CN116334508B - 一种金属高熵陶瓷改性c/c复合材料及其制备方法 - Google Patents

一种金属高熵陶瓷改性c/c复合材料及其制备方法 Download PDF

Info

Publication number
CN116334508B
CN116334508B CN202310627396.1A CN202310627396A CN116334508B CN 116334508 B CN116334508 B CN 116334508B CN 202310627396 A CN202310627396 A CN 202310627396A CN 116334508 B CN116334508 B CN 116334508B
Authority
CN
China
Prior art keywords
powder
entropy ceramic
composite material
entropy
metal high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310627396.1A
Other languages
English (en)
Other versions
CN116334508A (zh
Inventor
孙威
许俊杰
熊翔
张红波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202310627396.1A priority Critical patent/CN116334508B/zh
Publication of CN116334508A publication Critical patent/CN116334508A/zh
Application granted granted Critical
Publication of CN116334508B publication Critical patent/CN116334508B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/04Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • C04B35/58021Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON based on titanium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • C04B35/58035Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides based on zirconium or hafnium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/101Pretreatment of the non-metallic additives by coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种金属高熵陶瓷改性C/C复合材料及其制备方法,将C/C多孔体置于浸渍剂中浸渍,然后裂解,重复浸渍‑裂解,获得C/C‑SiC多孔体,然后将含原料粉末的刷涂浆料刷涂进C/C‑SiC多孔体中,烧结处理,然后重复刷涂‑烧结处理直至获得致密的金属高熵陶瓷改性C/C复合材料;本发明的制备方法,直接采用包含高熵陶瓷粉体、W粉、Cu粉的刷涂浆料作为基体原料,在烧结过程中,没有物料之间的化学反应,仅仅只是Cu的溶解,烧结温度低,不仅避免了反应过程中对碳纤维的损伤,提升了复合材料的性能,而且大幅降低了工艺成本。

Description

一种金属高熵陶瓷改性C/C复合材料及其制备方法
技术领域
本发明涉及一种金属高熵陶瓷改性C/C复合材料及其制备方法,属于高强高韧抗烧蚀复合材料制备技术领域。
背景技术
Cf由于其高模量、低热膨胀系数、耐化学腐蚀以及非氧化介质条件下良好的力学性能和尺寸稳定性被广泛应用于金属或陶瓷基复合材料的增强相。但Cf在高温有氧环境(>400℃)下与氧反应,并且氧化速率随温度提高急剧增大。这些缺点极大限制了Cf的应用前景。
为了克服这些问题,研究人员已经尝试了多种方法,目前在Cf中导入高熔点陶瓷相被认为是有效方案之一。抗烧蚀陶瓷一般由难熔金属氧化物、氮化物、碳化物制成。与单碳化物相比,HECN陶瓷表现出更高的硬度和更好的抗氧化性。但陶瓷相由于其本征特性极易在基体中产生贯穿性裂纹,发生灾难性失效。因此将金属作为第二相引入到陶瓷基体中,以提高陶瓷基体的韧性是合适的选择。陶瓷基金属陶瓷在优良刚性的基础上,其韧性会有所提升,使复合材料综合性能得以提升。
文献一“Chong Jing等.Low temperature synthesis and densification of(Ti,V,Nb,Ta,Mo)(C,N) high-entropy carbonitride ceramics[J]. Journal of Alloysand Compounds, 2022,927(2):167095.”利用碳热还原与热压烧结的方法制备了(Ti,V,Nb,Ta,Mo)(C,N)陶瓷。将其与碳化物高熵陶瓷进行了对比,发现断裂韧性提升了62.3%,明显由于碳化物陶瓷。
文献二“Xincheng Wang等.Synthesis and densification of (Zr-Hf-Nb-Ta)C-Co high entropy cermet prepared by pressureless melt infiltration using sparkplasma sintering[J]. Journal of Alloys and Compounds, 2022,900(2):163412.”使用热压烧结制备了(Zr-Hf-Nb-Ta)C-Co金属陶瓷。研究表明5wt%的Co材料断裂韧性为7.20KIC/MPa m1/2,较纯陶瓷提升233%。
但上述文献中使用的是热压烧结法,其需要高温高压的制备环境,并且只能生产特定规则形状的样品,无法满足多样需求,无法与碳/碳复合材料相结合。
综上所述,研发制备方法简单,成本低,可以在高温有氧环境下具备良好韧性抗氧化性的金属高熵陶瓷增强C/C复合材料工艺势在必行。
发明内容
针对现有陶瓷改性C/C复合材料中存在的不足之处,本发明的第一个目的在于提供一种金属高熵陶瓷改性C/C复合材料的制备方法。
本发明的第二个目的在于提供上述制备方法所制备的一种金属高熵陶瓷改性C/C复合材料。
为了实现上述目的,本发明提供如下技术方案:
本发明一种金属高熵陶瓷改性C/C复合材料的制备方法,将C/C多孔体置于浸渍剂中浸渍,然后裂解,重复浸渍-裂解,获得C/C-SiC多孔体,然后将含原料粉末的刷涂浆料刷涂进C/C-SiC多孔体中,烧结处理,然后重复刷涂-烧结处理直至获得致密的金属高熵陶瓷改性C/C复合材料;
所述浸渍剂由聚碳硅烷与二甲苯组成,所述浸渍剂中,按质量比计,聚碳硅烷:二甲苯=8-12:100;
所述原料粉末由高熵陶瓷粉体、W粉、Cu粉组成;
所述高熵陶瓷粉体中的高熵陶瓷为(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5或(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C,
所述烧结处理的温度为1000-1200℃。
本发明提供的制备方法,先于C/C多孔体的表面设置SiC阻碳层,本发明以聚碳硅烷作为SiC前驱体,通过将聚碳硅烷采用较多的二甲苯稀释,获得低浓度的聚碳硅烷,通过重复浸渍-裂解,在碳纤维表面形成一层完全包裹碳纤维的SiC阻碳层,以用于避免所加入的W与碳纤维反应形成WC,使得复材失去金属韧性,然后再将含金属高熵碳氮陶瓷、W、Cu的刷涂浆料刷涂进C/C-SiC多孔体,通过升温至1000-1200℃,使Cu熔化,填充于孔隙中,并与高熵碳氮陶瓷、W结合,形成结合性能好的陶瓷基体。
本发明的制备方法,直接采用以包含高熵陶瓷粉体、W粉、Cu粉的刷涂浆料作为基体原料,在烧结过程中,没有物料之间的化学反应,仅仅只是Cu的溶解,烧结温度低,不仅避免了反应过程中对碳纤维的损伤,提升了复合材料的性能,而且大幅降低了工艺成本。
本发明中,通过采用低浓度的聚碳硅烷浸渍剂,经多次浸渍裂解,有效的确保了SiC阻碳层将Cf包裹,避免了W与碳纤维反应形成WC,因此在本发明中需要控制聚碳硅烷在浸渍剂中的含量,若过多会影响最终复材中高熔点陶瓷粉体与金属相的含量,使得复材的烧蚀性能下降,过少使得C/C中的纤维无法完全包裹,增加金属W与碳纤维接触的可能性,使得W反应形成WC,降低复材性能。
本发明的制备方法,仅在1000-1200℃的低温下,即能够获得烧结致密的金属高熵陶瓷改性C/C复合材料,这主要得益于,本发明中加入的Cu,在烧结过程中Cu会变成熔融态,填充在W,高熵陶瓷间的孔隙中,使得两者结构致密,经过多次刷涂烧结,使得整个复材逐渐致密,同时,Cu与碳润湿性差,不会轻易发生碳化,避免了对碳纤维的损伤,而其他低熔点金属则会与碳纤维反应,损伤纤维,降低复材韧性。
当然温度还是需要有效控制,若温度过高,会导致Cu的粘度随温度升高会急剧降低,使得Cu从复材孔隙中流出,降低复材中Cu的含量,降低材料韧性,若温度过低,无法使Cu熔化,则无法形成烧结一体的基体。
优选的方案,所述C/C多孔体为0.5-0.6 g/cm3
在本发明中将,C/C多孔体密度控制在上述范围内,最终复材的烧蚀与力学性能最高。
在实际操作过程中,所述C/C多孔体由碳纤维预制体经化学气相沉积获得,形成热解碳包覆于碳纤维表面,用于保护碳纤维。
优选的方案,所述浸渍的温度为60-80℃,裂解的温度为1100-1100℃。
优选的方案,重复浸渍-裂解,使浸渍-裂解的总次数达到2-4次,优选为2-3次。通过上述次数的浸渍-裂解,可以在碳纤维表面表成一层薄的SiC包覆层用于阻碳。
优选的方案,所述高熵陶瓷粉体的粒径为500nm-900nm。
在本发明中,将高熵陶瓷粉体的粒径控制为500nm-900nm,可以使高熵陶瓷粉体充分分散于刷涂浆料中。
优选的方案,所述高熵陶瓷粉体中的高熵陶瓷为(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5
发明人发现, (Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5比(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C具有更高的混合熵,更宽的性能调节空间,更好的力学性能和更高的熔点,同时发明人还发现,同等条件下,以(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5为原料,最终复合材料的孔隙率更低,因此所获得的复合材料综合性能更优。
