CN114804869A - 一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法 - Google Patents

一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法 Download PDF

Info

Publication number
CN114804869A
CN114804869A CN202210493788.9A CN202210493788A CN114804869A CN 114804869 A CN114804869 A CN 114804869A CN 202210493788 A CN202210493788 A CN 202210493788A CN 114804869 A CN114804869 A CN 114804869A
Authority
CN
China
Prior art keywords
powder
sol
synthesis
preparation
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210493788.9A
Other languages
English (en)
Inventor
李贺军
冯广辉
姚西媛
余雨兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210493788.9A priority Critical patent/CN114804869A/zh
Publication of CN114804869A publication Critical patent/CN114804869A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法,根据铪元素与钽元素摩尔比为3:1的计量比称取四氯化铪HfCl4和五氯化钽TaCl5,并溶于无水乙醇中,充分搅拌后加入一定量的浓硝酸、聚乙二醇(PEG)和水,在50~70℃条件下加热搅拌形成溶胶;将上述溶胶置于温度为80℃的鼓风干燥箱中充分干燥,并在600~1500℃条件下热处理2~3h,即可获得Hf6Ta2O17粉体。与现有技术相比,本工艺具有操作简单,制备周期短、均匀性好和可制备纳米尺度粉体等优点。

Description

一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法
技术领域
本发明属于粉末合成领域,涉及一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法。
背景技术
碳/碳(C/C)复合材料具有一系列优异的性能,如低密度、高比强和随温度升高不降反升的力学性能,因而广泛应用于航空航天等领域。随着高超声速飞行器的快速发展,机翼前缘、喉衬和发动机喷管等热端部件将会承受更加严苛的环境。但是,C/C复合材料的氧化敏感性严重制约着其在上述领域的应用。在C/C复合材料表面制备超高温陶瓷涂层被认为是一种改善其氧化烧蚀防护性能的有效方式。但是,单相超高温陶瓷涂层因氧化后形成的多孔结构不利于阻碍氧气的扩散,所以其防护效果并不能满足要求。为此,一些低熔点的改性相,如碳化硅(SiC)、碳化钛(TiC)等,在烧蚀后可以形成玻璃相以达到阻碍氧气扩散的效果,因而通常被引入超高温陶瓷涂层。但是,随着烧蚀时间的延长,这些低熔点的玻璃相会出现严重的蒸发,从而导致涂层材料不能为基体提供长时有效的保护。因此,制备一种具有低氧扩散系数和高熔点的改性相成为了解决该问题的有效途径。
文献1“Wang Y,Xiong X,Li G,et al.Preparation and ablation propertiesof Hf(Ta)C co-deposition coating for carbon/carbon composites[J].CorrosionScience,2013,66:177-182.”报道了采用化学气相沉积工艺制备Hf(Ta)C涂层,并发现烧蚀后氧化层中可以检测到Hf6Ta2O17单相固溶体。该固溶体较高的熔点(~2450℃),较低的热导(~2.89W/m·K)和氧扩散系数是涂层表现出良好烧蚀性能的主要原因。
文献2“Tong M,Chen C,Fu Q,et al.Exploring Hf-Ta-O precipitation uponablation of Hf-Ta-Si-C coating on C/C composites,Journal of the EuropeanCeramic Society,2022,42:2586-2596.”采用化学气相沉积法制备了Hf-Si-C和Hf-Ta-Si-C涂层,并发现Hf-Ta-O玻璃相较Hf-Si-O玻璃相具有更好的化学稳定性。
文献3“Tan Z,Yang Z,Zhu W,et al.Mechanical properties and calcium-magnesium-alumino-silicate(CMAS)corrosion behavior of a promisingHf6Ta2O17ceramic for thermal barrier coatings,Ceramics International,2020,46:25242-25248.”报道了采用固相反应法制备了Hf6Ta2O17陶瓷,该工艺以氧化铪(HfO2)和五氧化二钽(Ta2O5)为原料,在压力为120MPa,温度为1600℃下烧结8h。其缺点是合成温度高、能源消耗大且生产成本高。
文献4“Yang Y,Perepezko J,Zhang C.Oxidation synthesis ofHf6Ta2O17superstructures,Materials Chemistry and Physics,2017,197:154-162.”以Hf和Ta合金为原材料,通过电弧熔炼获得铸块,再经过1500℃的氧化获得Hf6Ta2O17超结构。但该工艺存在操作复杂,成分均匀性难以保证等缺点。
文献5“Li H,Yu Y,Wang S,et al,Low thermal conductivity Hf6Ta2O17ceramics fabricated by solvothermal and pressure-less sintering,CeramicsInternational,2021,47:17711-17718.”通过水热法制备了Hf6Ta2O17粉体,该方法涉及高温高压过程且温压控制严格,因而对生产设备的依赖性较强、技术难度大,很难进行工业化生产。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法,用以克服现有合成工艺操作复杂、合成温度高、制备周期长等问题。此外,相较于现有技术合成的微米级粉体,溶胶凝胶法制备出的Hf6Ta2O17粉体具有纳米尺寸,作为改性相引入超高温陶瓷时可有效提高其剪切强度和断裂韧性。
技术方案
一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法,其特征在于步骤如下:
步骤1:以摩尔比为3:1的铪元素与钽元素的计量比,称取四氯化铪HfCl4和五氯化钽TaCl5,并溶于无水乙醇中形成混合溶液,将浓硝酸、聚乙二醇PEG和水依次缓慢地添加到混合溶液中并搅拌;
步骤2:将上述混合溶液置于磁力加热搅拌器上加热搅拌至形成溶胶,随后置于鼓风干燥箱中充分干燥;
步骤3:经干燥后的粉末置于刚玉方舟中,放入600~1500℃的马弗炉中热处理2~3h,将处理好的粉末冷却至室温,进行研磨得到Hf6Ta2O17粉体。
所述浓硝酸的浓度为65%~68%。
所述聚乙二醇PEG的相对分子量在180~220。
所述步骤2加热搅拌器的温度为50~70℃。
所述步骤2鼓风干燥箱的温度为80℃。
所述步骤3热处理时的升温速率为4℃/min~10℃/min。
有益效果
本发明提出的一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法,根据铪元素与钽元素摩尔比为3:1的计量比称取四氯化铪HfCl4和五氯化钽TaCl5,并溶于无水乙醇中,充分搅拌后加入一定量的浓硝酸、聚乙二醇(PEG)和水,在50~70℃条件下加热搅拌形成溶胶;将上述溶胶置于温度为80℃的鼓风干燥箱中充分干燥,并在600~1500℃条件下热处理2~3h,即可获得Hf6Ta2O17粉体。
与现有技术相比,本工艺具有操作简单,制备周期短、均匀性好和可制备纳米尺度粉体等优点,有益效果在于:
1.相较于微米尺度的粉末,本工艺所得为纳米级,作为第二相引入超高温陶瓷中可以有效解决其韧性差的问题;
2.操作简单、制备周期短、不涉及高温高压过程,安全性高;
3.工艺稳定,易于大规模生产。
图1为合成的Hf6Ta2O17粉体的宏观形貌图,从图1可知,本发明制备的陶瓷粉末为白色颗粒;
图2为合成的Hf6Ta2O17粉体的XRD图谱,从图2可知,本发明制备得到的陶瓷粉末纯度和结晶度都较高,且为单相结构。
图3为合成的Hf6Ta2O17粉体的TEM形貌图,从图3可知,粉体尺寸呈纳米级,且Hf、Ta和O元素均匀地分布在颗粒粉体。
附图说明
图1为合成的Hf6Ta2O17粉体的宏观形貌图
图2为合成的Hf6Ta2O17粉体的XRD图谱
图3为合成的Hf6Ta2O17粉体的TEM形貌图
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1:
步骤1:根据铪元素与钽元素摩尔比为3:1的计量比称取四氯化铪HfCl4和五氯化钽TaCl5,并溶于无水乙醇中,充分搅拌15min形成混合溶液;
将浓硝酸、聚乙二醇和水依次缓慢地添加到搅拌中的混合溶液,并剧烈搅拌;
上述浓硝酸的浓度为65%~68%,聚乙二醇(PEG)的相对分子量在180~220;
步骤2:将上述混合溶液置于50~70℃的磁力加热搅拌器上进行加热搅拌至形成溶胶,随后置于80℃的鼓风干燥箱中充分干燥;
步骤3:经干燥后的粉末置于刚玉方舟中,放入800℃的马弗炉中热处理2h,将处理好的粉末冷却至室温,进行充分研磨得到粉体;
所述的升温速率为4℃/min~10℃/min升至800℃,并以随炉冷却的方式降至室温。
实施例2:
步骤1:根据铪元素与钽元素摩尔比为3:1的计量比称取四氯化铪HfCl4和五氯化钽TaCl5,并溶于无水乙醇中,充分搅拌15min形成混合溶液;
将浓硝酸、聚乙二醇(PEG)和水依次缓慢地添加到搅拌中的混合溶液,并剧烈搅拌;
上述浓硝酸的浓度为65%~68%,聚乙二醇(PEG)的相对分子量在180~220;
步骤2:将上述混合溶液置于50~70℃的磁力加热搅拌器上进行加热搅拌至形成溶胶,随后置于80℃的鼓风干燥箱中充分干燥;
步骤3:经干燥后的粉末置于刚玉方舟中,放入1000℃的马弗炉中热处理2h,将处理好的粉末冷却至室温,进行充分研磨得到粉体;
所述的升温速率为4℃/min~10℃/min升至1000℃,并以随炉冷却的方式降至室温。
实施例3:
步骤1:根据铪元素与钽元素摩尔比为3:1的计量比称取四氯化铪HfCl4和五氯化钽TaCl5,并溶于无水乙醇中,充分搅拌15min形成混合溶液;
将浓硝酸、聚乙二醇(PEG)和水依次缓慢地添加到搅拌中的混合溶液,并剧烈搅拌;
上述浓硝酸的浓度为65%~68%,聚乙二醇(PEG)的相对分子量在180~220;
步骤2:将上述混合溶液置于50~70℃的磁力加热搅拌器上进行加热搅拌至形成溶胶,随后置于80℃的鼓风干燥箱中充分干燥;
步骤3:经干燥后的粉末置于刚玉方舟中,放入1500℃的马弗炉中热处理2h,将处理好的粉末冷却至室温,进行充分研磨得到粉体;
所述的升温速率为4℃/min~10℃/min升至1500℃,并以随炉冷却的方式降至室温。

Claims (6)

1.一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法,其特征在于步骤如下:
步骤1:以摩尔比为3:1的铪元素与钽元素的计量比,称取四氯化铪HfCl4和五氯化钽TaCl5,并溶于无水乙醇中形成混合溶液,将浓硝酸、聚乙二醇PEG和水依次缓慢地添加到混合溶液中并搅拌;
步骤2:将上述混合溶液置于磁力加热搅拌器上加热搅拌至形成溶胶,随后置于鼓风干燥箱中充分干燥;
步骤3:经干燥后的粉末置于刚玉方舟中,放入600~1500℃的马弗炉中热处理2~3h,将处理好的粉末冷却至室温,进行研磨得到Hf6Ta2O17粉体。
2.根据权利要求1所述溶胶凝胶法合成Hf6Ta2O17粉体的制备方法,其特征在于:所述浓硝酸的浓度为65%~68%。
3.根据权利要求1所述溶胶凝胶法合成Hf6Ta2O17粉体的制备方法,其特征在于:所述聚乙二醇PEG的相对分子量在180~220。
4.根据权利要求1所述溶胶凝胶法合成Hf6Ta2O17粉体的制备方法,其特征在于:所述步骤2加热搅拌器的温度为50~70℃。
5.根据权利要求1所述溶胶凝胶法合成Hf6Ta2O17粉体的制备方法,其特征在于:所述步骤2鼓风干燥箱的温度为80℃。
6.根据权利要求1所述溶胶凝胶法合成Hf6Ta2O17粉体的制备方法,其特征在于:所述步骤3热处理时的升温速率为4℃/min~10℃/min。
CN202210493788.9A 2022-04-27 2022-04-27 一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法 Pending CN114804869A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210493788.9A CN114804869A (zh) 2022-04-27 2022-04-27 一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210493788.9A CN114804869A (zh) 2022-04-27 2022-04-27 一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法

Publications (1)

Publication Number Publication Date
CN114804869A true CN114804869A (zh) 2022-07-29

Family

ID=82511082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210493788.9A Pending CN114804869A (zh) 2022-04-27 2022-04-27 一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法

Country Status (1)

Country Link
CN (1) CN114804869A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217245A (zh) * 2023-02-14 2023-06-06 西北工业大学 一种原位合成HfxTa1-xC固溶体包覆石墨颗粒粉体及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372036A (zh) * 2019-08-23 2019-10-25 中国人民解放军国防科技大学 一种三元过渡金属氧化物粉体及其制备方法
CN110963530A (zh) * 2019-12-04 2020-04-07 东南大学 一种钽酸钇粉体的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372036A (zh) * 2019-08-23 2019-10-25 中国人民解放军国防科技大学 一种三元过渡金属氧化物粉体及其制备方法
CN110963530A (zh) * 2019-12-04 2020-04-07 东南大学 一种钽酸钇粉体的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCOTT J. MCCORMACK ET AL: "In-situ investigation of Hf6Ta2O17 anisotropic thermal expansion and topotactic, peritectic transformation", 《ACTA MATERIALIA》, vol. 161, pages 127 - 137 *
李贺军 等主编, 西北工业大学出版社: "《磁电材料的制备、表征与性能研究》", vol. 1, pages: 220 - 28 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217245A (zh) * 2023-02-14 2023-06-06 西北工业大学 一种原位合成HfxTa1-xC固溶体包覆石墨颗粒粉体及制备方法
CN116217245B (zh) * 2023-02-14 2024-04-30 西北工业大学 一种原位合成HfxTa1-xC固溶体包覆石墨颗粒粉体及制备方法

Similar Documents

Publication Publication Date Title
CN109180189B (zh) 一种高熵碳化物超高温陶瓷粉体及其制备方法
WO2020133928A1 (zh) 一种致密HfC(Si)-HfB2复相陶瓷的制备方法
US10364193B2 (en) Method for synthesizing high-purity ultrafine ZrC—SiC composite powder
CN112830782B (zh) 一种高熵稀土铌/钽/钼酸盐陶瓷及其制备方法
Zhang et al. Understanding the oxidation behavior of Ta–Hf–C ternary ceramics at high temperature
Souto et al. Effect of Y2O3 additive on conventional and microwave sintering of mullite
Zhou et al. Densification and grain growth of Gd2Zr2O7 nanoceramics during pressureless sintering
Li et al. Low thermal conductivity Hf6Ta2O17 ceramics fabricated by solvothermal and pressure-less sintering
Jing et al. High efficiency synthesis of Nd: YAG powder by a spray co-precipitation method for transparent ceramics
Loghman-Estarki et al. Large scale synthesis of non-transformable tetragonal Sc2O3, Y2O3 doped ZrO2 nanopowders via the citric acid based gel method to obtain plasma sprayed coating
Yu et al. Single-source-precursor synthesis and phase evolution of NbC–SiC–C ceramic nanocomposites with core− shell structured NbC@ C and SiC@ C nanoparticles
CN111995393B (zh) 一种钛-铝聚合物前驱体制备钛酸铝陶瓷纤维的方法
CN112062558B (zh) 氧化锆陶瓷的制备方法
CN114804869A (zh) 一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法
WO2019227811A1 (zh) 一种超细过渡金属硼化物粉体及其制备方法和应用
CN110078120B (zh) 一种基于超临界分散焙烧的氧化钇稳定氧化锆粉体的制备方法
CN110963530B (zh) 一种钽酸钇粉体的制备方法
CN108546130A (zh) 一种超高温陶瓷及其制备方法
He et al. Self-healing performance of niobium suboxide-based solid solution for UHTC coating during oxyacetylene test
Mohammad-Rahimi et al. Sintering of Al2O3–SiC composite from sol–gel method with MgO, TiO2 and Y2O3 addition
EP3816133A1 (en) Method for preparing alumina-based solid solution ceramic powder by using aluminum oxygen combustion synthesis water mist process
CN104844214A (zh) 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法
CN114853506A (zh) 碳/碳复合材料表面(HfZrTi)C3中熵碳化物抗烧蚀涂层及制备方法
Gao et al. Effect of Y2O3 addition on ammono sol–gel synthesis and sintering of Si3N4–SiC nanocomposite powder
CN108584958B (zh) 一种碳化锆纳米粉体的原位合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220729

RJ01 Rejection of invention patent application after publication