CN114853506A - 碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层及制备方法 - Google Patents

碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层及制备方法 Download PDF

Info

Publication number
CN114853506A
CN114853506A CN202210332276.4A CN202210332276A CN114853506A CN 114853506 A CN114853506 A CN 114853506A CN 202210332276 A CN202210332276 A CN 202210332276A CN 114853506 A CN114853506 A CN 114853506A
Authority
CN
China
Prior art keywords
powder
hfzrti
medium
coating
entropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210332276.4A
Other languages
English (en)
Other versions
CN114853506B (zh
Inventor
张雨雷
李佳宸
张建华
朱肖飞
李涛
吕君帅
盖文涵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210332276.4A priority Critical patent/CN114853506B/zh
Publication of CN114853506A publication Critical patent/CN114853506A/zh
Application granted granted Critical
Publication of CN114853506B publication Critical patent/CN114853506B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

本发明涉及一种碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层及制备方法,首先在高温热处理炉中将HfO2粉、ZrO2粉、TiO2粉和碳粉混合烧结,利用碳热还原反应制备出(HfZrTi)C3中熵陶瓷粉体,该合成工艺简单、成分均匀、成本低、制备周期短;然后研磨并造粒,采用超音速等离子喷涂技术在包覆有SiC内涂层的C/C复合材料表面制备了(HfZrTi)C3中熵陶瓷涂层,该涂层具有优异抗烧蚀能力。该发明为高性能中熵碳化物抗烧蚀涂层C/C复合材料在空天飞行器热端部件的应用奠定基础。

Description

碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层及制备 方法
技术领域
本发明属于超高温抗烧蚀涂层领域,涉及一种碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层及制备方法。
背景技术
碳/碳(C/C)复合材料具有密度低、导热系数高、机械性能好、高温热膨胀系数低等优异性能,已被应用于飞机和航空航天领域。然而C/C复合材料在高于450℃的氧化环境中会因为C/C发生氧化而导致其力学性能降低。甚至在超高温(2000℃以上)和富氧环境条件下,在外部高压和高速燃烧气流作用下,C/C复合材料将发生烧蚀,力学性能急剧降低。制备难熔碳化物涂层被认为是避免C/C复合材料快速烧蚀的有效方法。
文献1“Jincui Ren,Errong Feng,Yulei Zhang,et al.Influences ofdeposition temperature,gas flow rate and ZrC content on the microstructureand anti-ablation performance of CVD-HfC-ZrC coating[J].CeramicsInternational,2021,47:556-566.”用化学气相沉积法制备了HfC-ZrC双相涂层,在烧蚀过程中,涂层表面形成疏松的氧化物骨架,可以一定程度上保护C/C复合材料。但是这种结构不利于阻氧,氧气会向内涂层扩散并发生反应,导致涂层失效,该涂层不利于C/C复合材料长时间抗烧蚀。
考虑到TiO2具有比HfO2和ZrO2更低熔点温度的特点,容易在烧蚀过程中形成低熔点液相,从而填补疏松骨架。因此可以在HfC-ZrC涂层基础上添加TiC,从而提高HfC-ZrC涂层抗烧蚀性能。此外,中熵碳化物可以整合多种碳化物优异特性,并且具有较大晶格畸变效应特点,这使得它们比传统的单相碳化物具有更高的硬度和强度、良好的耐磨性和优异的耐腐蚀性。因此可以考虑在C/C复合材料表面制备(ZrHfTi)C3中熵碳化物抗烧蚀涂层,从而提高C/C复合材料涂层抗烧蚀性能。
文献2“Huilin Lun,Yi Zeng,Xiang Xiong,et al.Oxidation behavior of non-stoichiometric(Zr,Hf,Ti)Cx carbide solid solution powders in air[J].Journalof Advanced Ceramics,2021,10:741-757.”报道了一种非等比例HfxZryTizC中熵粉体的制备方法。具体方法是将铪粉、锆粉、钛粉和碳粉在真空(<5Pa)下以100℃/min的加热速率升温至1600℃,并进行15min的无压等离子烧结。实验结果发现HfxZryTizC具有比单相碳化物HfC和ZrC更好的抗氧化性能。然而这种方法并不能直接在C/C复合材料表面将HfxZryTizC粉体制备成涂层。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层及制备方法,获得具有优异抗烧蚀性能的C/C复合材料涂层。首先采用碳热还原反应直接制备出(ZrHfTi)C3中熵陶瓷粉体,然后将造粒后的(ZrHfTi)C3中熵陶瓷粉体,采用超音速等离子喷涂技术在包覆有SiC内涂层的C/C复合材料表面得到(HfZrTi)C3中熵陶瓷涂层。
技术方案
一种碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层,其特征在于内涂层为SiC涂层,外涂层为(HfZrTi)C3
一种制备所述碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层的方法,其特征在于步骤如下:
步骤1:HfO2粉、ZrO2粉、TiO2粉以及C粉混合作为原料得到混合粉末;
所述HfO2粉﹕ZrO2粉﹕TiO2粉﹕C粉摩尔比为1﹕1﹕1﹕3;
步骤2:将石墨纸包裹混合粉体,放置于石墨坩埚内,然后在石墨纸上施加5-10MPa载荷;将石墨坩埚放入高温热处理炉底部;采用惰性气体保护,随炉冷却到室温,利用碳热还原反应制备(HfZrTi)C3中熵陶瓷粉体;
步骤3:将(HfZrTi)C3中熵陶瓷粉体放入球磨罐中研磨;将研磨后粉体采用喷雾干燥法进行造粒;
步骤4:将造粒后(HfZrTi)C3中熵陶瓷粉体装入超音速等离子喷涂送粉器,在包覆有SiC内涂层的C/C复合材料表面制备(HfZrTi)C3中熵涂层;
所述等离子喷涂工艺参数:喷涂直流电流:350~450A;喷涂直流电压:80~150V;主气流量:70~90L/min;辅气流量:4~6L/min;送粉速率:15~35g/min;喷涂距离:70~120mm;喷涂过程为6~10次喷涂。
所述混合粉末中的Hf﹕Zr﹕Ti摩尔比为1﹕1﹕1。
所述混合粉末通过行星式球磨罐研磨原料得到。
所述HfO2粉、ZrO2粉、TiO2粉的纯度均≥99.5%,粒径均为1~3μm。