优选的方案,所述高熵陶瓷粉体的制备方法为:将ZrO2粉、HfO2粉、TiO2粉、Ta2O5粉、Nb2O5粉、C粉混合获得混合粉,将混合粉于N2气氛或Ar气氛下,优选为N2气氛下,于1900-2100℃烧结获得烧结粉料,破碎即得高熵陶瓷粉体。
进一步的优选,所述ZrO2粉、HfO2粉、TiO2粉、Ta2O5粉、Nb2O5粉、C粉的粒径均≤600nm。在实际操作过程中,所用ZrO2粉、HfO2粉、TiO2粉、Ta2O5粉、Nb2O5粉、C粉均为分析纯。
进一步的优选,所述混合粉中,按摩尔比为ZrO2粉:HfO2粉:TiO2粉:Ta2O5粉:Nb2O5粉:C粉=1:1:1:0.5:0.5:8-16;
进一步的优选,所述烧结过程为,以5-10℃/min的升温速率升温至1900-2100℃,保温2-5h。在实际操作过程中,烧结升温前,先对炉内进行抽真空处理直至抽到50pa以下,烧结过程中全程N2气氛中,最后随炉冷却,冷却过程是通过减小炉体电压缓慢降温,并不是自然冷却,降温速率为5℃/min。
进一步的优选,所述破碎的方式为湿法球磨,所述湿法球磨的介质为酒精,球料比为5-10:1,转速为150-300 rpm,湿法球磨的时间为10-25h。
发明人发现,将烧结后所的烧结粉料进行高能球磨破碎可获得纳米高熵陶瓷粉体,在实际操作过程中,将球磨后的粉末进行烘干备用。
优选的方案,所述高熵陶瓷粉体表面嫁接有硅烷。发明人发现,高熵陶瓷粉与水亲和性较差,不易形成分散性好的高固相含量的浆料,通过将硅烷嫁接于金属高熵陶瓷,不仅可以获得分散性好的高固相含量的浆料,而且可以使浆料更易于刷入C/C多孔体中,从而通过短周期的涂刷即能获得高致密的金属高熵陶瓷改性C/C复合材料,而最终硅烷会在烧结过程中分解,对复合材料不产生不利影响。
进一步的优选,所述高熵陶瓷粉体表面嫁接硅烷的过程为:将高熵陶瓷粉末置于硅烷溶液中超声处理,烘干处理即得,其中高熵陶瓷粉末与硅烷的质量比为100:1-3,所述硅烷溶液中,硅烷与溶剂的体积比为1-3:97-99,所述溶剂由无水乙醇与去离子水组成,其中,无水乙醇与去离子水的质量比为85-95:5-15。
通过超声处理,使硅烷包裹于高熵陶瓷粉体表面,改善高熵陶瓷粉体的亲水性能。
通过将硅烷溶解于无水乙醇与去离子水组成的溶剂中即获得的硅烷溶液。
更进一步的优选,所述硅烷溶液中的硅烷为KH550。
更进一步的优选,所述超声处理的温度为60-80℃,超声处理的时间为2-5h。
更进一步的优选,所述烘干处理的温度为80-100℃。
优选的方案,所述原料粉末中,按质量比计,高熵陶瓷粉体:(W粉+Cu粉)=10:1-3,W粉:Cu粉=10:1-3。
在发明中,通过将原料粉末中各物质的量控制在上述范围内,最终材料的综合性能最优,而若高熵陶瓷粉过多,降低复材韧性,高熵陶瓷粉过少会降低复材烧蚀性能,而Cu粉含量过多,会降低复材烧蚀性能,过少会使复材无法形成一个整体,孔隙提升。
优选的方案,所述W粉与Cu粉的粒径均≤600nm。
优选的方案,所述刷涂浆料中,高熵陶瓷粉体的体积分数为35-50%。
进一步的优选,所述刷涂浆料包含水、原料粉末、PEI,其中PEI与原料粉末的质量比为0.4-0.6:100,水与原料粉末中高熵陶瓷粉体的体积比为50-65:35-50。
进一步的优选,所述刷涂浆料的获取方法为:按设计比例配取水、原料粉末、PEI,混合,调节pH至5-7,然后球磨,控制球磨过程中,球料质量比为2-10:1;即得。合适的PH能增大颗粒间的静电斥力,增加浆料稳定性,提升高熵陶瓷相含量。
更进一步的优选,采用盐酸或醋酸调整刷涂浆料的pH。
在实际操作过程中,采用十字交叉的刷涂方法将含原料粉末的刷涂浆料刷入C/C-SiC多孔体中,放入鼓风干燥箱中150℃干燥固化处理,再进行烧结处理。
优选的方案,所述烧结处理在Ar环境下进行,先抽真空到50pa以下,然后充入Ar气,并以5-10℃/min的升温速率升温至1000-1200℃,保温2-5h。
进一步的优选,所述烧结处理的温度为1050-1150℃。
优选的方案,重复刷涂浆料的刷涂-烧结处理结3-5个周期,即得金属高熵陶瓷改性C/C复合材料。
本发明还提供上述制备方法所制备的金属高熵陶瓷改性C/C复合材料,所述金属高熵陶瓷改性C/C复合材料由依次包裹了SiC阻碳层、热解碳层的碳纤维束和金属高熵陶瓷相组成,金属高熵陶瓷相由高熵陶瓷、W颗粒、Cu组成,其中W颗粒弥散分布于高熵陶瓷中,Cu填充在金属高熵陶瓷改性C/C复合材料的孔隙中,金属高熵陶瓷相填充于碳纤维束之间。
所述金属高熵陶瓷改性C/C复合材料的孔隙率为6-18%,优选为6-13%。
本发明所提供的复合材料致密度高,其中,碳纤维束低密度、金属相W、Cu具有高韧性,金属高熵陶瓷相相比传统陶瓷具有更高的硬度、更高的熔点、更好的抗氧化能力,本发明的烧结过程在低温下进行,且没有化学反应,减少了对碳纤维的损伤,从而使得本发明的复合材料具有优异的力学性能以及抗烧蚀性能。
本发明所提供的金属高熵陶瓷改性C/C复合材料的在优选方案中抗弯强度为460+22.5MPa,较传统方法制备的C/C-ZrC-HfC复合材料提升84%。金属高熵陶瓷改性C/C复合材料的金属陶瓷相断裂韧性为14.6+0.1 MPa.m1/2,较传统方法制备的C/C-ZrC-HfC提升117%。金属高熵陶瓷改性C/C复合材料烧蚀性能优异,在2500K氧乙炔烧蚀60s的条件下质量烧蚀率为0.0028g/s,线烧蚀率为0.0013mm/s。
原理与优势
本发明使用简单的刷涂烧结法制备了金属高熵陶瓷改性C/C复合材料。使用碳热还原制备高熵陶瓷粉体,使用PEI分散剂制备高固相含量的浆料,使用多次刷涂烧结制备致密度复合材料。与反应熔渗(RMI)、前驱体浸渍裂解(PIP)等其他方法相比,RMI是通过将粉料融化再进行陶瓷化,其碳源完全来源于基体,必然会导致纤维较大损伤,影响复材力学性能。本方法先通过碳热还原制得高熵陶瓷粉体,后续步骤中粉体不会与碳纤维发生反应,不会发生纤维损伤。与PIP方法相比,PIP需要配置价格昂贵的复合前驱体,然后浸渍裂解,周期长,成本高。本方法至需要配置浆料然后刷涂烧结,成本低廉,高效可以在任意形构件上进行刷涂,适合大规模生产。
本发明一种金属高熵陶瓷改性C/C复合材料的制备方法,主要应用于抗烧蚀,抗冲刷,基体防护等领域。
与现有技术相比,本发明的优点与积极效果体现在:
(1)金属高熵陶瓷改性C/C复合材料方法简单,成本低廉,较现有主流方法RMI、PIP有明显优势;
(2)本方法只需要在多孔体表面刷涂,可以在任意形状表面制备;
(3)本方法可以在C/C多孔体中通过刷涂-烧结引入分布均匀的高韧W、Cu金属相;
(4)本方法制备的金属高熵陶瓷改性C/C复合材料在优选方案中其抗弯强度为460+22.5MPa,较传统方法制备的C/C-ZrC-HfC复合材料提升84%。。其断裂韧性为14.6+0.1MPa.m1/2,较传统方法制备的C/C-ZrC-HfC提升117%。
附图说明
图1为实施例1通过本发明的制备方法获得的金属高熵陶瓷改性C/C复合材料的物相XRD图。
图2为实施例1通过本发明的制备方法获得的金属高熵陶瓷改性C/C复合材料的表面形貌SEM图。
图3为实施例1通过本发明的制备方法获得的金属高熵陶瓷改性C/C复合材料的局部放大SEM图。
具体实施方式
结合实施例和附图对本发明作进一步描述:
实施例1
将混合粉体摩尔比为ZrO2粉:HfO2粉:TiO2粉:Ta2O5粉:Nb2O5粉:C粉=1:1:1:0.5:0.5:8进行球磨,球磨介质为酒精,球料质量比为10:1,。混合好的均匀粉体放入石墨坩埚中,加热到2000℃,气氛为高纯N2,制得(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5陶瓷粉体。将粉体进行破碎,方式为高能球磨。球磨介质为酒精,球料比为10:1,转速为250 rpm,球磨时间为15h。之后进行烘干处理得到粒径为的500nm-900nm的纳米(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5陶瓷粉。将粉体进行表面修饰,修饰剂为KH550,以无水乙醇:去离子水=90:10wt%,KH550:(无水乙醇+去离子水)=2:98vol%配置溶液,高熵碳氮陶瓷粉:硅烷溶液=3:10 wt%。超声处理3h,100℃烘干得到HECN-硅粉体。以水:HECN-硅粉体=55:45vol%,PEI:HECN-硅粉体=0.5:100 wt%,陶瓷粉与金属含量为质量比10:3。其中W:Cu质量比为10:3,称取上述组分,使用盐酸或醋酸将液体PH值调制6。将配好的液体进行球磨,球料质量比为10:1,制得高固相含量的混合粉体浆料。以二甲苯为溶剂,聚碳硅烷:二甲苯=10:100wt%。将C/C放入聚碳硅烷溶液中浸泡,80℃烘干,1100℃裂解。浸泡裂解为一个周期,处理3周期,记作C/C-SiC。使用刷涂法,将浆料刷入C/C-SiC中,直至不增重为止。之后放入鼓风干燥箱中100℃干燥固化处理。将固化后的C/C放入石墨坩埚中,并将坩埚放入管式炉中于氩气保护下,以10℃/min的速率升温进行加热。保温温度为1100℃,保温时间为2h。保温结束后以5℃/min冷却至室温,取出坩埚。然后再用浆料对复合材料进行之前刷涂、烧结步骤,进行4个周期,直至样品密度不在增加。最终得到金属高熵陶瓷改性C/C复合材料。采用阿基米德排水法测得材料的孔隙率,实施例1中材料孔隙率为6.72%。
图1显示用X射线衍射测得实施例1中所制金属高熵陶瓷改性C/C复合材料的物相组成。由图1可以看出复合材料由W、Cu、(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5、Cf构成,W、(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5峰型为尖锐峰,说明物相含量高且结晶度较好。并且(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5只有单一峰,说明(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5为完全固溶的单一相。另外图中观察到C的宽峰,这是基体碳纤维的峰。图中观察到矮的Cu峰,这是由于Cu含量较少。图2显示利用扫描电子显微镜测得实施例1中所制(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5-W-Cu金属高熵陶瓷改性C/C复合材料的显微形貌和物相分布图片。由图2可见,W、Cu、(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5金属陶瓷相完全填充入Cf束之间。图3显示利用扫描电子显微镜测得实施例1中所制金属高熵陶瓷改性C/C复合材料的局部放大图,可以看出纳米W颗粒弥散分布于(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C陶瓷相中,无定型Cu分布在孔隙内,这会阻止裂纹扩展提升复合材料的力学性能。
将实施例1中制备的金属高熵陶瓷改性C/C复合材料作为实施例1组;将RMI制备的C/C-(ZrHf)C作为对照组进行性能测试,结果:实施例1的抗弯强度为460+22.5MPa,对照组的弯曲强度为252+19.5MPa,提升84%。实施例1的断裂韧性为14.6+0.1 MPa.m1/2,对照组的弯曲强度为6.4+0.1 MPa.m1/2,提升117%。实施例1在2500K氧乙炔烧蚀60s的条件下质量烧蚀率为0.0028 g/s,线烧蚀率为0.0013 mm/s。对照组为质量烧蚀率为0.0049 g/s,线烧蚀率为0.0036 mm/s,明显由于对照组。
实施例2
其他条件与实施例1相同,仅烧结高熵陶瓷粉体时气氛为Ar气。与实施例1相比采用阿基米德排水法测得材料的孔隙率,对比例2中材料孔隙率为8.07%。对比例1中高熵陶瓷粉体为(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C.与实施例1相比,实施例2性能有所下降。实施例2的抗弯强度为445+11.5MPa,断裂韧性13.7+0.1 MPa.m1/2,质量烧蚀率为0.0023 g/s,线烧蚀率为0.0016mm/s。
实施例3
将混合粉体摩尔比为ZrO2粉:HfO2粉:TiO2粉:Ta2O5粉:Nb2O5粉:C粉=1:1:1:0.5:0.5: 8进行球磨,球磨介质为酒精,球料质量比为10:1,。混合好的均匀粉体放入石墨坩埚中,加热到2000℃,气氛为高纯N2,制得(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5陶瓷粉体。将粉体进行破碎,方式为高能球磨。球磨介质为酒精,球料比为10:1,转速为250 rpm,球磨时间为15h。之后进行烘干处理得到纳米(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5陶瓷粉。将粉体进行表面修饰,修饰剂为KH550,以无水乙醇:去离子水=90:10 wt%,KH550:(无水乙醇+去离子水)=2:98 vol%配置溶液,高熵碳氮陶瓷粉:硅烷溶液=3:10 wt%。超声处理3h,100℃烘干得到HECN-硅粉体。以水:HECN-硅粉体=55:45vol%,PEI:HECN-硅粉体=0.5:100 wt%,陶瓷粉与金属含量为质量比10:3。其中W:Cu质量比为10:3,称取上述组分,使用盐酸或醋酸将液体PH值调制6。将配好的液体进行球磨,球料质量比为10:1,制得高固相含量的混合粉体浆料。以二甲苯为溶剂,聚碳硅烷:二甲苯=10:100 wt%。将C/C放入聚碳硅烷溶液中浸泡,80℃烘干,1100℃裂解。浸泡裂解为一个周期,处理3周期,记作C/C-SiC。使用刷涂法,将浆料刷入C/C-SiC中,直至不增重为止。之后放入鼓风干燥箱中100℃干燥固化处理。将固化后的C/C放入石墨坩埚中,并将坩埚放入管式炉中,于氩气保护下,以10℃/min的速率升温进行加热。保温温度为1000℃,保温时间为1h。保温结束后以5℃/min冷却至室温,取出坩埚。然后再用浆料对复合材料进行之前刷涂、烧结步骤,进行4个周期,直至样品密度不在增加。最终得到金属高熵陶瓷改性C/C复合材料。采用阿基米德排水法测得材料的孔隙率,实施例2中材料孔隙率为10.42%。
与实施例1相比采用阿基米德排水法测得材料的孔隙率,实施例2中材料孔隙率为10.42%。这是由于实施例3中刷涂-烧结温度低,保温时间短,Cu粉在此过程中并未完全熔融,无法完全填充孔隙降低密度。存在许多闭环的微纳米烧结颈,并且后续刷涂无法使涂料导入其中,导致孔隙率增加。与实施例1相比,实施例3性能有所下降。实施例3抗弯强度为385+12.5MPa,断裂韧性11.7+0.1 MPa.m1/2,质量烧蚀率为0.0033 g/s,线烧蚀率为0.0021mm/s。
实施例4
将混合粉体摩尔比为ZrO2粉:HfO2粉:TiO2粉:Ta2O5粉:Nb2O5粉:C粉=1:1:1:0.5:0.5: 8进行球磨,球磨介质为酒精,球料质量比为10:1,。混合好的均匀粉体放入石墨坩埚中,加热到2000℃,气氛为高纯N2,制得(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5陶瓷粉体。将粉体进行破碎,方式为高能球磨。球磨介质为酒精,球料比为10:1,转速为250 rpm,球磨时间为15h。之后进行烘干处理得到纳米(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5陶瓷粉。将粉体进行表面修饰,修饰剂为KH550,以无水乙醇:去离子水=90:10 wt%,KH550:(无水乙醇+去离子水)=2:98 vol%配置溶液,高熵碳氮陶瓷粉:硅烷溶液=3:10 wt%。超声处理3h,100℃烘干得到HECN-硅粉体。以水:HECN-硅粉体=55:45vol%,PEI:HECN-硅粉体=0.5:100 wt%,陶瓷粉与金属含量为质量比10:3。其中W:Cu质量比为10:3,称取上述组分,使用盐酸或醋酸将液体PH值调制6。将配好的液体进行球磨,球料质量比为10:1,制得高固相含量的混合粉体浆料。以二甲苯为溶剂,聚碳硅烷:二甲苯=10:100 wt%。将C/C放入聚碳硅烷溶液中浸泡,80℃烘干,1100℃裂解。浸泡裂解为一个周期,处理3周期,记作C/C-SiC。使用刷涂法,将浆料刷入C/C-SiC中,直至不增重为止。之后放入鼓风干燥箱中100℃干燥固化处理。将固化后的C/C放入石墨坩埚中,并将坩埚放入管式炉中,于氩气保护下,以10℃/min的速率升温进行加热。保温温度为1100℃,保温时间为2h。保温结束后以5℃/min冷却至室温,取出坩埚。然后再用浆料对复合材料进行之前刷涂、烧结步骤,进行3个周期。最终得到金属高熵陶瓷改性C/C复合材料。采用阿基米德排水法测得材料的孔隙率,实施例3中材料孔隙率为17.44%。
与实施例1相比采用阿基米德排水法测得材料的孔隙率,实施例3中材料孔隙率为17.44%。这是由于实施例3中刷涂-烧结周期减少,导致没有足够的粉体填充C/C中的孔隙,复合材料孔隙率上升,密度下降。与实施例1相比,实施例2性能有所下降。实施例3抗弯强度为361+12.5MPa,断裂韧性10.6+0.1 MPa.m1/2,质量烧蚀率为0.0041 g/s,线烧蚀率为0.0028 mm/s。
对比例1
其他条件与实施例1相同,仅配置浆料时以去离子水:混合粉体 =60:40vol%,陶瓷粉与金属含量为质量比10:0。与实施例1相比采用阿基米德排水法测得材料的孔隙率,对比例2中材料孔隙率为10.21%。对比例1中不含金属W、Cu金属相,与实施例1相比,对比例1性能大幅下降。对比例1抗弯强度为102+14.5MPa,断裂韧性4.8+0.1 MPa.m1/2,质量烧蚀率为0.0057 g/s,线烧蚀率为0.0034 mm/s。
对比例2
其他条件与实施例1相同,仅高熵碳氮陶瓷粉体表面不进行修饰,涂料中陶瓷粉体含量大幅下降。与实施例1相比采用阿基米德排水法测得材料的孔隙率,对比例3中材料孔隙率为18.11%。与实施例1相比,对比例2性能有所下降。抗弯强度为293+10.5MPa,断裂韧性9.1+0.1 MPa.m1/2,质量烧蚀率为0.0046g/s,线烧蚀率为0.0031mm/s。
对比例3
其他条件与实施例1相同,仅C/C表面不进行阻碳层制备,复材中部分W被碳化形成WC相,断裂韧性大幅下降。与实施例1相比采用阿基米德排水法测得材料的孔隙率,对比例3中材料孔隙率为7.64%。与实施例1相比,对比例3性能有所下降。抗弯强度为342+11.5MPa,断裂韧性8.0+0.1 MPa.m1/2,质量烧蚀率为0.0029g/s,线烧蚀率为0.0019mm/s。

Claims (10)

1.一种金属高熵陶瓷改性C/C复合材料的制备方法,其特征在于:将C/C多孔体置于浸渍剂中浸渍,然后裂解,重复浸渍-裂解,获得C/C-SiC多孔体,然后将含原料粉末的刷涂浆料刷涂进C/C-SiC多孔体中,烧结处理,然后重复刷涂-烧结处理直至获得致密的金属高熵陶瓷改性C/C复合材料;
所述浸渍剂由聚碳硅烷与二甲苯组成,所述浸渍剂中,按质量比计,聚碳硅烷:二甲苯=8-12:100;
所述原料粉末由高熵陶瓷粉体、W粉、Cu粉组成;
所述原料粉末中,按质量比计,高熵陶瓷粉体:(W粉+Cu粉)=10:1-3,W粉:Cu粉=10:1-3;
所述高熵陶瓷粉体中的高熵陶瓷为(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5或(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C,
所述高熵陶瓷粉体表面嫁接有硅烷;
所述烧结处理的温度为1000-1200℃。
2.根据权利要求1所述的一种金属高熵陶瓷改性C/C复合材料的制备方法,其特征在于:所述C/C多孔体的密度为0.5-0.6 g/cm3
所述浸渍的温度为60-80℃,裂解的温度为1100-1100℃;
重复浸渍-裂解,使浸渍-裂解的总次数达到2-4次。
3.根据权利要求1所述的一种金属高熵陶瓷改性C/C复合材料的制备方法,其特征在于:所述金属高熵陶瓷粉体的粒径为500nm-900nm;
所述高熵陶瓷粉体中的高熵陶瓷为(Zr0.2Hf0.2Ti0.2Ta0.2Nb0.2)C0.5N0.5
4.根据权利要求1所述的一种金属高熵陶瓷改性C/C复合材料的制备方法,其特征在于:所述高熵陶瓷粉体的制备方法为:将ZrO2粉、HfO2粉、TiO2粉、Ta2O5粉、Nb2O5粉、C粉混合获得混合粉,将混合粉于N2气氛或Ar气氛下于1900-2100℃烧结获得烧结粉料,破碎即得高熵陶瓷粉体;
所述ZrO2粉、HfO2粉、TiO2粉、Ta2O5粉、Nb2O5粉、C粉的粒径均≤600nm;
所述混合粉中,按摩尔比计,ZrO2粉:HfO2粉:TiO2粉:Ta2O5粉:Nb2O5粉:C粉=1:1:1:0.5:0.5:8-16;
所述烧结过程为,以5-10℃/min的升温速率升温至1900-2100℃,保温2-5h;
所述破碎的方式为湿法球磨,所述湿法球磨的介质为酒精,球料比为5-10:1,转速为150-300 rpm,湿法球磨的时间为10-25h。
5.根据权利要求1-4任意一项所述的一种金属高熵陶瓷改性C/C复合材料的制备方法,其特征在于: 所述高熵陶瓷粉体表面嫁接硅烷的过程为:将高熵陶瓷粉末置于硅烷溶液中超声处理,烘干处理即得,其中高熵陶瓷粉末与硅烷的质量比为100:1-3,所述硅烷溶液中,硅烷与溶剂的体积比为1-3:97-99,所述溶剂由无水乙醇与去离子水组成,其中,无水乙醇与去离子水的质量比为85-95:5-15;
所述硅烷溶液中的硅烷为KH550;
所述超声处理的温度为60-80℃,超声处理的时间为2-5h;
所述烘干处理的温度为80-100℃。
6.根据权利要求1-4任意一项所述的一种金属高熵陶瓷改性C/C复合材料的制备方法,其特征在于:所述W粉与Cu粉的粒径均≤600nm。
7.根据权利要求1-4任意一项所述的一种金属高熵陶瓷改性C/C复合材料的制备方法,其特征在于:所述刷涂浆料中,高熵陶瓷粉体的体积分数为35-50%;
所述刷涂浆料包含水、原料粉末、PEI,其中PEI与原料粉末的质量比为0.4-0.6:100,水与原料粉末中高熵陶瓷粉体的体积比为50-65:35-50。
8.根据权利要求7所述的一种金属高熵陶瓷改性C/C复合材料的制备方法,其特征在于:所述刷涂浆料的获取方法为:按设计比例配取水、原料粉末、PEI,混合,调节pH至5-7,然后球磨,控制球磨过程中,球料质量比为2-10:1;即得;采用盐酸或醋酸调整刷涂浆料的pH。
9.根据权利要求1-4任意一项所述的一种金属高熵陶瓷改性C/C复合材料的制备方法,其特征在于:所述烧结处理在Ar环境下进行,先抽真空到50pa以下,然后充入Ar气,并以5-10℃/min的升温速率升温至1000-1200℃,保温2-5h;
重复刷涂-烧结处理3-5个周期,即得金属高熵陶瓷改性C/C复合材料。
10.权利要求1-9任意一项所述的制备方法所制备的种金属高熵陶瓷改性C/C复合材料,其特征在于:所述金属高熵陶瓷改性C/C复合材料由依次包裹了SiC阻碳层、热解碳层的碳纤维束和金属高熵陶瓷相组成,金属高熵陶瓷相由高熵陶瓷、W颗粒、Cu组成,其中W颗粒弥散分布于高熵陶瓷中,Cu填充在金属高熵陶瓷改性C/C复合材料的孔隙中,金属高熵陶瓷相填充于碳纤维束之间;
所述金属高熵陶瓷改性C/C复合材料的孔隙率为6-18%。
CN202310627396.1A 2023-05-31 2023-05-31 一种金属高熵陶瓷改性c/c复合材料及其制备方法 Active CN116334508B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310627396.1A CN116334508B (zh) 2023-05-31 2023-05-31 一种金属高熵陶瓷改性c/c复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310627396.1A CN116334508B (zh) 2023-05-31 2023-05-31 一种金属高熵陶瓷改性c/c复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116334508A CN116334508A (zh) 2023-06-27
CN116334508B true CN116334508B (zh) 2023-08-11

Family

ID=86879133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310627396.1A Active CN116334508B (zh) 2023-05-31 2023-05-31 一种金属高熵陶瓷改性c/c复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116334508B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187833A (ja) * 1993-12-27 1995-07-25 Mitsubishi Chem Corp 炭素繊維強化炭素複合材料
JPH11130553A (ja) * 1997-10-24 1999-05-18 Nippon Oil Co Ltd 炭素/炭素複合材料
JP2004091267A (ja) * 2002-08-30 2004-03-25 Ebara Corp 多孔質体及びこれを利用した複合材とポンプ部品
CN106116623A (zh) * 2016-05-16 2016-11-16 湖北三江航天江北机械工程有限公司 双基体复合材料的制备及利用双基体复合材料制备航天系统发动机中扩散段的方法
CN106977223A (zh) * 2017-04-10 2017-07-25 中南大学 陶瓷改性及具有陶瓷涂层的c/c复合材料及其制备方法
CN113698223A (zh) * 2021-10-21 2021-11-26 中南大学 一种夹层结构c/c超高温陶瓷复合材料及其制备方法
CN115784761A (zh) * 2022-12-02 2023-03-14 无锡博智复合材料有限公司 一种高熵陶瓷涂层与基体协同改性碳/碳复合材料及其制备方法
CN115894082A (zh) * 2023-03-09 2023-04-04 中南大学 一种(ZrHfTiTaNb)C-W金属高熵陶瓷改性C/C复合材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187833A (ja) * 1993-12-27 1995-07-25 Mitsubishi Chem Corp 炭素繊維強化炭素複合材料
JPH11130553A (ja) * 1997-10-24 1999-05-18 Nippon Oil Co Ltd 炭素/炭素複合材料
JP2004091267A (ja) * 2002-08-30 2004-03-25 Ebara Corp 多孔質体及びこれを利用した複合材とポンプ部品
CN106116623A (zh) * 2016-05-16 2016-11-16 湖北三江航天江北机械工程有限公司 双基体复合材料的制备及利用双基体复合材料制备航天系统发动机中扩散段的方法
CN106977223A (zh) * 2017-04-10 2017-07-25 中南大学 陶瓷改性及具有陶瓷涂层的c/c复合材料及其制备方法
CN113698223A (zh) * 2021-10-21 2021-11-26 中南大学 一种夹层结构c/c超高温陶瓷复合材料及其制备方法
CN115784761A (zh) * 2022-12-02 2023-03-14 无锡博智复合材料有限公司 一种高熵陶瓷涂层与基体协同改性碳/碳复合材料及其制备方法
CN115894082A (zh) * 2023-03-09 2023-04-04 中南大学 一种(ZrHfTiTaNb)C-W金属高熵陶瓷改性C/C复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
向秋玲 ; 汤振霄 ; 彭可 ; 易茂中 ; .HfB_2-ZrB_2-SiC改性C/C复合材料的制备及性能.粉末冶金材料科学与工程.2020,(02),全文. *

Also Published As

Publication number Publication date
CN116334508A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
CN109678511B (zh) 一种致密HfC(Si)-HfB2复相陶瓷的制备方法
CN112341235B (zh) 超高温自愈合陶瓷基复合材料的多相耦合快速致密化方法
CN111662091B (zh) 一种短碳纤维增强Csf/SiC陶瓷基复合材料及其制备方法
JPH02279575A (ja) 緻密なセラミック膜を有するセラミック焼結体の製造方法
KR102319079B1 (ko) SiC 복합체 및 이의 제조방법
JPH01301508A (ja) 炭化珪素質材料の製造方法及び原料組成物
CN115369336B (zh) 一种W-Cu-ZrC-HfC金属陶瓷改性C/C复合材料的制备方法
Cao et al. Formation mechanism of large SiC grains on SiC fiber surfaces during heat treatment
EP2636659B1 (en) High rigidity ceramic material and method for producing same
CN112341233A (zh) 多元单相超高温陶瓷TaxHf1-xC改性碳/碳复合材料的制备方法
CN1821168A (zh) 一种氮化硅多孔陶瓷及其制备方法
CN115385712A (zh) 一种高熵超高温陶瓷基复合材料及其制备方法
CN115894082B (zh) 一种(ZrHfTiTaNb)C-W金属高熵陶瓷改性C/C复合材料及其制备方法
CN110304933B (zh) 表面改性碳化硅晶须增韧反应烧结碳化硅陶瓷的制备方法
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
JP5434922B2 (ja) SiC繊維結合型セラミックスの製造方法
CN116334508B (zh) 一种金属高熵陶瓷改性c/c复合材料及其制备方法
JP4539014B2 (ja) 耐酸化性c/c複合材及びその製造方法
JP2765543B2 (ja) 反応焼結セラミックス及びその製造方法
CN114853506B (zh) 碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层及制备方法
Chen et al. Additive manufacturing of high mechanical strength continuous Cf/SiC composites using a 3D extrusion technique and polycarbosilane‐coated carbon fibers
KR101575902B1 (ko) 섬유강화 세라믹 기지 복합체 및 그 제조방법
CN110330349B (zh) 一种氮化硅纳米纤维增强氮化硼陶瓷及其制备方法
Yang et al. Microstructure and strengthening behavior in high content SiC nanowires reinforced SiC composites
CN111732436A (zh) 易烧结钛和钨共掺杂碳化锆粉体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant