CN115572164A - 一种高韧性复合纳米陶瓷材料及其制备方法 - Google Patents

一种高韧性复合纳米陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN115572164A
CN115572164A CN202211442449.4A CN202211442449A CN115572164A CN 115572164 A CN115572164 A CN 115572164A CN 202211442449 A CN202211442449 A CN 202211442449A CN 115572164 A CN115572164 A CN 115572164A
Authority
CN
China
Prior art keywords
parts
graphene
weight
sintering
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211442449.4A
Other languages
English (en)
Inventor
彭文武
刘天星
黄焰
黄观瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Taoying New Material Co ltd
Original Assignee
Foshan Taoying New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Taoying New Material Co ltd filed Critical Foshan Taoying New Material Co ltd
Priority to CN202211442449.4A priority Critical patent/CN115572164A/zh
Publication of CN115572164A publication Critical patent/CN115572164A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62823Zirconium or hafnium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5236Zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种高韧性复合纳米陶瓷材料及其制备方法,属于新型结构陶瓷材料技术领域。本发明在纳米石墨烯片表面通过化学气相沉积法沉积纳米氧化锆层并将纳米石墨烯片包裹得到改性纳米石墨烯,然后将改性纳米石墨烯和氧化锆纤维、氮化硼纤维、硼化物粉体混合后,经过冷冻干燥工艺形成堆叠的层状结构的颗粒,然后经过干压工艺制备陶瓷生坯,石墨烯本身具备很高的韧性,并且表面被纳米氧化锆包裹,增强了其抗氧化性能,放电等离子烧结工艺降低烧结温度,防止石墨烯碳化,同时,优化的放电等离子烧结工艺提高陶瓷的致密度,进一步提高陶瓷的韧性,层状结构结合氧化锆的相变增韧机理以及石墨烯的高韧性特点,得到高韧性复合纳米陶瓷材料。

Description

一种高韧性复合纳米陶瓷材料及其制备方法
技术领域
本发明属于新型结构陶瓷材料技术领域,涉及一种高韧性复合纳米陶瓷材料及其制备方法。
背景技术
结构陶瓷是具有耐高温、耐冲刷、耐腐蚀、高硬度、高强度、低蠕变速率等优异力学、热学、化学性能,常用于各种结构部件的先进陶瓷。结构陶瓷具有优越的强度、硬度、绝缘性、热传导、耐高温、耐氧化、耐腐蚀、耐磨耗、高温强度等特色,因此,在非常严苛的环境或工程应用条件下,所展现的高稳定性与优异的机械性能,在材料工业上已倍受瞩目,其使用范围亦日渐扩大。结构陶瓷材料的脆性是困扰其广泛应用的关键问题之一,针对这一问题研究人员开展了大量的研究,分别提出了颗粒弥散强化、纤维或晶须增韧、相变增韧和仿生结构增韧等多种增韧措施。
氧化锆陶瓷具有熔点沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。氧化锆是一种特殊的材料,增韧的方法,主要是利用氧化锆的相变才能达到的。为了进一步提高氧化锆的韧性,一般通过往氧化锆晶格中掺杂稳定剂Y2O3、MgO、CaO、CeO2等,使四方相氧化锆向单斜相氧化锆转变的相变稳定从1170℃降至室温,利用四方相氧化锆向单斜相氧化锆转变的相变过程中吸收能量,降低材料裂纹尖端的应力集中,阻碍裂纹扩散,从而使材料的韧性提高。
专利CN106915961A通过掺杂石墨烯提高氧化锆陶瓷的韧性,其技术方案是通过氧化石墨烯和氧化锆直接混合后烧结,利用氧化石墨烯在高温环境下被还原为石墨烯的特性,同时利用烧结环境的高压高真空氛围,在氧化锆基体中原位还原石墨烯,以提高氧化锆陶瓷的力学性能。其中石墨烯和氧化锆是通过物理方法直接混合,其力学性能有待进一步提高。
专利公开号CN109503131A公开了一种氧化锆增韧石墨烯氧化铝复合导电陶瓷及其制备方法。该发明通过在陶瓷原料中添加石墨烯来获得具有高导电导热性能的陶瓷。该发明的陶瓷制备方法采用一种液相烧结固相烧结耦合烧结技术,综合了液相烧结与固相烧结的优点。该发明通过采用氧化铝陶瓷材料、液相烧结助剂、固相烧结助剂、氧化锆以及石墨烯按照合适比例混合,有效降低了陶瓷材料的烧结温度,从而能够保护石墨烯不被炭化,保证制得的陶瓷具备优异的导热导电性能。该发明通过添加石墨烯是为了增加氧化铝陶瓷的导电性能。
发明内容
本发明的目的在于提供一种高韧性复合纳米陶瓷材料及其制备方法,属于新型结构陶瓷材料技术领域。本发明在纳米石墨烯片表面通过化学气相沉积法沉积纳米氧化锆层并将纳米石墨烯片包裹得到改性纳米石墨烯,然后将改性纳米石墨烯和氧化锆纤维、氮化硼纤维、硼化物粉体混合后,经过冷冻干燥工艺形成堆叠的层状结构的颗粒,然后经过干压工艺制备陶瓷生坯,石墨烯本身具备很高的韧性,并且表面被纳米氧化锆包裹,增强了其抗氧化性能,放电等离子烧结工艺降低烧结温度,防止石墨烯碳化,层状结构结合氧化锆的相变增韧机理以及石墨烯的高韧性特点,得到高韧性复合纳米陶瓷材料。
本发明的目的可以通过以下技术方案实现:
一种高韧性复合纳米陶瓷材料的制备方法,所述制备方法包括以下步骤:
(1)采用化学气相沉积法,在纳米石墨烯片表面沉积氧化锆层,得到改性纳米石墨烯;
(2)取改性纳米石墨烯、氧化锆纤维、氮化硼纤维、硼化物粉末混合后,再加入聚乙烯醇和去离子水球磨,得到混合浆料;
(3)将混合浆料进行冷冻干燥得到颗粒物,然后将颗粒物干压得到陶瓷生坯;
(4)陶瓷生坯采用放电等离子烧结工艺得到高韧性复合纳米陶瓷材料。
作为本发明的一种优选技术方案,步骤(2)所述各组分加入量为:改性纳米石墨烯8-15重量份、氧化锆纤维60-80重量份、氮化硼纤维15-25重量份、硼化物粉末20-30重量份、聚乙烯醇5-8重量份、去离子水300-500重量份。
作为本发明的一种优选技术方案,所述硼化物粉末由10-15重量份碳化硼粉末、5-8重量份二硼化钛粉末和5-7重量份二硼化锆粉末组成。
作为本发明的一种优选技术方案,步骤(1)所述化学气相沉积法的具体条件为:以ZrCl4为锆源前驱体,以CO2和氢气为反应气体,以氩气为稀释气体,压强为10~20KPa,温度为800~1000℃,时间为5~10h。
作为本发明的一种优选技术方案,所述ZrCl4流量为0.4-0.6g/min,所述CO2流量为0.2-0.3m3 /h,氢气流量为0.2-0.3m3 /h,氩气流量为0.2-0.3m3 /h。
作为本发明的一种优选技术方案,步骤(2)所述球磨转速为200-300r/min,球磨时间为3-5h。
作为本发明的一种优选技术方案,步骤(4)所述放电等离子烧结工艺条件为:轴向压力30-50MPa,烧结升温速率为30-100℃/min,烧结温度为1900-2000℃,烧结保温时间2-3min,烧结真空度≦4MPa。
上述的制备方法制备得到的高韧性复合纳米陶瓷材料。
本发明的有益效果:
(1)本发明在纳米石墨烯片表面通过化学气相沉积法沉积纳米氧化锆层并将纳米石墨烯片包裹得到改性纳米石墨烯,经过氧化锆包裹的纳米石墨烯在煅烧过程中可防止石墨烯氧化,较好的保留纳米石墨烯片的片状结构,保留其较高的韧性和强度;
(2)本发明将改性纳米石墨烯和氧化锆纤维、氮化硼纤维、硼化物粉体混合,氮化硼纤维和氧化锆纤维本身具备较高的韧性,改性纳米石墨烯保留了纳米石墨烯片的片状结构,经过冷冻干燥工艺制备颗粒物再干压得到陶瓷生坯,形成氮化硼纤维、氧化锆纤维和改性纳米石墨烯相互堆叠的层状结构,大幅度增强氧化锆陶瓷的韧性;
(3)放电等离子烧结工艺降低烧结温度,防止石墨烯碳化,优化的放电等离子烧结工艺提高陶瓷的致密度,进一步提高陶瓷的韧性,层状结构结合氧化锆的相变增韧机理以及石墨烯的高韧性特点,得到高韧性复合纳米陶瓷材料。
具体实施方式
为更进一步阐述本发明为实现预定发明目的所采取的技术手段及功效,以下结合实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如后。
实施例1
一种高韧性复合纳米陶瓷材料的制备方法,所述制备方法包括以下步骤:
(1)采用化学气相沉积法,以ZrCl4为锆源前驱体,以CO2和氢气为反应气体,以氩气为稀释气体,ZrCl4流量为0.4g/min,CO2流量为0.25m3 /h,氢气流量为0.25m3 /h,氩气流量为0.2m3 /h,压强为16KPa,温度为850℃,沉积时间为8h,在纳米石墨烯片表面沉积氧化锆层,得到改性纳米石墨烯;
(2)取8重量份改性纳米石墨烯、60重量份氧化锆纤维、18重量份氮化硼纤维、12重量份碳化硼粉末、6重量份二硼化钛粉末和5重量份二硼化锆粉末混合后,再加入5重量份聚乙烯醇和500重量份去离子水,以200r/min的速度球磨4h,得到混合浆料;
(3)将混合浆料进行冷冻干燥得到颗粒物,然后将颗粒物干压得到陶瓷生坯;
(4)陶瓷生坯采用放电等离子烧结工艺进行烧结,控制烧结参数为:轴向压力32MPa,烧结升温速率为60℃/min,烧结温度为1950℃,烧结保温时间2.5min,烧结真空度≦4MPa,最终得到高韧性复合纳米陶瓷材料。
实施例2
一种高韧性复合纳米陶瓷材料的制备方法,所述制备方法包括以下步骤:
(1)采用化学气相沉积法,以ZrCl4为锆源前驱体,以CO2和氢气为反应气体,以氩气为稀释气体,ZrCl4流量为0.5g/min,CO2流量为0.25m3 /h,氢气流量为0.25m3 /h,氩气流量为0.25m3 /h,压强为10KPa,温度为850℃,沉积时间为6h,在纳米石墨烯片表面沉积氧化锆层,得到改性纳米石墨烯;
(2)取10重量份改性纳米石墨烯、65重量份氧化锆纤维、18重量份氮化硼纤维、12重量份碳化硼粉末、8重量份二硼化钛粉末和5重量份二硼化锆粉末混合后,再加入8重量份聚乙烯醇和420重量份去离子水,以250r/min的速度球磨4h,得到混合浆料;
(3)将混合浆料进行冷冻干燥得到颗粒物,然后将颗粒物干压得到陶瓷生坯;
(4)陶瓷生坯采用放电等离子烧结工艺进行烧结,控制烧结参数为:轴向压力35MPa,烧结升温速率为80℃/min,烧结温度为1980℃,烧结保温时间2.5min,烧结真空度≦4MPa,最终得到高韧性复合纳米陶瓷材料。
实施例3
一种高韧性复合纳米陶瓷材料的制备方法,所述制备方法包括以下步骤:
(1)采用化学气相沉积法,以ZrCl4为锆源前驱体,以CO2和氢气为反应气体,以氩气为稀释气体,ZrCl4流量为0.6g/min,CO2流量为0.2m3 /h,氢气流量为0.2m3 /h,氩气流量为0.3m3 /h,压强为20KPa,温度为900℃,沉积时间为5h,在纳米石墨烯片表面沉积氧化锆层,得到改性纳米石墨烯;
(2)取12重量份改性纳米石墨烯、70重量份氧化锆纤维、15重量份氮化硼纤维、12重量份碳化硼粉末、6重量份二硼化钛粉末和5重量份二硼化锆粉末混合后,再加入6重量份聚乙烯醇和400重量份去离子水,以220r/min的速度球磨4h,得到混合浆料;
(3)将混合浆料进行冷冻干燥得到颗粒物,然后将颗粒物干压得到陶瓷生坯;
(4)陶瓷生坯采用放电等离子烧结工艺进行烧结,控制烧结参数为:轴向压力40MPa,烧结升温速率为60℃/min,烧结温度为1960℃,烧结保温时间3min,烧结真空度≦4MPa,最终得到高韧性复合纳米陶瓷材料。
实施例4
一种高韧性复合纳米陶瓷材料的制备方法,所述制备方法包括以下步骤:
(1)采用化学气相沉积法,以ZrCl4为锆源前驱体,以CO2和氢气为反应气体,以氩气为稀释气体,ZrCl4流量为0.4g/min,CO2流量为0.25m3 /h,氢气流量为0.25m3 /h,氩气流量为0.3m3 /h,压强为10KPa,温度为800℃,沉积时间为10h,在纳米石墨烯片表面沉积氧化锆层,得到改性纳米石墨烯;
(2)取15重量份改性纳米石墨烯、80重量份氧化锆纤维、25重量份氮化硼纤维、10重量份碳化硼粉末、6重量份二硼化钛粉末和5重量份二硼化锆粉末混合后,再加入7重量份聚乙烯醇和300重量份去离子水,以200r/min的速度球磨4h,得到混合浆料;
(3)将混合浆料进行冷冻干燥得到颗粒物,然后将颗粒物干压得到陶瓷生坯;
(4)陶瓷生坯采用放电等离子烧结工艺进行烧结,控制烧结参数为:轴向压力45MPa,烧结升温速率为100℃/min,烧结温度为2000℃,烧结保温时间2min,烧结真空度≦4MPa,最终得到高韧性复合纳米陶瓷材料。
对比例1
一种高韧性复合纳米陶瓷材料的制备方法,所述制备方法包括以下步骤:
(1)取8重量份纳米石墨烯片、60重量份氧化锆纤维、18重量份氮化硼纤维、12重量份碳化硼粉末、6重量份二硼化钛粉末和5重量份二硼化锆粉末混合后,再加入5重量份聚乙烯醇和500重量份去离子水,以200r/min的速度球磨4h,得到混合浆料;
(2)将混合浆料进行冷冻干燥得到颗粒物,然后将颗粒物干压得到陶瓷生坯;
(3)陶瓷生坯采用放电等离子烧结工艺进行烧结,控制烧结参数为:轴向压力32MPa,烧结升温速率为60℃/min,烧结温度为1950℃,烧结保温时间2.5min,烧结真空度≦4MPa,最终得到高韧性复合纳米陶瓷材料。
对比例2
一种高韧性复合纳米陶瓷材料的制备方法,所述制备方法包括以下步骤:
(1)采用化学气相沉积法,以ZrCl4为锆源前驱体,以CO2和氢气为反应气体,以氩气为稀释气体,ZrCl4流量为0.4g/min,CO2流量为0.25m3 /h,氢气流量为0.25m3 /h,氩气流量为0.2m3 /h,压强为16KPa,温度为850℃,沉积时间为8h,在纳米石墨烯片表面沉积氧化锆层,得到改性纳米石墨烯;
(2)取8重量份改性纳米石墨烯、60重量份氧化锆纤维、18重量份氮化硼纤维、12重量份碳化硼粉末、6重量份二硼化钛粉末和5重量份二硼化锆粉末混合后,再加入5重量份聚乙烯醇和500重量份去离子水,以200r/min的速度球磨4h,得到混合浆料;
(3)将混合浆料进行冷冻干燥得到颗粒物,然后将颗粒物干压得到陶瓷生坯;
(4)陶瓷生坯置于真空炉中,在惰性气氛中,以8℃/min升温速度升温至1950℃,保温烧结5h;随炉冷却,最终得到高韧性复合纳米陶瓷材料。
对比例3
一种高韧性复合纳米陶瓷材料的制备方法,所述制备方法包括以下步骤:
(1)采用化学气相沉积法,以ZrCl4为锆源前驱体,以CO2和氢气为反应气体,以氩气为稀释气体,ZrCl4流量为0.4g/min,CO2流量为0.25m3 /h,氢气流量为0.25m3 /h,氩气流量为0.2m3 /h,压强为16KPa,温度为850℃,沉积时间为8h,在纳米石墨烯片表面沉积氧化锆层,得到改性纳米石墨烯;
(2)取8重量份改性纳米石墨烯、60重量份粒度为40~70um的氧化锆粉体、18重量份氮化硼纤维、12重量份碳化硼粉末、6重量份二硼化钛粉末和5重量份二硼化锆粉末混合后,再加入5重量份聚乙烯醇和500重量份去离子水,以200r/min的速度球磨4h,得到混合浆料;
(3)将混合浆料进行冷冻干燥得到颗粒物,然后将颗粒物干压得到陶瓷生坯;
(4)陶瓷生坯采用放电等离子烧结工艺进行烧结,控制烧结参数为:轴向压力32MPa,烧结升温速率为60℃/min,烧结温度为1950℃,烧结保温时间2.5min,烧结真空度≦4MPa,最终得到高韧性复合纳米陶瓷材料。
对比例4
一种高韧性复合纳米陶瓷材料的制备方法,所述制备方法包括以下步骤:
(1)采用化学气相沉积法,以ZrCl4为锆源前驱体,以CO2和氢气为反应气体,以氩气为稀释气体,ZrCl4流量为0.4g/min,CO2流量为0.25m3 /h,氢气流量为0.25m3 /h,氩气流量为0.2m3 /h,压强为16KPa,温度为850℃,沉积时间为8h,在纳米石墨烯片表面沉积氧化锆层,得到改性纳米石墨烯;
(2)取8重量份改性纳米石墨烯、60重量份氧化锆纤维、18重量份氮化硼纤维、12重量份碳化硼粉末、6重量份二硼化钛粉末和5重量份二硼化锆粉末混合后,再加入5重量份聚乙烯醇和500重量份去离子水,以200r/min的速度球磨4h,得到混合浆料;
(3)将混合浆料进行冷冻干燥得到颗粒物,然后将颗粒物干压得到陶瓷生坯;
(4)陶瓷生坯采用放电等离子烧结工艺进行烧结,控制烧结参数为:
轴向压力25MPa,烧结升温速率为120℃/min,烧结温度为1950℃,烧结保温时间4min,烧结真空度≦4MPa,最终得到高韧性复合纳米陶瓷材料。
对比例5
一种高韧性复合纳米陶瓷材料的制备方法,所述制备方法包括以下步骤:
(1)采用化学气相沉积法,以ZrCl4为锆源前驱体,以CO2和氢气为反应气体,以氩气为稀释气体,ZrCl4流量为0.4g/min,CO2流量为0.25m3 /h,氢气流量为0.25m3 /h,氩气流量为0.2m3 /h,压强为16KPa,温度为850℃,沉积时间为8h,在纳米石墨烯片表面沉积氧化锆层,得到改性纳米石墨烯;
(2)取8重量份改性纳米石墨烯、60重量份氧化锆纤维、18重量份氮化硼纤维、12重量份碳化硼粉末、6重量份二硼化钛粉末和5重量份二硼化锆粉末混合后,再加入5重量份聚乙烯醇和500重量份去离子水,以200r/min的速度球磨4h,得到混合浆料;
(3)将混合浆料进行冷冻干燥得到颗粒物,然后将颗粒物干压得到陶瓷生坯;
(4)陶瓷生坯采用放电等离子烧结工艺进行烧结,控制烧结参数为:轴向压力55MPa,烧结升温速率为120℃/min,烧结温度为1950℃,烧结保温时间1.5min,烧结真空度≦4MPa,最终得到高韧性复合纳米陶瓷材料。
实施例1-4和对比例1-5制备的高韧性复合纳米陶瓷材料的力学性能和密度以及相对致密度如下表1所示:
表1
Figure 996914DEST_PATH_IMAGE002
由表1结果可知,对比例1在实施例1基础上直接添加纳米石墨烯片,对比例2在实施例1基础上将放电等离子烧结工艺改为真空烧结工艺,对比例3在实施例1基础上将氧化锆纤维改为粒度为40~70um的氧化锆粉体,对比例4和对比例5在实施例1基础上调整了放电等离子烧结的工艺参数,最终得到高韧性复合纳米陶瓷材料的断裂韧性、抗弯强度、密度和相对致密度均低于实施例1。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明,任何本领域技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简介修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (8)

1.一种高韧性复合纳米陶瓷材料的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)采用化学气相沉积法,在纳米石墨烯片表面沉积氧化锆层,得到改性纳米石墨烯;
(2)取改性纳米石墨烯、氧化锆纤维、氮化硼纤维、硼化物粉末混合后,再加入聚乙烯醇和去离子水球磨,得到混合浆料;
(3)将混合浆料进行冷冻干燥得到颗粒物,然后将颗粒物干压得到陶瓷生坯;
(4)陶瓷生坯采用放电等离子烧结工艺得到高韧性复合纳米陶瓷材料。
2.根据权利要求1所述的一种高韧性复合纳米陶瓷材料的制备方法,其特征在于,步骤(2)所述各组分加入量为:改性纳米石墨烯8-15重量份、氧化锆纤维60-80重量份、氮化硼纤维15-25重量份、硼化物粉末20-30重量份、聚乙烯醇5-8重量份、去离子水300-500重量份。
3.根据权利要求1所述的一种高韧性复合纳米陶瓷材料的制备方法,其特征在于,所述硼化物粉末由10-15重量份碳化硼粉末、5-8重量份二硼化钛粉末和5-7重量份二硼化锆粉末组成。
4.根据权利要求1所述的一种高韧性复合纳米陶瓷材料的制备方法,其特征在于,步骤(1)所述化学气相沉积法的具体条件为:以ZrCl4为锆源前驱体,以CO2和氢气为反应气体,以氩气为稀释气体,压强为10~20KPa,温度为800~1000℃,时间为5~10h。
5.根据权利要求4所述的一种高韧性复合纳米陶瓷材料的制备方法,其特征在于,所述ZrCl4流量为0.4-0.6g/min,所述CO2流量为0.2-0.3m3 /h,氢气流量为0.2-0.3m3 /h,氩气流量为0.2-0.3m3 /h。
6.根据权利要求1所述的一种高韧性复合纳米陶瓷材料的制备方法,其特征在于,步骤(2)所述球磨转速为200-300r/min,球磨时间为3-5h。
7.根据权利要求1所述的一种高韧性复合纳米陶瓷材料的制备方法,其特征在于,步骤(4)所述放电等离子烧结工艺条件为:轴向压力30-50MPa,烧结升温速率为30-100℃/min,烧结温度为1900-2000℃,烧结保温时间2-3min,烧结真空度≦4MPa。
8.一种权利要求1-7任一项所述的制备方法制备得到的高韧性复合纳米陶瓷材料。
CN202211442449.4A 2022-11-18 2022-11-18 一种高韧性复合纳米陶瓷材料及其制备方法 Pending CN115572164A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211442449.4A CN115572164A (zh) 2022-11-18 2022-11-18 一种高韧性复合纳米陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211442449.4A CN115572164A (zh) 2022-11-18 2022-11-18 一种高韧性复合纳米陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN115572164A true CN115572164A (zh) 2023-01-06

Family

ID=84588725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211442449.4A Pending CN115572164A (zh) 2022-11-18 2022-11-18 一种高韧性复合纳米陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115572164A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116514528A (zh) * 2023-03-27 2023-08-01 湖南兴诚电瓷电器有限公司 一种用于隔离开关的陶瓷绝缘子及其制备工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130184143A1 (en) * 2011-07-29 2013-07-18 The Arizona Board Of Regents, On Behalf Of The University Of Arizona Graphene-Reinforced Ceramic Composites and Uses Therefor
CN113845367A (zh) * 2021-10-08 2021-12-28 江西信达航科新材料科技有限公司 高温抗氧化碳纤维增韧氧化锆陶瓷材料的制备方法及高温抗氧化碳纤维增韧氧化锆陶瓷材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130184143A1 (en) * 2011-07-29 2013-07-18 The Arizona Board Of Regents, On Behalf Of The University Of Arizona Graphene-Reinforced Ceramic Composites and Uses Therefor
CN113845367A (zh) * 2021-10-08 2021-12-28 江西信达航科新材料科技有限公司 高温抗氧化碳纤维增韧氧化锆陶瓷材料的制备方法及高温抗氧化碳纤维增韧氧化锆陶瓷材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
耿广仁等: "高温陶瓷纤维/高温陶瓷基复合材料研究进展", 《佛山陶瓷》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116514528A (zh) * 2023-03-27 2023-08-01 湖南兴诚电瓷电器有限公司 一种用于隔离开关的陶瓷绝缘子及其制备工艺
CN116514528B (zh) * 2023-03-27 2024-04-12 湖南兴诚电瓷电器有限公司 一种用于隔离开关的陶瓷绝缘子及其制备工艺

Similar Documents

Publication Publication Date Title
US11180419B2 (en) Method for preparation of dense HfC(Si)—HfB2 composite ceramic
CN109553430A (zh) 一种具有复合界面的SiCf/SiC陶瓷基复合材料及其制备方法
CN114853477B (zh) 一种耐烧蚀高熵碳化物-高熵硼化物-碳化硅复相陶瓷及其制备方法
CN107540400A (zh) 一种具有复合界面的SiCf/SiC陶瓷基复合材料
CN103910532A (zh) 涂层无机纤维增韧max相陶瓷复合材料、其制备方法及用途
CN110467467B (zh) 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法
Tkachenko et al. High-temperature protective coatings for carbon fibers
CN103553616A (zh) 原位生长SiC纳米线增强C/SiC复合材料及其制备方法
JPH01301508A (ja) 炭化珪素質材料の製造方法及び原料組成物
KR101101244B1 (ko) 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법
CN115572164A (zh) 一种高韧性复合纳米陶瓷材料及其制备方法
WO2023174160A1 (zh) 中高熵陶瓷材料、纤维增韧陶瓷基复合材料及制法与应用
CN102603344B (zh) 一种碳化硅晶须增韧二硼化锆陶瓷的制备工艺
CN110304933B (zh) 表面改性碳化硅晶须增韧反应烧结碳化硅陶瓷的制备方法
CN106588018A (zh) 一种超高温碳化铪陶瓷纳米粉体的制备方法
Li et al. In-situ fabrication of lightweight SiC (Al, rGO) bulk ceramics derived from silicon oxycarbide for aerospace components
Mallick et al. Synthesis and consolidation of ZrC based ceramics: a review
CN111747748B (zh) 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN115215670B (zh) 一种层间增强的耐超高温抗氧化陶瓷基复合材料及其制备方法
Yang et al. Microstructure and strengthening behavior in high content SiC nanowires reinforced SiC composites
Tang et al. Research status of titanium diboride high temperature ceramics
CN109607541A (zh) 一种竹节状SiC纳米线及其制备方法
CN112299883B (zh) 一种碳化硅加热元件的耐高温保护涂层及其制备方法
CN111732436A (zh) 易烧结钛和钨共掺杂碳化锆粉体及其制备方法
CN112409012A (zh) 一种块状碳化钛-碳化硅复合气凝胶材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20230106

RJ01 Rejection of invention patent application after publication