所述C粉的纯度≥99.9%,粒径为1~3μm。
所述球磨机的转速为200-300r/min,球磨时间为6~10h。
所述步骤2中,惰性气体为Ar气;热处理炉以3~6℃/min升温到2000~2200℃。
所述步骤3中,(HfZrTi)C3中熵陶瓷粉体造粒粒径为40~70μm;所述喷雾干燥法造粒时:干燥器进口温度310~330℃,出口温度100~150℃,喷头转速25~35rpm,进料速度70~80ml/min。
所述步骤4中,喷涂直流电流:350~450A;喷涂直流电压:80~150V;喷涂过程为6~10次喷涂。
有益效果
本发明提出的一种碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层及制备方法,首先在高温热处理炉中将HfO2粉、ZrO2粉、TiO2粉和碳粉混合烧结,利用碳热还原反应制备出(HfZrTi)C3中熵陶瓷粉体,该合成工艺简单、成分均匀、成本低、制备周期短;然后研磨并造粒,采用超音速等离子喷涂技术在包覆有SiC内涂层的C/C复合材料表面制备了(HfZrTi)C3中熵陶瓷涂层,该涂层具有优异抗烧蚀能力。该发明为高性能中熵碳化物抗烧蚀涂层C/C复合材料在空天飞行器热端部件的应用奠定基础。
对于涂层的改变:传统的HfC和ZrC涂层由于其氧化物(HfO2和ZrO2)骨架疏松,在2100℃下烧蚀90s时涂层完全失效,无法抵御长期烧蚀。本发明所用中熵碳化物(ZrHfTi)C3涂层相对传统单相碳化物而言,中熵碳化物具有较大晶格畸变效应,可以提高峰值氧化温度以及高温条件下氧化物相稳定性,所形成的氧化层(Hf,Zr,Ti)O2致密,有效阻隔氧气渗入,在烧蚀120s以后,依旧能够有效保护C/C复合材料。因此中熵碳化物(ZrHfTi)C3涂层具有更优异的烧蚀性能。
对于工艺的改变:首先在包裹混合粉体的石墨纸上施加5-10MPa载荷,然后将其放入高温热处理炉底部,采用碳热还原反应制备出(ZrHfTi)C3中熵陶瓷粉体,该过程工艺简单、成本低、制备周期短,施加一定载荷可以制备出成分均匀的中熵粉体,有助于(ZrHfTi)C3中熵陶瓷粉体合成技术的推广。然后采用超音速等离子喷涂技术获得(ZrHfTi)C3中熵涂层,成功将中熵粉体制备于C/C复合材料表面,这为高性能中熵碳化物抗烧蚀涂层C/C复合材料在空天飞行器热端部件的应用奠定基础。
附图说明
图1是超高温陶瓷(HfZrTi)C3中熵粉末的X射线衍射图谱;
经过步骤1和步骤2所得粉体的X射线衍射图谱,可看到图中所有的峰都位于对应HfC、ZrC和TiC峰中间,没有氧化物存在,说明该(HfZrTi)C3中熵粉末成功制备。
图2是超高温陶瓷(HfZrTi)C3中熵涂层表面的宏观照片;
图3是超高温陶瓷(HfZrTi)C3中熵涂层截面的宏观照片
图4是超高温陶瓷(HfZrTi)C3中熵涂层X射线衍射图谱
图2和图3分别是(HfZrTi)C3中熵涂层的表面和截面图片,图4是(HfZrTi)C3中熵涂层X射线衍射图谱。由于超音速等离子喷涂设备温度较高,喷涂过程中出现少量氧化,这是不可避免的。但是XRD结果显示不存在碳化物分相现象,(HfZrTi)C3依旧是主要峰形,并且喷涂以后涂层致密,因此该方法能成功制备出(HfZrTi)C3中熵涂层。
图5是超高温陶瓷(HfZrTi)C3中熵涂层的宏观烧蚀照片
图6是超高温陶瓷(HfZrTi)C3中熵涂层烧蚀60s后氧化物层扫描电镜图
图5和图6分别是超高温陶瓷(HfZrTi)C3中熵涂层烧蚀60s后的宏观烧蚀照片和氧化物层扫描电镜图,可以看到涂层经过烧蚀以后,表面没有任何缺陷,烧蚀性能优异。
图7是本发明实施反例1所制备粉体X射线衍射图谱
是本发明实施反例1所制备粉体X射线衍射图谱,这是通过将1:1:1:3的HfO2粉、ZrO2粉、TiO2粉和C粉在1700℃下烧结,XRD结果显示粉体中含有少量TiC粉末的存在,说明在碳热还原反应过程中,TiO2粉与C粉反应生成TiC,然而在此温度条件下,并不能成功制备出(HfZrTi)C3中熵陶瓷粉体。
图8是本发明实施反例2所制备涂层X射线衍射图谱
是本发明实施反例2所制备涂层的X射线衍射图谱。这是将摩尔比为1:1:1的HfC粉、ZrC粉和TiC粉混合并造粒,然后直接喷涂于SiC内涂层的C/C复合材料表面。喷涂后涂层XRD数据显示涂层中依旧有HfC、ZrC和TiC峰的存在。因此直接用该方式无法制备出(HfZrTi)C3中熵涂层。
图9是本发明实施反例2所制备涂层烧蚀60s后氧化物层扫描电镜图
是本发明实施反例2所制备涂层烧蚀60s后后氧化物层扫描电镜图。该方法所制备涂层烧蚀以后,出现烧蚀坑,烧蚀性能差。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1:
步骤1:称取摩尔比为1:1:1:3的HfO2粉、ZrO2粉、TiO2粉以及C粉混合作为原料放入行星式球磨罐,以240r/min的转速球磨6h得到混合粉末。
步骤2:将石墨纸包裹步骤1中得到的混合粉体,放置于石墨坩埚内,然后在石墨纸上施加5MPa载荷;将石墨坩埚放入高温热处理炉底部;在Ar气保护下,以5℃/min升温速度将炉温升到2100℃,保温3h;随炉冷却到室温,利用碳热还原反应制备得到(HfZrTi)C3中熵陶瓷粉体。
步骤3:将步骤2中所得(HfZrTi)C3中熵陶瓷粉体放入球磨罐中研磨;将研磨后粉体采用喷雾干燥法进行造粒。
干燥器进口温度为330℃,出口温度120℃,喷头转速30rpm,进料速度75ml/min。
步骤4:将步骤3中造粒后(HfZrTi)C3中熵陶瓷粉体装入超音速等离子喷涂送粉器,在包覆有SiC内涂层的C/C复合材料表面制备(HfZrTi)C3中熵涂层;
等离子喷涂工艺参数:喷涂直流电流:450A;喷涂直流电压:120V;主气流量:75L/min;辅气流量:4.5L/min;送粉速率:20g/min;喷涂距离:80mm;喷涂过程为8次喷涂,即得到中熵超高温陶瓷(HfZrTi)C3中熵涂层。
实施例2:
步骤1:称取摩尔比为1:1:1:3的HfO2粉、ZrO2粉、TiO2粉以及C粉混合作为原料放入行星式球磨罐,以300r/min的转速球磨8h得到混合粉末。
步骤2:将石墨纸包裹步骤1中得到的混合粉体,放置于石墨坩埚内,然后在石墨纸上施加6MPa载荷;将石墨坩埚放入高温热处理炉底部;在Ar气保护下,以5℃/min升温速度将炉温升到2200℃,保温4h;随炉冷却到室温,利用碳热还原反应制备得到(HfZrTi)C3中熵陶瓷粉体。
步骤3:将步骤2中所得(HfZrTi)C3中熵陶瓷粉体放入球磨罐中研磨;将研磨后粉体采用喷雾干燥法进行造粒。
干燥器进口温度为350℃,出口温度130℃,喷头转速30rpm,进料速度80ml/min。
步骤4:将步骤3中造粒后(HfZrTi)C3中熵陶瓷粉体装入超音速等离子喷涂送粉器,在包覆有SiC内涂层的C/C复合材料表面制备(HfZrTi)C3中熵涂层;
等离子喷涂工艺参数:喷涂直流电流:420A;喷涂直流电压:120V;主气流量:75L/min;辅气流量:4.5L/min;送粉速率:20g/min;喷涂距离:80mm;喷涂过程为6次喷涂,即得到中熵超高温陶瓷(HfZrTi)C3中熵涂层。
实施例3:
步骤1:称取摩尔比为1:1:1:3的HfO2粉、ZrO2粉、TiO2粉以及C粉混合作为原料放入行星式球磨罐,以200r/min的转速球磨8h得到混合粉末。
步骤2:将石墨纸包裹步骤1中得到的混合粉体,放置于石墨坩埚内,然后在石墨纸上施加5MPa载荷;将石墨坩埚放入高温热处理炉底部;在Ar气保护下,以5℃/min升温速度将炉温升到2100℃,保温3h;随炉冷却到室温,利用碳热还原反应制备得到(HfZrTi)C3中熵陶瓷粉体。
步骤3:将步骤2中所得(HfZrTi)C3中熵陶瓷粉体放入球磨罐中研磨;将研磨后粉体采用喷雾干燥法进行造粒。
干燥器进口温度为350℃,出口温度120℃,喷头转速25rpm,进料速度75ml/min。
步骤4:将步骤3中造粒后(HfZrTi)C3中熵陶瓷粉体装入超音速等离子喷涂送粉器,在包覆有SiC内涂层的C/C复合材料表面制备(HfZrTi)C3中熵涂层;
等离子喷涂工艺参数:喷涂直流电流:400A;喷涂直流电压:140V;主气流量:75L/min;辅气流量:5L/min;送粉速率:25g/min;喷涂距离:100mm;喷涂过程为10次喷涂,即得到中熵超高温陶瓷(HfZrTi)C3中熵涂层。
实施反例1:
步骤1:称取摩尔比为1:1:1:3的HfO2粉、ZrO2粉、TiO2粉以及C粉混合作为原料放入行星式球磨罐,以240r/min的转速球磨6h得到混合粉末。
步骤2:将石墨纸包裹步骤1中得到的混合粉体,放置于石墨坩埚内,然后在石墨纸上施加5MPa载荷;将石墨坩埚放入高温热处理炉底部;在Ar气保护下,以5℃/min升温速度将炉温升到1700℃,保温3h;随炉冷却到室温,利用碳热还原反应制备得到陶瓷粉体。
从图7该实施反例的XRD结果中可以看到,合成的粉体中含有少量TiC粉末的存在,说明在碳热还原反应过程中,TiO2粉与C粉反应生成TiC,然而在此温度条件下,并不能成功制备出(HfZrTi)C3中熵陶瓷粉体。
实施反例2:
步骤1:称取摩尔比为1:1:1的HfC粉、ZrC粉、TiC粉混合作为原料放入行星式球磨罐,以240r/min的转速球磨6h得到混合粉末。
步骤2:将步骤1中所得混合粉体放入球磨罐中研磨;将研磨后粉体采用喷雾干燥法进行造粒。干燥器进口温度为350℃,出口温度120℃,喷头转速25rpm,进料速度75ml/min。
步骤4:将步骤3中造粒后陶瓷粉体装入超音速等离子喷涂送粉器,在包覆有SiC内涂层的C/C复合材料表面制备涂层;
等离子喷涂工艺参数:喷涂直流电流:400A;喷涂直流电压:130V;主气流量:75L/min;辅气流量:5L/min;送粉速率:25g/min;喷涂距离:100mm;喷涂过程为10次喷涂。
该反例直接采用HfC粉、ZrC粉和TiC粉混合并造粒,然后喷涂在SiC内涂层的C/C复合材料表面制备涂层。图8为该实施反例喷涂后涂层XRD数据,可以看到依旧有HfC、ZrC和TiC峰的存在。因此直接用该方法喷涂无法制备出(HfZrTi)C3中熵涂层。然后图9显示该方法所制备涂层烧蚀以后,出现烧蚀坑,烧蚀性能差。

Claims (10)

1.一种碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层,其特征在于内涂层为SiC涂层,外涂层为(HfZrTi)C3
2.一种制备权利要求1所述碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层的方法,其特征在于步骤如下:
步骤1:HfO2粉、ZrO2粉、TiO2粉以及C粉混合作为原料得到混合粉末;
所述HfO2粉﹕ZrO2粉﹕TiO2粉﹕C粉摩尔比为1﹕1﹕1﹕3;
步骤2:将石墨纸包裹混合粉体,放置于石墨坩埚内,然后在石墨纸上施加5-10MPa载荷;将石墨坩埚放入高温热处理炉底部;采用惰性气体保护,随炉冷却到室温,利用碳热还原反应制备(HfZrTi)C3中熵陶瓷粉体;
步骤3:将(HfZrTi)C3中熵陶瓷粉体放入球磨罐中研磨;将研磨后粉体采用喷雾干燥法进行造粒;
步骤4:将造粒后(HfZrTi)C3中熵陶瓷粉体装入超音速等离子喷涂送粉器,在包覆有SiC内涂层的C/C复合材料表面制备(HfZrTi)C3中熵涂层;
所述等离子喷涂工艺参数:喷涂直流电流:350~450A;喷涂直流电压:80~150V;主气流量:70~90L/min;辅气流量:4~6L/min;送粉速率:15~35g/min;喷涂距离:70~120mm;喷涂过程为6~10次喷涂。
3.根据权利要求2所述的方法,其特征在于:所述混合粉末中的Hf﹕Zr﹕Ti摩尔比为1﹕1﹕1。
4.根据权利要求2所述的方法,其特征在于:所述混合粉末通过行星式球磨罐研磨原料得到。
5.根据权利要求2所述的方法,其特征在于:所述HfO2粉、ZrO2粉、TiO2粉的纯度均≥99.5%,粒径均为1~3μm。
6.根据权利要求2所述的方法,其特征在于:所述C粉的纯度≥99.9%,粒径为1~3μm。
7.根据权利要求4所述的方法,其特征在于:所述球磨机的转速为200-300r/min,球磨时间为6~10h。
8.根据权利要求2所述的方法,其特征在于:所述步骤2中,惰性气体为Ar气;热处理炉以3~6℃/min升温到2000~2200℃。
9.根据权利要求2所述的方法,其特征在于:所述步骤3中,(HfZrTi)C3中熵陶瓷粉体造粒粒径为40~70μm;所述喷雾干燥法造粒时:干燥器进口温度310~330℃,出口温度100~150℃,喷头转速25~35rpm,进料速度70~80ml/min。
10.根据权利要求2所述的方法,其特征在于:所述步骤4中,喷涂直流电流:350~450A;喷涂直流电压:80~150V;喷涂过程为6~10次喷涂。
CN202210332276.4A 2022-03-30 2022-03-30 碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层及制备方法 Active CN114853506B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210332276.4A CN114853506B (zh) 2022-03-30 2022-03-30 碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210332276.4A CN114853506B (zh) 2022-03-30 2022-03-30 碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层及制备方法

Publications (2)

Publication Number Publication Date
CN114853506A true CN114853506A (zh) 2022-08-05
CN114853506B CN114853506B (zh) 2023-11-10

Family

ID=82629855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210332276.4A Active CN114853506B (zh) 2022-03-30 2022-03-30 碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层及制备方法

Country Status (1)

Country Link
CN (1) CN114853506B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116639980A (zh) * 2023-05-22 2023-08-25 中南大学 一种多元碳化物陶瓷涂层的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254397A (en) * 1989-12-27 1993-10-19 Sumitomo Electric Industries, Ltd. Carbon fiber-reinforced composite material having a gradient carbide coating
FR2983192A1 (fr) * 2011-11-25 2013-05-31 Commissariat Energie Atomique Procede pour revetir une piece d'un revetement de protection contre l'oxydation par une technique de depot chimique en phase vapeur, et revetement et piece
CN107056336A (zh) * 2017-03-31 2017-08-18 西北工业大学 一种碳/碳复合材料表面长时间抗烧蚀复合涂层及制备方法
CN107673762A (zh) * 2017-10-30 2018-02-09 西北工业大学 C/C复合材料表面抗氧化ZrSi2‑Y2O3/SiC复合涂层及制备方法
CN108530110A (zh) * 2018-06-08 2018-09-14 中南大学 一种c/c复合材料的超高温陶瓷涂层及其制备方法
CN109912313A (zh) * 2019-03-06 2019-06-21 中南大学 一种新型多元单相超高温陶瓷改性碳/碳复合材料及其制备方法
CN110078512A (zh) * 2019-05-17 2019-08-02 淄博星澳新材料研究院有限公司 超高温高熵碳化物粉体及其制备方法
CN112341233A (zh) * 2020-11-19 2021-02-09 西北工业大学 多元单相超高温陶瓷TaxHf1-xC改性碳/碳复合材料的制备方法
CN113683430A (zh) * 2021-10-12 2021-11-23 西北工业大学 缺陷萤石结构的氧化物高熵陶瓷及其抗烧蚀涂层的制备方法
CN114075078A (zh) * 2020-08-20 2022-02-22 中国科学院上海硅酸盐研究所 一种耐高温高强度(Ti,Zr,Hf)C中熵陶瓷材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254397A (en) * 1989-12-27 1993-10-19 Sumitomo Electric Industries, Ltd. Carbon fiber-reinforced composite material having a gradient carbide coating
FR2983192A1 (fr) * 2011-11-25 2013-05-31 Commissariat Energie Atomique Procede pour revetir une piece d'un revetement de protection contre l'oxydation par une technique de depot chimique en phase vapeur, et revetement et piece
CN107056336A (zh) * 2017-03-31 2017-08-18 西北工业大学 一种碳/碳复合材料表面长时间抗烧蚀复合涂层及制备方法
CN107673762A (zh) * 2017-10-30 2018-02-09 西北工业大学 C/C复合材料表面抗氧化ZrSi2‑Y2O3/SiC复合涂层及制备方法
CN108530110A (zh) * 2018-06-08 2018-09-14 中南大学 一种c/c复合材料的超高温陶瓷涂层及其制备方法
CN109912313A (zh) * 2019-03-06 2019-06-21 中南大学 一种新型多元单相超高温陶瓷改性碳/碳复合材料及其制备方法
CN110078512A (zh) * 2019-05-17 2019-08-02 淄博星澳新材料研究院有限公司 超高温高熵碳化物粉体及其制备方法
CN114075078A (zh) * 2020-08-20 2022-02-22 中国科学院上海硅酸盐研究所 一种耐高温高强度(Ti,Zr,Hf)C中熵陶瓷材料及其制备方法
CN112341233A (zh) * 2020-11-19 2021-02-09 西北工业大学 多元单相超高温陶瓷TaxHf1-xC改性碳/碳复合材料的制备方法
CN113683430A (zh) * 2021-10-12 2021-11-23 西北工业大学 缺陷萤石结构的氧化物高熵陶瓷及其抗烧蚀涂层的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LI, JIACHEN等: "Sealing role of Ti-rich phase in HfC-ZrC-TiC coating for C/C composites during ablation above 2100?", vol. 205, pages 28 *
李岗;刘宁;张晓玲;: "高熵碳化物粉体的研究现状", 硬质合金, no. 02 *
李贺军等: "C/C复合材料高温抗氧化涂层的研究现状与展望" *
韩东等: "水系锌离子电池锌负极保护策略" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116639980A (zh) * 2023-05-22 2023-08-25 中南大学 一种多元碳化物陶瓷涂层的制备方法
CN116639980B (zh) * 2023-05-22 2024-02-02 中南大学 一种多元碳化物陶瓷涂层的制备方法

Also Published As

Publication number Publication date
CN114853506B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN109678511B (zh) 一种致密HfC(Si)-HfB2复相陶瓷的制备方法
CN109180189B (zh) 一种高熵碳化物超高温陶瓷粉体及其制备方法
CN109180188B (zh) 一种高熵含硼碳化物超高温陶瓷粉体及其制备方法
US7723247B2 (en) Method for pressurelessly sintering zirconium diboride/silicon carbide composite bodies to high densities
JP2736380B2 (ja) 炭化珪素質材料の製造方法及び原料組成物
US20090048087A1 (en) High-density pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
CN110981546A (zh) C-C复合材料表面抗氧化ZrB2-SiC-Y2O3涂层及其制备方法
CN114853506A (zh) 碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层及制备方法
CN110590404A (zh) 一种碳基材料表面HfB2-SiC抗氧化涂层的制备方法
CN112679213A (zh) 一种超多元高熵陶瓷及其制备方法和应用
He et al. Self-healing performance of niobium suboxide-based solid solution for UHTC coating during oxyacetylene test
JP6523478B2 (ja) 多結晶研磨材構築物
CN115572164A (zh) 一种高韧性复合纳米陶瓷材料及其制备方法
Chen et al. Additive manufacturing of high mechanical strength continuous Cf/SiC composites using a 3D extrusion technique and polycarbosilane‐coated carbon fibers
CN114804869A (zh) 一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法
CN111732436A (zh) 易烧结钛和钨共掺杂碳化锆粉体及其制备方法
KR101466946B1 (ko) 열전도도가 개선된 지르코늄디보라이드-실리콘카바이드 복합소재의 제조방법
CN116334508B (zh) 一种金属高熵陶瓷改性c/c复合材料及其制备方法
CN118026733A (zh) 碳/碳复合材料表面致密超硬的超高温陶瓷涂层及其制备方法
KR101311731B1 (ko) 열전도도가 우수한 지르코늄디보라이드-실리콘카바이드 복합소재의 제조방법
JP2711875B2 (ja) 複合材料の製造方法および原料組成物
KR102638851B1 (ko) 비접착 보호 코팅법
CN117645483A (zh) 一种基于预氧化处理低温烧结制备导电SiC陶瓷的方法
CN116693298A (zh) 一种高熵硼化物涂层的制备方法
CN116986917A (zh) 一种碳化硅晶须/高熵硼化物复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant