CN114890780B - 一种y型六角铁氧体磁电耦合陶瓷材料及其制备方法 - Google Patents

一种y型六角铁氧体磁电耦合陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114890780B
CN114890780B CN202210354063.1A CN202210354063A CN114890780B CN 114890780 B CN114890780 B CN 114890780B CN 202210354063 A CN202210354063 A CN 202210354063A CN 114890780 B CN114890780 B CN 114890780B
Authority
CN
China
Prior art keywords
magneto
electric coupling
ball milling
ceramic material
basrco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210354063.1A
Other languages
English (en)
Other versions
CN114890780A (zh
Inventor
李均
赵东鹏
白晗
吴欢桐
许同同
周忠祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202210354063.1A priority Critical patent/CN114890780B/zh
Publication of CN114890780A publication Critical patent/CN114890780A/zh
Application granted granted Critical
Publication of CN114890780B publication Critical patent/CN114890780B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds
    • H01F1/0315Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种Y型六角铁氧体磁电耦合陶瓷材料及其制备方法,它涉及磁电耦合材料领域。它是要解决现有的多铁材料兼具铁电性和铁磁性种类少并且磁电耦合强度低的问题。本发明的陶瓷材料的化学表达式为BaSrCo2‑xCuxFe11AlO22,x=0.3~0.9。制法:按化学计量比称取原料并球磨混合,再预烧,预烧粉再球磨后压片、排胶,得到排胶坯体;排胶坯体在管式炉的氧气气氛中烧结,得到Y型六角铁氧体磁电耦合陶瓷材料。该材料具有良好的磁电耦合性能,其中BaSrCo1.5Cu0.5Fe11AlO22的磁释电电流为20uA/m2,最大极化强度为35uC/m2,最大磁电耦合系数为4496ps/m。可用于磁电耦合领域。

Description

一种Y型六角铁氧体磁电耦合陶瓷材料及其制备方法
技术领域
本发明涉及磁电耦合材料领域。
背景技术
磁电耦合材料是指材料在外界磁场或电场的作用下,材料的铁电极化状态或磁性状态发生改变,即可以实现电场控制材料的磁性状态或者可以实现外磁场控制材料铁电极化状态的一类材料。其中多铁材料由于其同时具有铁电、铁磁或铁弹有序性及磁电耦合效应等,在微波、传感控制和信息存储等领域具有应用前景,日益成为科研工作者们研究的热点。
申请号为CN201711172802.0的中国专利《铋铁氧室温多铁磁电耦合材料及制备方法、电子器件》公开了一种铋铁氧室温多铁磁电耦合材料。该材料的结构式为ABxOy,具有六角晶体结构。其中A为Bi、Pb、Sb、Sn或稀土金属元素中的一种或多种,B为过渡金属元素Fe、Sc、Ti、V、Cr、Mn、Co、Ni、Zn、Cu中的一种或多种。该材料同时具有转变温度高于室温的铁电性和亚铁磁性,在小于等于800K时具有铁电性,在小于等于600K时具有铁磁性或亚铁磁性,低于600K的温度范围内,所述铋铁氧室温多铁磁电耦合材料的铁电性和铁磁性或者亚铁磁性共存。它是通过加热将含有ABO组分的材料产生分子束、原子束或等离子体并沉积到基底上制备而成,但是这种沉积在基底上的膜材料磁电耦合强度低,并且在应用时受到限制。
发明内容
本发明是要解决现有的多铁材料兼具铁电性和铁磁性种类少并且磁电耦合强度低的问题,而提供一种Y型六角铁氧体磁电耦合陶瓷材料及其制备方法。本发明的材料兼具铁电性和铁磁性并且存在强的磁电耦合效应。该材料可以在施加的很小的磁场下诱导出电极化性能,且电极化方向可以随外磁场条件的翻转而翻转。同时,材料的制备工艺简单,拓宽了该材料在磁电耦合领域的应用。
本发明的Y型六角铁氧体磁电耦合陶瓷材料的化学表达式为:BaSrCo2- xCuxFe11AlO22,其中x=0.3~0.9。
上述的Y型六角铁氧体磁电耦合陶瓷材料的制备方法,按以下步骤进行:
一、按Y型六角铁氧体BaSrCo2-xCuxFe11AlO22的化学计量比称取BaCO3、SrCO3、Co3O4、CuO、Fe2O3和Al2O3,然后放入球磨罐中湿法球磨;球磨完成后烘干,烘干后再放入球磨罐中干法球磨,得到混合粉末;
二、将混合粉末放入氧化铝坩埚中,再将坩埚放在箱式炉中预烧,得到预烧粉;
三、将预烧粉放入球磨罐中湿法球磨;球磨完成后烘干,烘干后再放入球磨罐中干法球磨,得到粗材料粉末;
四、向粗材料粉末中滴加聚乙烯醇缩丁醛酯(PVB)溶液,研磨均匀、过筛、压片,得到块状坯体;
五、将块状坯体放入箱式炉中,升温至500~550℃保持4~5h进行排胶,得到排胶坯体;
六、将排胶坯体放入管式炉中,在炉管中以氧气流速约100~120mL/min的流速通入氧气,以得到氧气气氛,同时将管式炉以4~6℃/min的速率升温至980~1000℃,然后以1~2℃/min的升温速率将样品升温至1140~1190℃并保持10~12h,再以1~2℃/min的速率降温至980~1000℃,然后以4~5℃/min的速度降温至450~500℃,最后自然冷却至室温,得到Y型六角铁氧体磁电耦合陶瓷材料。
更进一步地,步骤一中所述的湿法球磨是将材料加入到行星式球磨机的球磨罐中,球料质量比为(3~6):1,再按1克材料加入3~6mL质量百分浓度为95%的乙醇,以400~500r/min的转速球磨10~12h。
更进一步地,步骤一中所述的烘干是在温度为90~100℃的烘箱中保持4~5小时。
更进一步地,步骤一中所述的干法球磨是将材料加入到行星式球磨机的球磨罐中,在球料质量比为(3~6):1的条件下,以400~500r/min的转速球磨10~15min。
更进一步地,步骤二中所述的预烧是:以4~5℃/min的速率升温至950~1050℃并保持10~12h,然后以4~5℃/min的速率降温至450~550℃,再自然冷却至室温。
更进一步地,步骤四中所述的过筛,是过100目的筛。
更进一步地,步骤四中所述的压片是用压片机将过筛后的粉末在压力为4~4.5MPa的条件下压制30~60s。
更进一步地,步骤四中所述的聚乙烯醇缩丁醛酯(PVB)溶液的质量百分浓度为8%;5g粗材料粉末中加入6~8滴质量百分浓度为8%聚乙烯醇缩丁醛酯(PVB)溶液。
本发明的Y型六角铁氧体BaSrCo2-xCuxFe11AlO22(x=0.3~0.9)具有良好的磁电耦合性能,其中x=0.5的BaSrCo1.5Cu0.5Fe11AlO22的磁释电电流达到20uA/m2,积分得到的最大极化强度达到35uC/m2,最大磁电耦合系数达到了4496ps/m。这是由于Y型六角铁氧体BaSrCo2-xCuxFe11AlO22中半径小的
Figure BDA0003581714720000021
对半径大的
Figure BDA0003581714720000022
进行了替代,使得材料的磁矩减小,进而致使相邻磁矩间的联系更为紧密,使得相邻磁矩间的超交换相互作用性增强,进而增强材料的磁电耦合性能,即通过适量的Cu2+对Co2+的替换增强Y型六角铁氧体的磁电性能。
本发明的Y型六角铁氧体兼具铁电性和铁磁性同时具有强的磁电耦合性能,可以实现外加的很小的磁场就能诱导出材料的电极化性能,并且材料的极化可以实现随着外加磁场的翻转而翻转,同时本申请的材料经外磁场扫场而产生的磁释电电流,电极化强度和静态磁电耦合系数相对较高,丰富和拓宽了磁电材料的应用范围,可用于磁电耦合领域。
本发明的Y型六角铁氧体是采用传统固相烧结方法制备的,方法简单,对设备要求低。
附图说明
图1是实施例1的BaSrCo1.5Cu0.5Fe11AlO22的扫描电镜照片和元素分布分析图;
图2是实施例2的BaSrCo1.7Cu0.3Fe11AlO22的扫描电镜照片和元素分布分析图;
图3是实施例3的BaSrCo1.3Cu0.7Fe11AlO22的扫描电镜照片和元素分布分析图;
图4是实施例4的BaSrCo1.1Cu0.9Fe11AlO22的扫描电镜照片和元素分布分析图;
图5是实施例1、2、3、4制备的Y型六角铁氧体的XRD谱图;
图6是实施例1、2、3、4由磁场诱导的磁释电电流随磁场由-20kOe到2kOe的变化;
图7是实施例1、2、3、4由磁场诱导的磁释电电流随磁场由2kOe到-20kOe的变化;
图8是实施例1制备的Y型六角铁氧体BaSrCo1.5Cu0.5Fe11AlO22的测试得到的磁释电电流、磁场诱导的极化强度、极化强度随扫场的变化和静态磁电耦合系数图;
图9是实施例2制备的Y型六角铁氧体BaSrCo1.7Cu0.3Fe11AlO22的测试得到的磁释电电流、磁场诱导的极化强度、极化强度随扫场的变化和静态磁电耦合系数图;
图10是实施例3制备的Y型六角铁氧体BaSrCo1.3Cu0.7Fe11AlO22的测试得到的磁释电电流、磁场诱导的极化强度、极化强度随扫场的变化和静态磁电耦合系数图;
图11是实施例4制备的Y型六角铁氧体BaSrCo1.1Cu0.9Fe11AlO22的测试得到的磁释电电流、磁场诱导的极化强度、极化强度随扫场的变化和静态磁电耦合系数图。
具体实施方式
用下面的实施例验证本发明的有益效果。
实施例1:本实施例的Y型六角铁氧体的制备方法,按以下步骤进行:
一、按Y型六角铁氧体BaSrCo1.5Cu0.5Fe11AlO22的化学计量比称取4.7361克BaCO3、3.5431克SrCO3、2.8896克Co3O4、0.9545克CuO、21.0788克Fe2O3和1.2235克Al2O3,然后放入球磨罐中,球料质量比为4.7:1,再加入140mL质量百分浓度为95%的乙醇,以400r/min的转速球磨12h;球磨完成后放在温度为90℃的烘箱中保持4小时烘干,将烘干后的样品再放入球磨罐中,球料质量比为4.8:1,以500r/min的转速球磨10min,得到混合粉末;
二、将混合粉末放入氧化铝坩埚中,再将坩埚放在箱式炉中,以5℃/min的速率升温至1000℃并保持10h,然后以5℃/min的速率降温至500℃,再自然冷却至室温,得到预烧粉;
三、将预烧粉放入球磨罐中,球料质量比为5:1,再加入140mL质量百分浓度为95%的乙醇,以400r/min的转速球磨12h;球磨完成后放在温度为90℃的烘箱中保持4小时烘干,烘干后再放入球磨罐中,球料质量比为5:1,以500r/min的转速球磨10min,得到粗材料粉末;
四、向5g粗材料粉末中滴加7滴质量百分浓度为8%的聚乙烯醇缩丁醛酯(PVB)溶液,在玛瑙研钵中研磨1小时,然后过100目筛,用压片机将过筛后的粉末在压力为4MPa的条件下压30秒,得到块状坯体;
五、将块状坯体放入箱式炉中,升温至500℃保持4h进行排胶,得到排胶坯体;
六、将排胶坯体放入管式炉中,以100mL/min的流速通入氧气以保持氧气气氛,同时将管式炉以5℃/min的速率升温至1000℃并保持88min,再以2℃/min的速率升温至1175℃并保持10h,接着以2℃/min的速度降温至1000℃,再以5℃/min的速率降温至500℃,最后自然冷却至室温,得到Y型六角铁氧体BaSrCo1.5Cu0.5Fe11AlO22
实施例2:本实施例与实施例1不同的是:
将步骤一的操作替换为:按Y型六角铁氧体BaSrCo1.7Cu0.3Fe11AlO22的化学计量比称取4.7361克BaCO3、3.5431克SrCO3、3.2748克Co3O4、0.5727克CuO、21.0788克Fe2O3和1.2235克Al2O3,然后放入球磨罐中,球料质量比为4.7:1,再加入140mL质量百分浓度为95%的乙醇,以400r/min的转速球磨12h;球磨完成后放在温度为90℃的烘箱中保持4小时烘干,烘干后再放入球磨罐中,球料质量比为4.8:1,以500r/min的转速球磨10min,得到混合粉末;
将步骤六的操作替换为:将排胶坯体放入管式炉中,以100mL/min的流速通入氧气以保持氧气气氛,同时将管式炉以5℃/min的速率升温至1000℃,然后再经过95min,以2℃/min的速率升温至1190℃并保持10h,接着以2℃/min的速度降温至1000℃,再以5℃/min的速率降温至500℃,最后自然冷却至室温;
其它步骤与参数与实施例1相同,得到Y型六角铁氧体BaSrCo1.7Cu0.3Fe11AlO22
实施例3:本实施例与实施例1不同的是:
将步骤一操作替换为:按Y型六角铁氧体BaSrCo1.3Cu0.7Fe11AlO22的化学计量比称取4.7361克BaCO3、3.5431克SrCO3、2.5043克Co3O4、1.3364克CuO、21.0788克Fe2O3和1.2235克Al2O3,然后放入球磨罐中,球料质量比为4.7:1,再加入140mL质量百分浓度为95%的乙醇,以400r/min的转速球磨12h;球磨完成后放在温度为90℃的烘箱中保持4小时烘干,烘干后再放入球磨罐中,球料质量比为4.7:1,以500r/min的转速球磨10min,得到混合粉末;
将步骤六的操作替换为:将排胶坯体放入管式炉中,以100mL/min的流速通入氧气以保持氧气气氛,同时将管式炉以5℃/min的速率升温至1000℃,然后再经过70min,以2℃/min的速率升温至1140℃并保持10h,接着以2℃/min的速度降温至1000℃,再以5℃/min的速率降温至500℃,最后自然冷却至室温;
其它步骤与参数与实施例1相同,得到Y型六角铁氧体BaSrCo1.3Cu0.7Fe11AlO22
实施例4:本实施例与实施例1不同的是:
将步骤一的操作替换为:按Y型六角铁氧体BaSrCo1.1Cu0.9Fe11AlO22的化学计量比称取4.7361克BaCO3、3.5431克SrCO3、2.1190克Co3O4、1.7182克CuO、21.0788克Fe2O3和1.2235克Al2O3,然后放入球磨罐中,球料质量比为4.7:1,再加入140mL质量百分浓度为95%的乙醇,以400r/min的转速球磨12h;球磨完成后放在温度为90℃的烘箱中保持4小时烘干,烘干后再放入球磨罐中,球料质量比为4.7:1,以500r/min的转速球磨10min,得到混合粉末;
将步骤六的操作替换为:将排胶坯体放入管式炉中,以100mL/min的流速通入氧气以保持氧气气氛,同时将管式炉以5℃/min的速率升温至1000℃,然后再经过58min,以2℃/min的速率升温至1115℃并保持10h,接着以2℃/min的速度降温至1000℃,再以5℃/min的速率降温至500℃,最后自然冷却至室温;
其它步骤与参数与实施例1相同,得到Y型六角铁氧体BaSrCo1.1Cu0.9Fe11AlO22
对实施例1、2、3、4制备的Y型六角铁氧体进行扫描电镜测试和元素分布测试,实施例1的BaSrCo1.5Cu0.5Fe11AlO22的扫描电镜照片和元素分布分析图如图1所示,实施例2的BaSrCo1.7Cu0.3Fe11AlO22的扫描电镜照片和元素分布分析图如图2所示,实施例3的BaSrCo1.3Cu0.7Fe11AlO22的扫描电镜照片和元素分布分析图如图3所示。实施例3的BaSrCo1.1Cu0.9Fe11AlO22的扫描电镜照片和元素分布分析图如图4所示。从图1、2、3、4可以看出,各样品均表现出六角片状结构,并且所有元素在样品中分布均匀。
对实施例1、2、3、4制备的Y型六角铁氧体进行XRD分析,得到的XRD谱图如图5所示,从图5可以看出,BaSrCo1.5Cu0.5Fe11AlO22、BaSrCo1.7Cu0.3Fe11AlO22、BaSrCo1.3Cu0.7Fe11AlO22、BaSrCo1.1Cu0.9Fe11AlO22都表现出特征的Y型六角铁氧体结构。
对实施例1、2、3、4制备的BaSrCo1.5Cu0.5Fe11AlO22、BaSrCo1.7Cu0.3Fe11AlO22、BaSrCo1.3Cu0.7Fe11AlO22、BaSrCo1.1Cu0.9Fe11AlO22进行测试,得到的磁场诱导的铁电性如图6和图7所示。图6显示了磁场诱导的材料的磁释电电流在磁场由-20kOe到2kOe的变化,可以明显看出磁场在一个较大数值逐渐变化到0的过程中,磁场诱导了样品的铁电型产生了磁释电电流,由图中曲线的峰值可以看出。并且当样品处在一个较大的磁场范围内,样品的磁释电电流数值为0,当样品在磁场变化到一个较小的数值时,样品的磁释电电流开始出现。对比图6和图7可以发现,外加的磁场方向发生改变时,诱导的磁释电电流方向也发生了改变。综上表明,该系列样品能被一个较小的磁场诱导铁电性,即样品可以被一个小磁场诱导磁释电电流现象,把磁释电电流对时间积分就是样品的极化,说明样品可以在一个较小的磁场下诱导样品的铁电极化现象。并且该极化方向随外磁场的改变而改变。
实施例1制备的Y型六角铁氧体BaSrCo1.5Cu0.5Fe11AlO22的磁电性能测试图,包括磁释电电流、磁场诱导的极化强度、极化强度随扫场的变化以及最大静态磁电耦合系数,如图8所示,从图8的a、b、c、d分别能够得到样品的磁释电电流随扫场方向的变化而变化;磁场诱导的电极化强度随外磁场的翻转而翻转,样品的极化强度随外磁场的反转呈现出衰减特征;以及通过极化强度与磁场微分得到的样品的静态磁电耦合系数值。
实施例2制备的Y型六角铁氧体BaSrCo1.7Cu0.3Fe11AlO22的包括磁释电电流,磁场诱导的极化强度,极化强度随扫场的变化以及最大静态磁电耦合系数。如图9所示,从图9的a、b、c、d分别能够得到样品的磁释电电流随扫场方向的变化而变化;磁场诱导的电极化强度随外磁场的翻转而翻转,样品的极化强度随外磁场的反转呈现出衰减特征;以及通过极化强度与磁场微分得到的样品的静态磁电耦合系数值。
实施例3制备的Y型六角铁氧体BaSrCo1.3Cu0.7Fe11AlO22的磁释电电流、磁场诱导的极化强度、极化强度随扫场的变化以及最大静态磁电耦合系数如图10所示,从图10的a、b、c、d分别能够得到样品的磁释电电流随扫场方向的变化而变化;磁场诱导的电极化强度随外磁场的翻转而翻转,样品的极化强度随外磁场的反转呈现出衰减特征;以及通过极化强度与磁场微分得到的样品的静态磁电耦合系数值。
实施例4制备的Y型六角铁氧体BaSrCo1.1Cu0.9Fe11AlO22的包括磁释电电流、磁场诱导的极化强度、极化强度随扫场的变化以及最大静态磁电耦合系数如图11所示,从图11的a、b、c、d分别能够得到样品的磁释电电流随扫场方向的变化而变化;磁场诱导的电极化强度随外磁场的翻转而翻转,样品的极化强度随外磁场的反转呈现出衰减特征;以及通过极化强度与磁场微分得到的样品的静态磁电耦合系数值。
将图8、9、10、11中的对应数据相比较可知,掺杂铜量为x=0.5时,样品产生了最大的磁释电电流,电极化强度和最大的静态磁电耦合系数,优于掺铜量为x=0.3,x=0.7和x=0.9组分的性能。BaSrCo1.5Cu0.5Fe11AlO22具有潜在优势应用于磁电耦合领域。
将BaSrCo1.5Cu0.5Fe11AlO22、BaSrCo1.7Cu0.3Fe11AlO22、BaSrCo1.3Cu0.7Fe11AlO22BaSrCo1.1Cu0.9Fe11AlO22的静态磁电耦合性能测试结果列于表1中。
表1实施例1、2、3、4制备的Y型六角铁氧体的磁电耦合性能
Figure BDA0003581714720000071
通过对四组样品的静态磁电耦合性能测试发现,当Cu元素的掺杂比例为0.5时。样品的磁释电电流(I)达到20uA/m2,极化强度(P)达到35uC/m2,最大静态磁电耦合系数(dP/dH)达到了4496ps/m,在磁电耦合领域具有潜在的应用价值。

Claims (9)

1.一种Y型六角铁氧体磁电耦合陶瓷材料,其特征在于该材料的化学表达式为:BaSrCo2-xCuxFe11AlO22,其中x=0.5~0.7。
2.制备如权利要求1所述的一种Y型六角铁氧体磁电耦合陶瓷材料的方法,其特征在于该方法按以下步骤进行:
一、按Y型六角铁氧体BaSrCo2-xCuxFe11AlO22,x=0.5~0.7的化学计量比称取BaCO3、SrCO3、Co3O4、CuO、Fe2O3和Al2O3,然后放入球磨罐中湿法球磨;球磨完成后烘干,烘干后再放入球磨罐中干法球磨,得到混合粉末;
二、将混合粉末放入氧化铝坩埚中,再将坩埚放在箱式炉中预烧,得到预烧粉;
三、将预烧粉放入球磨罐中湿法球磨;球磨完成后烘干,烘干后再放入球磨罐中干法球磨,得到粗材料粉末;
四、向粗材料粉末中滴加聚乙烯醇缩丁醛酯溶液,研磨均匀、过筛、压片,得到块状坯体;
五、将块状坯体放入箱式炉中,升温至500~550℃保持4~5h进行排胶,得到排胶坯体;
六、将排胶坯体放入管式炉中,在炉管中以氧气流速100~120 mL/min的流速通入氧气,同时将管式炉以4~6℃/min的速率升温至980~1000℃,然后以1~2℃/min的升温速率将样品升温至1140~1190℃并保持10~12h,再以1~2℃/min的速率降温至980~1000℃,然后以4~5℃/min的速度降温至450~500℃,最后自然冷却至室温,得到Y型六角铁氧体磁电耦合陶瓷材料。
3.根据权利要求2所述的一种Y型六角铁氧体磁电耦合陶瓷材料的制备方法,其特征在于步骤一中所述的湿法球磨是将材料加入到行星式球磨机的球磨罐中,球料质量比为(3~6):1,再按1克材料加入3~6mL质量百分浓度为95%的乙醇,以400~500 r/min的转速球磨10~12h。
4.根据权利要求2所述的一种Y型六角铁氧体磁电耦合陶瓷材料的制备方法,其特征在于步骤一中所述的烘干是在温度为90~100℃的烘箱中保持4~5小时。
5.根据权利要求2所述的一种Y型六角铁氧体磁电耦合陶瓷材料的制备方法,其特征在于步骤一中所述的干法球磨是将材料加入到行星式球磨机的球磨罐中,在球料质量比为(3~6):1的条件下,以400~500r/min的转速球磨10~15min。
6.根据权利要求2所述的一种Y型六角铁氧体磁电耦合陶瓷材料的制备方法,其特征在于步骤二中所述的预烧是:以4~5℃/min的速率升温至950~1050℃并保持10~12h,然后以4~5℃/min的速率降温至450~550℃,再自然冷却至室温。
7.根据权利要求2所述的一种Y型六角铁氧体磁电耦合陶瓷材料的制备方法,其特征在于步骤四中所述的过筛,是过100目的筛。
8.根据权利要求2所述的一种Y型六角铁氧体磁电耦合陶瓷材料的制备方法,其特征在于步骤四中所述的压片是用压片机将过筛后的粉末在压力为4~4.5MPa的条件下压制30~60s。
9.根据权利要求2所述的一种Y型六角铁氧体磁电耦合陶瓷材料的制备方法,其特征在于步骤四中所述的聚乙烯醇缩丁醛酯溶液的质量百分浓度为8%;5g粗材料粉末中加入6~8滴质量百分浓度为8%聚乙烯醇缩丁醛酯溶液。
CN202210354063.1A 2022-04-06 2022-04-06 一种y型六角铁氧体磁电耦合陶瓷材料及其制备方法 Active CN114890780B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210354063.1A CN114890780B (zh) 2022-04-06 2022-04-06 一种y型六角铁氧体磁电耦合陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210354063.1A CN114890780B (zh) 2022-04-06 2022-04-06 一种y型六角铁氧体磁电耦合陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114890780A CN114890780A (zh) 2022-08-12
CN114890780B true CN114890780B (zh) 2023-05-05

Family

ID=82715693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210354063.1A Active CN114890780B (zh) 2022-04-06 2022-04-06 一种y型六角铁氧体磁电耦合陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114890780B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010039012A2 (ko) * 2008-10-02 2010-04-08 서울대학교 산학협력단 다강체 물질 및 그 제조 방법
CN105967673A (zh) * 2016-05-09 2016-09-28 武汉理工大学 单相多铁性铁酸铅镧陶瓷材料及其制备方法
WO2020091197A1 (ko) * 2018-10-30 2020-05-07 울산과학기술원 강자성 원소 치환형 상온 다강성 물질 및 그 제조 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7316126A (zh) * 1971-09-24 1974-06-04
JP2000277359A (ja) * 1999-03-19 2000-10-06 Alps Electric Co Ltd 放電灯点灯装置
JP3491035B2 (ja) * 2000-04-14 2004-01-26 独立行政法人産業技術総合研究所 巨大磁気抵抗効果材料用フェライト粉末、同用フェライト焼結体及びバルク磁気抵抗素子
JP5704383B2 (ja) * 2010-06-17 2015-04-22 株式会社村田製作所 電気磁気効果材料及びその製造方法
US9340902B2 (en) * 2012-11-16 2016-05-17 Snu R&Db Foundation Magnetoelectric material and method of manufacturing the same
CN104200944B (zh) * 2014-08-14 2018-03-02 蕲春县蕊源电子有限公司 一种高q值复合软磁材料及其制备方法
CN108300882B (zh) * 2018-02-11 2019-12-13 江西理工大学 在MnCoGe基合金中实现磁结构耦合相变的方法
CN109867517B (zh) * 2019-03-28 2021-11-02 天通控股股份有限公司 一种wpc及nfc兼用高频高磁导率低损耗镍锌铁氧体及其制备方法
JP6733858B1 (ja) * 2019-04-15 2020-08-05 住友金属鉱山株式会社 電磁波吸収材料及び電磁波吸収体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010039012A2 (ko) * 2008-10-02 2010-04-08 서울대학교 산학협력단 다강체 물질 및 그 제조 방법
CN105967673A (zh) * 2016-05-09 2016-09-28 武汉理工大学 单相多铁性铁酸铅镧陶瓷材料及其制备方法
WO2020091197A1 (ko) * 2018-10-30 2020-05-07 울산과학기술원 강자성 원소 치환형 상온 다강성 물질 및 그 제조 방법

Also Published As

Publication number Publication date
CN114890780A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
Rodrigues et al. Study of the structural, dielectric and magnetic properties of Bi2O3 and PbO addition on BiFeO3 ceramic matrix
CN102424572B (zh) 高电阻率铁酸铋-钛酸钡固溶体磁电陶瓷材料的制备方法
CN110511018B (zh) 一种高储能密度陶瓷电容器电介质及其制备方法
KR20150048256A (ko) 자성 분말, 그 제조 방법, 및 이를 포함하는 자석
CN1324720C (zh) 制备钙钛矿型稀土锰氧化物巨磁电阻材料的工艺及其产品用途
CN114890780B (zh) 一种y型六角铁氧体磁电耦合陶瓷材料及其制备方法
Shen et al. Structural, electrical and magnetic properties of two-dimensional La 1.2 (Sr 1.8− x Ca x) Mn 2 O 7 manganites
KR20030022336A (ko) 임계전류밀도가 높은 MgB2계 초전도체 및 그의 제조방법
EP0732430B1 (en) Manganese oxide-based single crystal having a laminar structure and method for the preparation thereof
CN115677338B (zh) 一种z型六角铁氧体磁电耦合陶瓷材料及其制备方法
US5332721A (en) Method of fabricating thallium-containing ceramic superconductors
CN118084472A (zh) 一种y型六角铁氧体磁电耦合陶瓷材料及其制备方法
Müller et al. LaSr-manganate powders and bulk material by crystallization of a glass
JP2674683B2 (ja) メモリースイッチング型磁気抵抗素子
US5149683A (en) Method for producing oxide superconductor
US7105138B2 (en) Macroporous perovskite manganese oxides with highly ordered nano-pores and method of preparing the same
JP2812913B2 (ja) 無粒界型マンガン酸化物系結晶体及び低磁場感応性磁気抵抗素子
CN110734286B (zh) 一种铁基石榴石陶瓷材料、其制备和应用
CN114538912B (zh) 一种层状类钙钛矿结构氧化物及其制备方法、应用
CN111606701B (zh) 一种类钙钛矿层状结构化合物及其制备方法
Sundari et al. Structural, Morphological and Dielectric Characterization of Nd Substituted LaBaSrCu3O7–y Superconductors
RU2241675C1 (ru) Перовскитоподобный рутено-купрат на основе празеодима в качестве магнитоупорядоченного сверхпроводящего материала
CN104591713A (zh) 一种添加Bi2O3-B2O3-SiO2玻璃的BiFeO3陶瓷的制备方法
CN118206371A (zh) 一种具有尖晶石结构的软磁铁氧体及其制备方法与磁性能调控方面的应用
RU2241676C1 (ru) Перовскитоподобный рутенокупрат на основе тербия в качестве магнитоупорядоченного сверхпроводящего материала

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant