成功制备出了具有高活性的钴锰/碳材料,钴锰双金属均匀分散。其漆酶活性大大增加,比活力已高于天然漆酶,远超目前报道的其它纳米漆酶。
本发明更加详细的描述如下:
一种具有高活性钴锰/碳纳米酶的制备方法,包括如下步骤:
(1)分别将六水硝酸钴和硝酸锰水溶液(50 wt%),二甲基咪唑溶于等体积的甲醇中,并在室温下搅拌10 min;然后将硝酸钴和硝酸锰的混合溶液用分液漏斗以1滴/ 1 s的流速滴入二甲基咪唑的溶液中,并在室温下搅拌10 min,之后在室温下放置24 h,最后得到紫色物质;
(2)将得到的紫色溶液使用离心机离心分离固体沉淀物并用甲醇洗涤3次,最后在真空干燥箱中烘干得到锰掺杂的ZIF-67固体;
(3)将所得样品放入管式炉中,氮气氛围中进行碳化,保持一定升温速率,在高温下保持3 h,然后冷却至室温,取出所得粉末。
进一步,步骤(1)所述锰掺杂的ZIF-67固体粉末为,所述六水硝酸钴为1.2797~2.3280g,所述硝酸锰水溶液为0~1.288 mL,所述二甲基咪唑为2.6272g,所述甲醇为100mL。
进一步,步骤(1)所述六水硝酸钴为1.5124g ,所述硝酸锰水溶液为1.001mL ,所述硝酸锰与硝酸钴实际质量比为0.526:1。
进一步,步骤(2)所述离心机转速和离心时间,优选转速14800 rpm,离心时间10min。
进一步,步骤(3)所述温度和升温速率,优选温度800℃,升温速率为5℃/min。
本发明主要解决了目前纳米漆酶研究较少且活性较低的问题,重点考察了硝酸钴、硝酸锰与二甲基咪唑质量比对材料性能的影响,主要的难点在于通过制备一种表面覆盖碳层并负载双金属的材料,实现了双金属的良好分散性和协同催化,进而提高了其漆酶活性。
本发明公开的具有高活性钴锰/碳纳米酶的制备方法与现有技术相比所具有的积极效果在于:
1.本发明提供的钴锰/碳纳米酶的制备方法,合成路线简单,重复性好,稳定性高。
2.相对于天然漆酶,钴锰/碳纳米酶因具有磁性,便于回收,可重复使用。
3.制备的钴锰/碳纳米酶,表面具有碳层,改善了钴锰双金属的分散性,极大提高了酶活性。催化比活力高达3.85 U/mg,超过了天然漆酶(来源于云芝,≥0.5 U/mg,阿拉丁试剂)。远超目前报道的其它纳米漆酶(例如CH-Cu nanozymes,0.02 U/mg,J. H. Wang, R.L. Huang, W. Qi, R. X. Su, B. P. Binks and Z. M. He, Applied Catalysis B- Environmental, 2019, 254, 452-462)。
4.钴锰/碳纳米酶作为一种新型的模拟漆酶,可代替天然酶,应用于食品工业、分析检测和污染物处理等领域。和天然漆酶相比(例如阿拉丁试剂,214元100 mg),材料价格可降低约100倍,极大地降低了应用成本。
附图说明
图1为制备的高活性钴锰/碳纳米酶的TEM图;
图2为制备的高活性钴锰/碳纳米酶的元素分布图;其中a为C元素分布,b为O元素分布,c为Co元素分布,d为Mn元素分布;
图3为制备的高活性钴锰/碳纳米酶的XRD图;
图4为制备的高活性钴锰/碳纳米酶的BET图;
图5为高活性钴锰/碳纳米酶催化氧化2,4-DP的UV-Vis图;
图6为不同锰含量对钴锰/碳纳米酶活性大小的影响;
图7为pH对高活性钴锰/碳纳米酶催化活性的影响,其中a:pH 3-8;b:细化pH 6-7;
图8为最佳钴锰/碳纳米酶比活力测试图;
图9 为高活性钴锰/碳纳米酶应用于2,4-DP 的降解图,其中a;不同时间下高效液相色谱图;b:不同时间下降解率。
具体实施方式
下面通过具体的实施方案叙述本发明。除非特别说明,本发明中所用的技术手段均为本领域技术人员所公知的方法。另外,实施方案应理解为说明性的,而非限制本发明的范围,本发明的实质和范围仅由权利要求书所限定。对于本领域技术人员而言,在不背离本发明实质和范围的前提下,对这些实施方案中的物料成分和用量进行的各种改变或改动也属于本发明的保护范围。本发明所用原料及试剂均有市售。在本说明书中,术语“2,4-DP”是化合物“2,4-二氯苯酚”的缩写名称,“4-AP”是化合物“4-氨基安替比林”的缩写名称二者可互换使用。本发明所用反应物、试剂均为市售。
实施例1
本发明的一种具有高活性的钴锰/碳纳米酶的制备方法,包括如下步骤:
(1)分别将1.5124g的六水硝酸钴和1.001 mL的硝酸锰水溶液(50 wt%),2.6272 g的二甲基咪唑溶于两份100 mL的甲醇中,并在室温下搅拌10 min;然后将硝酸钴和硝酸锰的混合溶液用分液漏斗以1滴/ 1 s的流速滴入二甲基咪唑的溶液中,并在室温下搅拌10min,之后在室温下放置24 h,最后得到紫色物质;
(2)将得到的紫色溶液使用离心机以14800 rpm离心10 min,分离固体沉淀物并用甲醇洗涤3次,最后在60℃的真空干燥箱中烘干得到锰掺杂的ZIF-67固体;
(3)将所得样品放入管式炉中,氮气氛围中进行碳化,在800℃保持3 h,升温速率为5℃/min,冷却至室温,取出所得粉末。
获得的产物经TEM表征,结果显示材料形貌为多面体,表面覆盖碳层,金属纳米颗粒负载均匀分布在碳层上(图1);元素分布测试图表明Co和Mn均匀分布(图2);经XRD测试,具有金属Co和无定型C的衍射峰,说明Mn很好的分布在钴锰/碳材料里(图3);经N2吸附脱附等温线确认钴锰/碳纳米酶具有较大的BET比表面积,BET表面积为297.2 m2/g(图4)。
实施例2
本发明的一种钴/碳纳米酶的制备方法,包括如下步骤:
(1)分别将2.3280 g的六水硝酸钴,2.6272 g的二甲基咪唑溶于两份100 mL的甲醇中,并在室温下搅拌10 min;然后将硝酸钴溶液用分液漏斗以1滴/ 1 s的流速滴入二甲基咪唑的溶液中,并在室温下搅拌10 min,之后在室温下放置24 h,最后得到紫色物质;
(2)将得到的紫色溶液使用离心机以14800 rpm离心10min,分离固体沉淀物并用甲醇洗涤3次,最后在60 ℃的真空干燥箱中烘干得到ZIF-67固体;
(3)将所得样品放入管式炉中,氮气氛围中进行碳化,在800℃保持3 h,升温速率为5℃/min,冷却至室温,取出所得粉末。
实施例3
本发明的一种钴锰/碳纳米酶的制备方法,包括如下步骤:
(1)分别将2.2104 g的六水硝酸钴和0.143 mL的硝酸锰水溶液(50 wt%),2.6272g的二甲基咪唑溶于两份100 mL的甲醇中,并在室温下搅拌10 min;然后将硝酸钴和硝酸锰的混合溶液用分液漏斗以1滴/ 1 s的流速滴入二甲基咪唑的溶液中,并在室温下搅拌10min,之后在室温下放置24 h,最后得到紫色物质;
(2)将得到的紫色溶液使用离心机以14800 rpm离心10min,分离固体沉淀物并用甲醇洗涤3次,最后在60℃的真空干燥箱中烘干得到锰掺杂的ZIF-67固体;
(3)将所得样品放入管式炉中,氮气氛围中进行碳化,在800℃保持3h,升温速率为5℃/min,冷却至室温,取出所得粉末。
实施例4
本发明的一种钴锰/碳纳米酶的制备方法,包括如下步骤:
(1)分别将1.9778g的六水硝酸钴和0.429 mL的硝酸锰水溶液(50 wt%),2.6272 g的二甲基咪唑溶于两份100mL的甲醇中,并在室温下搅拌10 min;然后将硝酸钴和硝酸锰的混合溶液用分液漏斗以1滴/ 1 s的流速滴入二甲基咪唑的溶液中,并在室温下搅拌10min,之后在室温下放置24 h,最后得到紫色物质;
(2)将得到的紫色溶液使用离心机以14800 rpm离心10min,分离固体沉淀物并用甲醇洗涤3次,最后在60℃的真空干燥箱中烘干得到锰掺杂的ZIF-67固体;
(3)将所得样品放入管式炉中,氮气氛围中进行碳化,在800℃保持3h,升温速率为5℃/min,冷却至室温,取出所得粉末。
实施例5
本发明的一种钴锰/碳纳米酶的制备方法,包括如下步骤:
(1)分别将1.7451g的六水硝酸钴和0.715 mL的硝酸锰水溶液(50 wt%),2.6272 g的二甲基咪唑溶于两份100mL的甲醇中,并在室温下搅拌10 min;然后将硝酸钴和硝酸锰的混合溶液用分液漏斗以1滴/ 1 s的流速滴入二甲基咪唑的溶液中,并在室温下搅拌10min,之后在室温下放置24 h,最后得到紫色物质;
(2)将得到的紫色溶液使用离心机以14800 rpm离心10min,分离固体沉淀物并用甲醇洗涤3次,最后在60℃的真空干燥箱中烘干得到锰掺杂的ZIF-67固体;
(3)将所得样品放入管式炉中,氮气氛围中进行碳化,在800℃保持3h,升温速率为5℃/min,冷却至室温,取出所得粉末。
实施例6
本发明的一种钴锰/碳纳米酶的制备方法,包括如下步骤:
(1)分别将1.2797 g的六水硝酸钴和1.288 mL的硝酸锰水溶液(50 wt%),2.6272g的二甲基咪唑溶于两份100 mL的甲醇中,并在室温下搅拌10 min;然后将硝酸钴和硝酸锰的混合溶液用分液漏斗以1滴/ 1 s的流速滴入二甲基咪唑的溶液中,并在室温下搅拌10min,之后在室温下放置24 h,最后得到紫色物质;
(2)将得到的紫色溶液使用离心机以14800 rpm离心10min,分离固体沉淀物并用甲醇洗涤3次,最后在60℃的真空干燥箱中烘干得到锰掺杂的ZIF-67固体;
(3)将所得样品放入管式炉中,氮气氛围中进行碳化,在800℃保持3h,升温速率为5℃/min,冷却至室温,取出所得粉末。
实施例7
高活性钴锰/碳纳米酶催化氧化2,4-DP性能测试实验,步骤是:
(1)取2400 µL pH 6.8缓冲溶液、150 µL 2 mg/mL 2,4-DP溶液、150 µL 2 mg/mL4-AP溶液和300 μL 1 mg/mL的钴锰/碳纳米酶溶液于离心管混匀,在25℃水浴中反应1 h。
(2)用紫外可见光谱仪光谱模式测定反应溶液的紫外可见光谱。
图5记录了制备的具有高活性的钴锰/碳纳米酶在不同体系中通过氧气催化氧化2,4-DP,并和 4-AP发生偶联显色反应的UV-Vis图。由图所示,当只有2,4-DP和4-AP时,未有颜色反应发生;当2,4-DP、4-AP和钴锰/碳纳米酶均存在时,发生颜色反应。此颜色变化是由钴锰/碳纳米酶通过氧气催化氧化了2,4-DP,并和4-AP发生显色反应导致的,此催化反应和天然漆酶一样,证明制备的钴锰/碳纳米酶具有漆酶活性。
实施例8
不同锰含量对钴锰/碳纳米酶催化活性大小的影响,步骤是:
(1)取2400 µL pH 6.8缓冲溶液、150 µL 2 mg/mL 2,4-DP溶液、150 µL 2 mg/mL4-AP溶液和300μL 1mg/mL的不同锰含量的钴锰/碳纳米酶溶液于离心管混匀,在25℃水浴中反应1 h。
(2)用紫外可见光谱仪光谱模式测定反应溶液的紫外可见光谱。
结果如图6所示,钴锰/碳纳米酶的催化活性随着锰含量的增加先增加后降低,钴锰/碳纳米酶(对应硝酸锰水溶液为1.001 mL,锰含量比例为35%)的催化活性最高。
实施例9
不同pH值对高活性钴锰/碳纳米酶催化活性的影响,步骤是:
(1)首先配制pH值分别为3、4、5、6、7、8的缓冲溶液,再将pH值从6到7进行细分为6.2、6.4、6.6、6.8。
(2)取2400 µL不同 pH值的缓冲溶液、150µL 2mg/mL 2,4-DP溶液、150 µL 2 mg/mL 4-AP溶液和300μL 1mg/mL钴锰/碳纳米酶溶液(对应硝酸锰水溶液为1.001 mL)于离心管中混匀,在25 ℃水浴中反应1 h。
(3)用紫外可见光谱仪光谱模式测定反应溶液的紫外可见光谱。
结果如图7所示,随着pH值的升高,吸光度值呈先增大后减小的趋势,并在pH值为6-7之间达到峰值。因此,把pH值在6-7进行细化,结果发现pH值在6.8时,钴锰/碳纳米酶的催化活性最好。
实施例10
最佳钴锰/碳纳米酶比活力的测定,步骤是:
(1)将不同浓度的纳米酶溶液(5 µg/mL、10 µg/mL、15 µg/mL、20 µg/mL和25 µg/mL)置于pH 6.8的缓冲溶液中。然后向离心管中加入125 µL 0.052 g / mL儿茶酚溶液并混合,总体积为3 mL。
(2)放入恒温水浴中,在25℃水浴中反应100 s。
(3)水浴连接紫外/可见光谱仪。用紫外可见光谱仪的时间驱动模式检测410 nm下的催化动力学曲线。
结果如图8所示,钴锰/碳纳米酶的酶比活力大小为3.85 U/mg,已超出市场销售的天然漆酶活性(0.5 U/mg),大大超过目前报道的其它纳米酶活性,显示出优异的催化性能。
实施例11
高活性钴锰/碳纳米酶应用于2.4-二氯苯酚的降解
(1)在pH=6.8的缓冲溶液中,加入终浓度100 µg/mL的2.4-DP和终浓度100 µg/mL的纳米酶,在水浴25℃下反应。
(2)分别在反应1 h、2 h、3 h、4 h、5 h、6 h、7 h、8 h和9 h时取1 mL的反应溶液,离心取上清液。
(3)利用高效液相色谱测定残留的2.4-DP浓度。使用公式:X=(C0-Ct)/C0计算该催化反应的降解率。其中C0为2.4-DP的初始浓度,Ct则表示在第t小时2.4-DP的浓度。
结果如图9所示,图9a对应的是不同时间下色谱图,左侧的色谱峰属于缓冲溶液,右侧的色谱峰属于2.4-DP,随时间不断增加,2.4-DP的色谱峰面积逐渐减小,说明钴锰/碳纳米酶将2.4-DP逐渐催化降解。由图 9b所示,在9 小时后,钴锰/碳纳米酶对2,4-DP的降解率达到了94.5%,优于文献上报道的降解效果(J. H. Wang, R. L. Huang, W. Qi, R. X.Su, B. P. Binks and Z. M. He, Applied Catalysis B-Environmental, 2019, 254,452-462)。综上所述,稳定、廉价、易制取且高效的钴锰/碳纳米酶在处理污染物等环保领域具有很大的应用价值。
以上所述,仅为本发明较佳的具体实施方式。当然,本发明还可有其它多种实施
例,在不背离本发明精神及其实质的情况下,任何熟悉本技术领域的技术人员,当可根据本发明作出各种相应的等效改变和变形,都应属于本发明所附的权利要求的保护范围。

Claims (5)

1.一种活性优于天然漆酶的纳米酶制备方法,其特征在于按如下的步骤进行:
(1)分别将六水硝酸钴和硝酸锰水溶液(50 wt%),二甲基咪唑溶于两份等体积的甲醇中,并在室温下搅拌10 min;然后将硝酸钴和硝酸锰的混合溶液用分液漏斗以1滴/秒的流速滴入二甲基咪唑溶液中,并在室温下搅拌10 min,之后在室温下放置24 h,最后得到紫色物质;所述六水硝酸钴为1.2797~2.3280 g,所述硝酸锰水溶液为0~1.288 mL,所述二甲基咪唑为2.6272 g,所述甲醇为100 mL;
(2)将得到的紫色溶液使用离心机离心分离固体沉淀物,并用甲醇洗涤3次,最后在真空干燥箱中烘干得到锰掺杂的ZIF-67固体;所述离心机转速为8500~15000 rpm,所述离心时间为3~10 min;
(3)将所得样品放入管式炉中,氮气氛围中进行碳化,在600~900℃保持3 h,升温速率为2~5 ℃/min,冷却至室温,取出所得粉末。
2.权利要求1所述具有高活性的钴锰/碳纳米酶的制备方法,其特征在于,所述六水硝酸钴为1.5124 g ,所述硝酸锰水溶液为1.001 mL。
3.权利要求1所述具有高活性的钴锰/碳纳米酶的制备方法,其特征在于,所述离心机转速为14800 rpm,所述离心时间为10 min。
4.权利要求1所述具有高活性的钴锰/碳纳米酶的制备方法,其特征在于,所述温度800℃,升温速率为5℃/min。
5.采用权利要求1所述方法制备的高活性钴锰/碳纳米酶在用于表面包裹碳层以及负载双金属方面的应用;所述表面包裹碳层以及负载双金属的应用指的是:通过氧气高效催化氧化2,4-二氯苯酚,进而降解2,4-二氯苯酚。
CN202210443690.2A 2022-04-26 2022-04-26 一种活性优于天然漆酶的纳米酶制备方法 Active CN114904535B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210443690.2A CN114904535B (zh) 2022-04-26 2022-04-26 一种活性优于天然漆酶的纳米酶制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210443690.2A CN114904535B (zh) 2022-04-26 2022-04-26 一种活性优于天然漆酶的纳米酶制备方法

Publications (2)

Publication Number Publication Date
CN114904535A true CN114904535A (zh) 2022-08-16
CN114904535B CN114904535B (zh) 2023-12-22

Family

ID=82764998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210443690.2A Active CN114904535B (zh) 2022-04-26 2022-04-26 一种活性优于天然漆酶的纳米酶制备方法

Country Status (1)

Country Link
CN (1) CN114904535B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115463151A (zh) * 2022-08-18 2022-12-13 湖北文理学院 纳米酶及其制备方法、应用以及抑菌剂
CN116212922A (zh) * 2023-02-03 2023-06-06 苏州科技大学 一种纳米酶的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104069883A (zh) * 2014-06-23 2014-10-01 华南理工大学 一种用于醇氧化生成酯的钴基催化剂及其制备方法与应用
CN108176396A (zh) * 2017-12-07 2018-06-19 广东省石油与精细化工研究院 一种甲醛去除剂及其制备方法和应用
CN111545192A (zh) * 2020-04-30 2020-08-18 齐鲁工业大学 一种MOFs衍生的钙钛矿催化剂及其制备与催化降解有机污染物的应用
CN113877599A (zh) * 2021-09-27 2022-01-04 中国地质大学(武汉) 一种钴锰尖晶石材料及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20032549A1 (it) * 2003-12-22 2005-06-23 Eni Spa Processo per il trattamento di acque contaminate basato sull'impiego di zeoliti apolari aventi caratteristiche diverse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104069883A (zh) * 2014-06-23 2014-10-01 华南理工大学 一种用于醇氧化生成酯的钴基催化剂及其制备方法与应用
CN108176396A (zh) * 2017-12-07 2018-06-19 广东省石油与精细化工研究院 一种甲醛去除剂及其制备方法和应用
CN111545192A (zh) * 2020-04-30 2020-08-18 齐鲁工业大学 一种MOFs衍生的钙钛矿催化剂及其制备与催化降解有机污染物的应用
CN113877599A (zh) * 2021-09-27 2022-01-04 中国地质大学(武汉) 一种钴锰尖晶石材料及其制备方法与应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115463151A (zh) * 2022-08-18 2022-12-13 湖北文理学院 纳米酶及其制备方法、应用以及抑菌剂
CN115463151B (zh) * 2022-08-18 2023-09-19 湖北文理学院 纳米酶及其制备方法、应用以及抑菌剂
CN116212922A (zh) * 2023-02-03 2023-06-06 苏州科技大学 一种纳米酶的制备方法及应用

Also Published As

Publication number Publication date
CN114904535B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
CN113457659B (zh) 过渡金属单原子纳米酶及其制备方法和用途
CN114904535B (zh) 一种活性优于天然漆酶的纳米酶制备方法
CN107890873B (zh) 一种空心状铂铜钴三元合金纳米颗粒模拟酶及其制备和应用
Liu et al. Polyoxometalates encapsulated into hollow double-shelled nanospheres as amphiphilic nanoreactors for an effective oxidative desulfurization
JP2008259993A (ja) 金微粒子を担体に分散・固定する方法、これにより得られた金微粒子担持担体および触媒ならびに着色剤
Silva et al. Immobilization of soybean peroxidase on silica-coated magnetic particles: a magnetically recoverable biocatalyst for pollutant removal
CN110484527A (zh) 一种缺陷型金属有机骨架-酶复合物及其制备方法及其应用
CN108046331B (zh) 一种硫化钼-铁氧体纳米酶、制备及应用
CN109261146B (zh) 一种负载不同金属的纳米多孔空心笼状钛氧化物的制备方法
CN114433236B (zh) 一种基于氯化血红素插层于金属有机骨架材料构建模拟酶的方法
CN114392760A (zh) 一种具有中空结构的铁/氮碳纳米酶的制备方法
Zhao et al. Structure advantage and peroxidase activity enhancement of deuterohemin-peptide–inorganic hybrid flowers
CN109897846A (zh) 一种固定化葡萄糖氧化酶及其制备方法和应用
Aghayan et al. Micellar catalysis of an iron (III)-MOF: enhanced biosensing characteristics
CN114479111B (zh) 一种用于固定化辣根过氧化物酶的新型载体
CN115814859A (zh) 一种新型光催化剂、制备方法及应用
CN112371191A (zh) 一种基于Zr-MOFs复合材料的氧化脱硫催化剂的制备方法
CN113105646B (zh) 双金属-有机无限配位聚合物纳米微球的制备方法和应用
CN111534505A (zh) 一种固定化漆酶及其制备方法和应用
CN118287076A (zh) 一种双酶活性的磁性FeCu多孔碳纳米酶及应用
CN112717934B (zh) 一种凹凸棒土负载过渡金属氧化物复合材料及其制备方法和应用
CN113952974A (zh) 一种铁单原子锚定氮掺杂碳材料及其制备方法和在检测酚类污染物及肾上腺素中的应用
Kumar et al. Immobilized biogenic copper nanoparticles from metallic wastewater as a catalyst for triazole synthesis by a click reaction using water as a solvent
CN109280660B (zh) 表面改性磁性埃洛石纳米管内外壁同时固定氯过氧化物酶反应器及应用
CN115646491B (zh) 一种层状介孔氧化铝搭载的具有高一价态铜含量的铜氧化物催化剂、其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant