CN114864687A - 一种集成自反馈栅控制结构的氮化镓功率半导体器件 - Google Patents

一种集成自反馈栅控制结构的氮化镓功率半导体器件 Download PDF

Info

Publication number
CN114864687A
CN114864687A CN202210643562.2A CN202210643562A CN114864687A CN 114864687 A CN114864687 A CN 114864687A CN 202210643562 A CN202210643562 A CN 202210643562A CN 114864687 A CN114864687 A CN 114864687A
Authority
CN
China
Prior art keywords
gallium nitride
metal
gate
type gallium
cap layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210643562.2A
Other languages
English (en)
Other versions
CN114864687B (zh
Inventor
李胜
刘梦丽
张弛
马岩锋
刘斯扬
孙伟锋
时龙兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University-Wuxi Institute Of Integrated Circuit Technology
Southeast University
Original Assignee
Southeast University-Wuxi Institute Of Integrated Circuit Technology
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University-Wuxi Institute Of Integrated Circuit Technology, Southeast University filed Critical Southeast University-Wuxi Institute Of Integrated Circuit Technology
Priority to CN202210643562.2A priority Critical patent/CN114864687B/zh
Publication of CN114864687A publication Critical patent/CN114864687A/zh
Priority to PCT/CN2022/143265 priority patent/WO2023236525A1/zh
Priority to US18/568,277 priority patent/US12027516B1/en
Application granted granted Critical
Publication of CN114864687B publication Critical patent/CN114864687B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8124Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate with multiple gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供一种集成自反馈栅控制结构的氮化镓功率半导体器件,包括:衬底,缓冲层,沟道层,势垒层,由第一金属源电极、第一P型氮化镓帽层、第一金属栅电极、第一金属漏电极、第二P型氮化镓帽层、第二金属栅电极构成的栅控制区,由第一金属源电极、第三P型氮化镓帽层、第三金属栅电极、第二金属漏电极、第二P型氮化镓帽层、第二金属源电极构成的有源工作区;本发明通过栅控制区调节器件整体栅漏电大小,集成度高,寄生少,同时可以有效缓解电荷存储效应,提高器件阈值稳定性。

Description

一种集成自反馈栅控制结构的氮化镓功率半导体器件
技术领域
本发明涉及半导体功率器件领域,具体涉及一种集成自反馈栅控制结构的氮化镓功率半导体器件。
背景技术
氮化镓是第三代宽禁带半导体的代表之一,具有宽带隙、高击穿电场、高热导率等特性,在功率开关器件方向具有广泛需求。以AlGaN/GaN的横向异质结氮化镓功率器件为代表,由于GaN基半导体的自发极化和压电极化效应, AlGaN/GaN异质结界面处在非故意掺杂的情况下产生具有高电子迁移率和高饱和电子漂移速度的二维电子气(2DEG),利用AlGaN/GaN异质结构制备的高电子迁移率晶体管(HEMT)可用于高频、高压、高温等应用领域。
AlGaN/GaN异质结界面产生的2DEG在通常条件下难以被耗尽,因此目前基于AlGaN/GaN异质结构的氮化镓器件一般为常开型器件,需要稳定的导通电流以保持器件导通。在功率开关应用中考虑安全因素,一般采用常关型器件。对于传统具有P型氮化镓帽层的肖特基栅结构的氮化镓器件,由于肖特基接触等效为一反偏二极管且P型氮化镓帽层与沟道层之间形成PiN结构,因此传统肖特基栅结构的氮化镓器件等效存在一对背靠背二极管,由于电荷存储效应,导致器件在重复开关或连续工作状态下,P型氮化镓帽层中感应的电子无法及时释放,使得器件在下次开启前需要先耗尽P型GaN帽层中存储的电子,导致器件阈值不稳定:阈值电压正漂会导致器件导通电阻增加,阈值电压负漂会导致器件容易误开启。因此阈值不稳定问题在极大程度上会引发器件在系统应用中的一系列可靠性问题、限制器件在高频开关下的使用并对器件电学参数及性能等方面造成负面影响;而传统欧姆栅结构的氮化镓器件则存在栅极泄漏电流过大的缺点,严重影响器件在高栅压条件下工作状态的稳定性。
发明内容
技术问题:针对上述AlGaN/GaN HEMT器件在实际应用过程中阈值电压不稳定及栅极泄露电流较大的问题,本发明提供了一种集成自反馈栅控制结构的氮化镓功率半导体器件,可以有效提高器件阈值稳定性,同时通过自反馈栅控制结构实现调节器件整体栅漏电大小的作用。
技术方案:本发明的一种集成自反馈栅控制结构的氮化镓功率半导体器件采用的技术方法为:
自下而上层叠的衬底、缓冲层、沟道层和势垒层,所述沟道层与势垒层之间由于极化效应产生具有高电子迁移率的异质结沟道,所述势垒层上表面设有栅控制区及有源工作区;
其特征在于所述栅控制区中,势垒层上表面依次间隔设有第一金属源电极、第一P型氮化镓帽层、第一金属漏电极、第二P型氮化镓帽层,其中所述第一P 型氮化镓帽层上表面设有第一金属栅电极,所述第二P型氮化镓帽层上表面设有第二金属栅电极,所述第一金属源电极与第一P型氮化镓帽层之间通过第一电阻区连接,所述第一P型氮化镓帽层与第二P型氮化镓帽层之间通过第二电阻区连接,所述第一金属漏电极与第二P型氮化镓帽层之间通过第三电阻区连接;
所述有源工作区中,势垒层上表面依次间隔设有第一金属源电极、第三P 型氮化镓帽层、第二金属漏电极、第二P型氮化镓帽层、金属源电极,其中所述第三P型氮化镓帽层上表面设有第三金属栅电极,所述第二P型氮化镓帽层上表面设有第二金属栅电极;
所述栅控制区与有源工作区共用第一金属源电极,栅控制区中第一金属漏电极与有源工作区中第三金属栅电极通过连接金属连接,栅控制区与有源工作区共用第二P型氮化镓帽层及第二金属栅电极。
所述第一金属栅电极与第一P型氮化镓帽层之间形成肖特基接触,所述第二金属栅电极与第二P型氮化镓帽层之间形成肖特基接触,所述第三金属栅电极与第三P型氮化镓帽层之间形成欧姆接触,所述第一金属源电极、第二金属源电极、第一金属漏电极及第二金属漏电极均与势垒层之间形成欧姆接触。
栅控制区中的第一金属源电极、第一金属栅电极与第一金属漏电极构成肖特基栅接触类型的增强型氮化镓晶体管;有源工作区中第一金属源电极、第三金属栅电极与第二金属漏电极构成欧姆栅接触类型的氮化镓晶体管,第二金属漏电极、第二金属栅电极与第二金属源电极构成肖特基栅接触类型的氮化镓晶体管。
第一电阻区、第二电阻区及第三电阻区为由所述异质结沟道构成的高电子迁移率电阻、介质电阻、漂移区体电阻的一种或多种组合,其形状为S型、回型、直条型的一种或多种组合。
所述第一电阻区、第二电阻区及第三电阻区,通过改变长宽比调节电阻区阻值大小,第三电阻区用于调节器件整体漏电大小,其阻值为1mΩ-1kΩ,第一电阻区与第二电阻区的阻值比例用于调节栅控制区中肖特基栅接触类型的增强型氮化镓晶体管的开启电压,实现高栅压下第三金属栅电极栅电压的下降,从而实现栅漏电自反馈控制。
所述栅控制区中第一金属栅电极与第二金属栅电极采用相同工艺,其中第一金属栅电极的栅宽与栅长为1um-100um,第二金属栅电极栅长为 1000um-100000um。
所述栅控制区中可以为肖特基栅接触类型的耗尽型氮化镓晶体管。
本发明中所述栅控制区中肖特基栅接触类型的增强型氮化镓晶体管栅极电压由第一电阻区及第二电阻区调控,表示为
Figure BDA0003683175770000031
进一步可表示为
Figure BDA0003683175770000032
当V8a小于栅控制区中肖特基栅接触类型的增强型氮化镓晶体管的阈值时,所述栅控制区中肖特基栅接触类型的增强型氮化镓晶体管关断,有源工作区中欧姆栅接触类型的氮化镓晶体管的栅极电位与有源工作区中肖特基栅接触类型的氮化镓晶体管的栅极电位基本相等,从而实现电荷释放,缓解电荷存储效应,提高器件阈值稳定性;当V8a大于栅控制区中肖特基栅接触类型的增强型氮化镓晶体管的阈值时,所述栅控制区中肖特基栅接触类型的增强型氮化镓晶体管导通,有源工作区中欧姆栅接触类型的氮化镓晶体管的栅极电位被下拉,因此在正常导通状态下,有源工作区中仅肖特基栅接触类型的氮化镓晶体管工作,从而有效降低器件栅极泄漏电流。
所述栅控制区中欧姆栅接触类型的氮化镓晶体管栅极电位可表示为
Figure BDA0003683175770000033
其中RM表示所述栅控制区中肖特基栅接触类型的增强型氮化镓晶体管的沟道电阻,进一步地,有源工作区中欧姆栅接触类型的氮化镓晶体管栅极电位可表示为
Figure BDA0003683175770000034
RM值的大小随所述栅控制区中肖特基栅接触类型的增强型氮化镓晶体管的关断或导通状态变化。
有益效果:与现有技术相比,本发明具有如下有益效果,
提高阈值稳定性。本发明结合了肖特基栅结构与欧姆栅结构的优点,当栅控制区中肖特基栅接触类型的增强型氮化镓晶体管栅极电压小于该增强型氮化镓晶体管的阈值时,通过有源工作区中欧姆栅接触类型的氮化镓晶体管结构帮助泄放P型氮化镓帽层中的存储电荷,有效减缓了电荷存储效应,从而达到提升阈值稳定性的效果。
降低栅极泄露电流。相较于传统欧姆栅结构器件,本发明采用欧姆栅与肖特基栅混合连接的栅结构,有效降低了器件栅极泄露电流,同时,自反馈栅控制结构使器件在当栅控制区中肖特基栅接触类型的增强型氮化镓晶体管栅极电压大于该增强型氮化镓晶体管阈值时,仅保证有源工作区中肖特基栅接触类型的氮化镓晶体管工作,从而进一步减小栅极泄漏电流,并控制栅极泄露电流大小不超过所设定的最大值,所述最大栅极泄露电流可通过第三电阻区的电阻值进行控制调节。
集成度高,寄生少。本发明中,栅控制区第一金属栅电极与有源工作区第二金属栅电极采用相同工艺,减小了工艺难度,且栅控制区与有源工作区的相互连接关系,使得器件集成度更高,并降低了栅极部分寄生对器件在实际应用中的不利影响。
器件可靠性提高,导通功耗降低。欧姆栅极有助于氮化镓器件在导通时从P 型GaN帽层中向势垒层注入大量空穴从而有利于器件在关断时释放被电子陷阱俘获的电子,进而优化器件的动态电阻,提高器件可靠性;同时肖特基栅极克服了单一欧姆栅极氮化镓器件在导通时因需要持续维持电流导致的功耗较大的缺点。
附图说明
图1为具有p型氮化镓帽层的传统氮化镓器件结构示意图与等效电路图;
图2为具有混合栅结构的氮化镓器件结构示意图与等效电路图;
图3a为传统氮化镓器件与传统混合栅结构的氮化镓器件在应力下阈值电压对比图,图3b为不同栅压下栅极泄漏电流对比图;
图4为本发明提出的一种集成自反馈栅控制结构的氮化镓功率半导体器件结构示意图与等效电路图;
图5a为本发明中所述第一电阻区与第二电阻区比值关系;
图5b为所述比值关系大小对栅控制区中肖特基栅接触类型的增强型氮化镓晶体管开启电压的调节作用图,其中纵坐标Vth为栅控制区中增强型氮化镓晶体管阈值;
图6(a)为本发明中栅控制区中肖特基栅接触类型的增强型氮化镓晶体管的等效电路原理图,图6(b)为当V8a小于栅控制区中肖特基栅接触类型增强型氮化镓晶体管阈值时等效原理图;图6(c)为当V8a大于栅控制区中肖特基栅接触类型增强型氮化镓晶体管阈值时等效原理图;
图7a为本发明与传统肖特基栅接触类型氮化镓器件和传统混合栅接触类型氮化镓器件在应力下阈值电压对比图;
图7b为本发明与传统欧姆栅接触类型氮化镓器件和传统肖特基栅接触类型氮化镓器件在不同栅压下栅极泄漏电流对比图,可以看出在相同条件下,本发明具有高阈值稳定性和较小的栅极泄漏电流;
图8a为本发明实施例中提出的另一种集成自反馈栅控制结构的氮化镓功率半导体器件结构图;
图8b为图8a所述结构的等效原理图,其中图8b(a)为当有源工作区B中肖特基栅接触类型的氮化镓晶体管栅极施加的电压负值,即-V8b大于所述栅控制区A中肖特基栅接触类型的耗尽型氮化镓晶体管的阈值电压时的等效原理图;图8b(b)当有源工作区B中肖特基栅接触类型的氮化镓晶体管栅极施加的电压负值,即-V8b小于所述栅控制区A中肖特基栅接触类型的耗尽型氮化镓晶体管的阈值电压时的等效原理图。
具体实施方式
结合附图和具体实施方式对本发明作进一步详细说明。
实施例1:
其结构包括:自下而上层叠的衬底1、缓冲层2、沟道层3和势垒层4,所述沟道层3与势垒层4之间由于极化效应产生具有高电子迁移率的异质结沟道 3a,所述势垒层4上表面设有栅控制区A及有源工作区B;
所述栅控制区A中,势垒层4上表面依次间隔设有第一金属源电极5a、第一P型氮化镓帽层6a、第一金属漏电极7a、第二P型氮化镓帽层6b,其中所述第一P型氮化镓帽层6a上表面设有第一金属栅电极8a,所述第二P型氮化镓帽层6b上表面设有第二金属栅电极8b,所述第一金属源电极5a与第一P型氮化镓帽层6a之间通过第一电阻区10a连接,所述第一P型氮化镓帽层6a与第二P 型氮化镓帽层6b之间通过第二电阻区10b连接,所述第一金属漏电极7a与第二 P型氮化镓帽层6b之间通过第三电阻区10c连接;
所述有源工作区B中,势垒层4上表面依次间隔设有第一金属源电极5a、第三P型氮化镓帽层6c、第二金属漏电极7b、第二P型氮化镓帽层6b、金属源电极5b,其中所述第三P型氮化镓帽层6c上表面设有第三金属栅电极8c,所述第二P型氮化镓帽层6b上表面设有第二金属栅电极8b;
所述栅控制区A与有源工作区B共用第一金属源电极5a,栅控制区A中第一金属漏电极7a与有源工作区B中第三金属栅电极8c通过连接金属9连接,栅控制区A与有源工作区B共用第二P型氮化镓帽层6b及第二金属栅电极8b。
图5描述了栅控制区A中第一电阻区10a和第二电阻区10b的比值关系
Figure BDA0003683175770000061
及其大小对栅控制区A中肖特基栅接触类型增强型氮化镓晶体管的开启电压的调节作用,从而实现自反馈栅控制作用,以
Figure BDA0003683175770000062
为例,当有源工作区B中肖特基栅接触类型的氮化镓晶体管栅极电压小于栅控制区A中肖特基栅接触类型增强型氮化镓晶体管的开启电压时,如图5b阴影部分所示,有源工作区B中欧姆栅接触类型氮化镓晶体管与有源工作区B中肖特基栅接触类型氮化镓晶体管同时工作;当有源工作区B中肖特基栅接触类型的氮化镓晶体管栅极电压大于栅控制区A中肖特基栅接触类型增强型氮化镓晶体管的开启电压V1时,即如图5b阴影右侧部分所示,有源工作区B中仅肖特基栅接触类型氮化镓晶体管工作,因此可以通过调节
Figure BDA0003683175770000063
比值大小调节上述栅控制区A中肖特基栅接触类型增强型氮化镓晶体管的开启电压V1,进而实现自反馈栅控制作用。
实施例2:
基于实施例1中所述结构,在本实施例中,其特征在于:栅控制区A中可以为肖特基栅接触类型的耗尽型氮化镓晶体管,参照图8a,第一金属栅电极 8a通过连接金属9a与第一金属源电极5a连接,第一金属源电极5a通过连接金属9b与有源工作区B中第三金属栅电极8c连接,金属漏电极7通过连接金属 9c与有源工作区B中第二金属栅电极8b连接。与实施例1不同,本实施例中器件阈值由所述栅控制区A中肖特基栅接触类型的耗尽型氮化镓晶体管的阈值直接调控,无需设置电阻区。
为了更好地理解本实施例器件,图8b给出了本实施例在不同条件下工作时的电路原理图:当有源工作区B中肖特基栅接触类型的氮化镓晶体管栅极施加的电压负值大于所述栅控制区A中肖特基栅接触类型的耗尽型氮化镓晶体管的阈值电压时,如图8b所示耗尽型晶体管导通,有源工作区B中肖特基栅接触类型的氮化镓晶体管与有源工作区B中欧姆栅接触类型的氮化镓晶体管同时工作;当有源工作区B中肖特基栅接触类型的氮化镓晶体管栅极施加的电压负值小于所述栅控制区A中肖特基栅接触类型的耗尽型氮化镓晶体管的阈值电压时,如图8b所示耗尽型晶体管关断,有源工作区B中仅肖特基栅接触类型的氮化镓晶体管工作,从而实现了集成自反馈栅控制。

Claims (7)

1.一种集成自反馈栅控制结构的氮化镓功率半导体器件,其结构包括:自下而上层叠的衬底(1)、缓冲层(2)、沟道层(3)和势垒层(4),所述沟道层(3)与势垒层(4)之间由于极化效应产生具有高电子迁移率的异质结沟道(3a),所述势垒层(4)上表面设有栅控制区(A)及有源工作区(B);
其特征在于,所述栅控制区(A)中,势垒层(4)上表面依次间隔设有第一金属源电极(5a)、第一P型氮化镓帽层(6a)、第一金属漏电极(7a)、第二P型氮化镓帽层(6b),其中所述第一P型氮化镓帽层(6a)上表面设有第一金属栅电极(8a),所述第二P型氮化镓帽层(6b)上表面设有第二金属栅电极(8b),所述第一金属源电极(5a)与第一P型氮化镓帽层(6a)之间通过第一电阻区(10a)连接,所述第一P型氮化镓帽层(6a)与第二P型氮化镓帽层(6b)之间通过第二电阻区(10b)连接,所述第一金属漏电极(7a)与第二P型氮化镓帽层(6b)之间通过第三电阻区(10c)连接;
所述有源工作区(B)中,势垒层(4)上表面依次间隔设有第一金属源电极(5a)、第三P型氮化镓帽层(6c)、第二金属漏电极(7b)、第二P型氮化镓帽层(6b)、金属源电极(5b),其中所述第三P型氮化镓帽层(6c)上表面设有第三金属栅电极(8c),所述第二P型氮化镓帽层(6b)上表面设有第二金属栅电极(8b);
所述栅控制区(A)与有源工作区(B)共用第一金属源电极(5a),栅控制区(A)中第一金属漏电极(7a)与有源工作区(B)中第三金属栅电极(8c)通过连接金属(9)连接,栅控制区(A)与有源工作区(B)共用第二P型氮化镓帽层(6b)及第二金属栅电极(8b)。
2.根据权利要求1所述的一种集成自反馈栅控制结构的氮化镓功率半导体器件,其特征在于:所述第一金属栅电极(8a)与第一P型氮化镓帽层(6a)之间形成肖特基接触,所述第二金属栅电极(8b)与第二P型氮化镓帽层(6b)之间形成肖特基接触,所述第三金属栅电极(8c)与第三P型氮化镓帽层(6c)之间形成欧姆接触,所述第一金属源电极(5a)、第二金属源电极(5b)、第一金属漏电极(7a)及第二金属漏电极(7b)均与势垒层(4)之间形成欧姆接触。
3.根据权利要求1所述的一种集成自反馈栅控制结构的氮化镓功率半导体器件,其特征在于:栅控制区(A)中的第一金属源电极(5a)、第一金属栅电极(8a)与第一金属漏电极(7a)构成肖特基栅接触类型的增强型氮化镓晶体管;有源工作区(B)中第一金属源电极(5a)、第三金属栅电极(8c)与第二金属漏电极(7b)构成欧姆栅接触类型的氮化镓晶体管,第二金属漏电极(7b)、第二金属栅电极(8b)与第二金属源电极(5b)构成肖特基栅接触类型的氮化镓晶体管。
4.根据权利要求1所述的一种集成自反馈栅控制结构的氮化镓功率半导体器件,其特征在于:第一电阻区(10a)、第二电阻区(10b)及第三电阻区(10c)为由所述异质结沟道(3a)构成的高电子迁移率电阻、介质电阻、漂移区体电阻的一种或多种组合,其形状为S型、回型、直条型的一种或多种组合。
5.根据权利要求1所述的一种集成自反馈栅控制结构的氮化镓功率半导体器件,其特征在于:所述第一电阻区(10a)、第二电阻区(10b)及第三电阻区(10c),通过改变长宽比调节电阻区阻值大小,第三电阻区(10c)用于调节器件整体漏电大小,其阻值为1mΩ-1kΩ,第一电阻区(10a)与第二电阻区(10b)的阻值比例用于调节栅控制区(A)中肖特基栅接触类型的增强型氮化镓晶体管的开启电压,实现高栅压下第三金属栅电极(8c)栅电压的下降,从而实现栅漏电自反馈控制。
6.根据权利要求1所述的一种集成自反馈栅控制结构的氮化镓功率半导体器件,其特征在于:所述栅控制区(A)中第一金属栅电极(8a)与第二金属栅电极(8b)采用相同工艺,其中第一金属栅电极(8a)的栅宽与栅长为1um-100um,第二金属栅电极(8b)栅长为1000um-100000um。
7.根据权利要求1所述的一种集成自反馈栅控制结构的氮化镓功率半导体器件,其特征在于:所述栅控制区(A)中可为肖特基栅接触类型的耗尽型氮化镓晶体管。
CN202210643562.2A 2022-06-08 2022-06-08 一种集成自反馈栅控制结构的氮化镓功率半导体器件 Active CN114864687B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210643562.2A CN114864687B (zh) 2022-06-08 2022-06-08 一种集成自反馈栅控制结构的氮化镓功率半导体器件
PCT/CN2022/143265 WO2023236525A1 (zh) 2022-06-08 2022-12-29 一种集成自反馈栅控制结构的氮化镓功率半导体器件
US18/568,277 US12027516B1 (en) 2022-06-08 2022-12-29 GaN power semiconductor device integrated with self-feedback gate control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210643562.2A CN114864687B (zh) 2022-06-08 2022-06-08 一种集成自反馈栅控制结构的氮化镓功率半导体器件

Publications (2)

Publication Number Publication Date
CN114864687A true CN114864687A (zh) 2022-08-05
CN114864687B CN114864687B (zh) 2024-07-02

Family

ID=82623680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210643562.2A Active CN114864687B (zh) 2022-06-08 2022-06-08 一种集成自反馈栅控制结构的氮化镓功率半导体器件

Country Status (3)

Country Link
US (1) US12027516B1 (zh)
CN (1) CN114864687B (zh)
WO (1) WO2023236525A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236525A1 (zh) * 2022-06-08 2023-12-14 东南大学 一种集成自反馈栅控制结构的氮化镓功率半导体器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789982A (zh) * 2011-05-16 2012-11-21 中国科学院微电子研究所 一种增强型AlN/GaN高电子迁移率晶体管及其制作方法
CN112331720A (zh) * 2020-11-07 2021-02-05 东南大学 一种具有高阈值稳定性型氮化镓功率半导体器件
CN112930602A (zh) * 2020-04-20 2021-06-08 华为技术有限公司 一种氮化镓器件及其驱动电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130240951A1 (en) 2012-03-13 2013-09-19 International Business Machines Corporation Gallium nitride superjunction devices
WO2019008603A1 (en) 2017-07-07 2019-01-10 Indian Institute Of Science HIGH RESURF JUNCTION ELECTRON MOBILITY TRANSISTOR (HEMT)
GB2564482B (en) 2017-07-14 2021-02-10 Cambridge Entpr Ltd A power semiconductor device with a double gate structure
US11336279B2 (en) * 2017-07-14 2022-05-17 Cambridge Enterprise Limited Power semiconductor device with a series connection of two devices
US11024626B2 (en) * 2018-10-31 2021-06-01 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and circuits including transistors with different threshold voltages and methods of fabricating the same
US11245030B2 (en) * 2018-10-31 2022-02-08 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and circuits including transistors with different polarizations and methods of fabricating the same
CN110649096B (zh) 2019-10-08 2021-06-04 电子科技大学 一种高压n沟道HEMT器件
KR20220153962A (ko) * 2021-05-12 2022-11-21 삼성전자주식회사 반도체 집적 회로 소자 및 그 제조 방법
CN114864687B (zh) 2022-06-08 2024-07-02 东南大学 一种集成自反馈栅控制结构的氮化镓功率半导体器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789982A (zh) * 2011-05-16 2012-11-21 中国科学院微电子研究所 一种增强型AlN/GaN高电子迁移率晶体管及其制作方法
CN112930602A (zh) * 2020-04-20 2021-06-08 华为技术有限公司 一种氮化镓器件及其驱动电路
CN112331720A (zh) * 2020-11-07 2021-02-05 东南大学 一种具有高阈值稳定性型氮化镓功率半导体器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236525A1 (zh) * 2022-06-08 2023-12-14 东南大学 一种集成自反馈栅控制结构的氮化镓功率半导体器件
US12027516B1 (en) 2022-06-08 2024-07-02 Southeast University GaN power semiconductor device integrated with self-feedback gate control structure

Also Published As

Publication number Publication date
CN114864687B (zh) 2024-07-02
WO2023236525A1 (zh) 2023-12-14
US12027516B1 (en) 2024-07-02

Similar Documents

Publication Publication Date Title
US11404565B2 (en) Power semiconductor device with an auxiliary gate structure
US11336279B2 (en) Power semiconductor device with a series connection of two devices
JP6066933B2 (ja) 半導体デバイスの電極構造
US6933544B2 (en) Power semiconductor device
CN100388509C (zh) 功率半导体器件
CN107482059B (zh) 一种GaN异质结纵向逆导场效应管
CN112930602B (zh) 一种氮化镓器件及其驱动电路
CN110047910B (zh) 一种高耐压能力的异质结半导体器件
JP2023537713A (ja) 空乏層を有するiii族窒化物デバイス
WO2010021099A1 (ja) 電界効果トランジスタ
CN104934476A (zh) 半导体装置及其制造方法
JP2005244072A (ja) 半導体装置
JP2007048866A (ja) 窒化物半導体素子
CN104347698A (zh) 半导体装置
US10505032B2 (en) Semiconductor device with III-nitride channel region and silicon carbide drift region
WO2023273900A1 (zh) 一种低动态电阻增强型GaN器件
CN111969047B (zh) 一种具有复合背势垒层的氮化镓异质结场效应晶体管
TW202141789A (zh) 三五族半導體裝置
CN114447102A (zh) 具有衬底上复合半导体层的氮化镓异质结场效应晶体管
CN113161345A (zh) 一种新型的GaN基ESD防护电路
CN114864687B (zh) 一种集成自反馈栅控制结构的氮化镓功率半导体器件
JP2007027440A (ja) 半導体装置
CN115513293A (zh) 一种增强型氮化镓异质结场效应晶体管
CN113871478B (zh) 基于双栅的具有p型沟道特性的新型半导体器件
CN115425064A (zh) 集成反向sbd的高可靠性碳化硅mosfet器件及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant