CN114835481A - 高温高频MnZn功率铁氧体材料的制备方法 - Google Patents

高温高频MnZn功率铁氧体材料的制备方法 Download PDF

Info

Publication number
CN114835481A
CN114835481A CN202210324661.4A CN202210324661A CN114835481A CN 114835481 A CN114835481 A CN 114835481A CN 202210324661 A CN202210324661 A CN 202210324661A CN 114835481 A CN114835481 A CN 114835481A
Authority
CN
China
Prior art keywords
sintering
temperature
bto
dielectric ceramic
power ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210324661.4A
Other languages
English (en)
Other versions
CN114835481B (zh
Inventor
余忠
谢辉杰
李永劬
邬传健
严剑峰
孙科
郭凤鸣
兰中文
蒋晓娜
余勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haining Lianfeng Magnet Industry Co ltd
University of Electronic Science and Technology of China
Original Assignee
Haining Lianfeng Magnet Industry Co ltd
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haining Lianfeng Magnet Industry Co ltd, University of Electronic Science and Technology of China filed Critical Haining Lianfeng Magnet Industry Co ltd
Priority to CN202210324661.4A priority Critical patent/CN114835481B/zh
Publication of CN114835481A publication Critical patent/CN114835481A/zh
Application granted granted Critical
Publication of CN114835481B publication Critical patent/CN114835481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

高温高频MnZn功率铁氧体材料的制备方法,涉及铁氧体材料制备技术领域。本发明包括下述步骤:(1)BTO基PTC介电陶瓷粉体制备;(2)MnZn铁氧体预烧料制备;(3)掺杂:以步骤2)获得的MnZn功率铁氧体预烧料为重量参照基准,按预烧料重量百分比加入以下添加剂:0.01~0.03wt%V2O5、0.05~0.15wt%TiO2、0.1~0.3wt%Co2O3、0.01~0.03wt%NiO、0.02~0.08wt%BTO基PTC介电陶瓷粉体;将以上粉料作二次球磨;(4)样品成型;(5)烧结。采用本发明技术的铁氧体材料在高频、高温下具有低损耗的优点。

Description

高温高频MnZn功率铁氧体材料的制备方法
技术领域
本发明涉及铁氧体材料制备技术领域。
背景技术
随着5G、大数据、云计算、“互联网+”、新能源产业等新一代信息技术、高端装备战略重点产业蓬勃发展,电源行业迎来了新的增长契机。各类电子设备在客观上要求开关电源系统高频化、小型化,并提高高温可靠性。而制约这一目标实现的关键技术就是开关电源用铁氧体材料的高频化技术。通常情况下,磁性元件的损耗和体积占到了开关电源总损耗和体积的绝大部分。基于开关电源对磁性元件的尺寸、功率损耗及可靠性提出了越来越高的要求,MnZn功率铁氧体材料作为开关电源的核心,单纯追求高磁导率已经不能满足电子设备发展的要求,既要满足特定频率的应用,还要满足高温高频特性要求。因此,在提高工作频率以满足器件小型化、集成化的前提下,要尽可能降低铁氧体磁芯在高频高温以及高工作磁通下的磁芯损耗,以保证开关电源在不同的应用环境中均能保持高的传输与转换效率。
中国专利公告号为CN102381873A,公开的《一种开关电源用MnZn功率铁氧体材料及其制备方法》,其主成分为五元系配方,比例范围为:Fe2O3:51~53mol%;ZnO:11~13mol%;TiO2:0.01~0.3mol%;Co2O3:0.01~0.3mol%;余量为MnO。添加剂及含量以氧化物计算为:CaO(0.01~0.07wt%);V2O5(0.01~0.07wt%);ZrO2(0.01~0.07wt%);SnO2(0.01~0.1wt%)。其材料在宽温范围内改善了MnZn功率铁氧体的磁性能及其温度稳定性。在25℃~120℃范围内,起始磁导率≥3390,单位体积功耗≤344kw·m-3(100kHz,200mT),最低单位体积功耗279kw·m-3(100kHz,200mT,80℃)。不仅能满足各类开关电源模块的小型轻量化和提高效率的需求,而且可大大提高其在应用中的可靠性。但是其所制备的MnZn功率铁氧体材料工作频率仅仅在100~300kHz以内,不能满足各类开关电源模块高频化的需求。
中国专利公开号为CN108530050A,公开的《宽温低损耗高阻抗MnZn软磁铁氧体材料及制备方法》,其主料包括Fe2O352.0~55.0mol%、ZnO9.5~12.5mol%,其余为MnO,辅料为0.03~0.05wt%CaO;添加剂包括0.001~0.05wt%纳米BaTiO3、0.001~0.05wt%Bi2O3、0.001~0.035wt%CaO、0.001~0.02wt%Nb2O5、0.003~0.2wt%HfO2、0.08~0.3wt%Co2O3。使纳米级普通BTO增加其与颗粒料的接触,提高电阻率,改善材料材料的损耗。但该专利利用的普通BTO具有较高的电阻率,以此来提高铁氧体材料的电阻率,降低涡流损耗,并未考虑到高温涡流损耗的控制,同时制备的材料仍只测试100kHz 200mT的性能,依旧无法满足开关电源高频化、高效化的要求。
中国专利公开号为CN112979301A,公开的《高频高温低损耗MnZn功率铁氧体材料及其制备方法》,其主成分包括Fe2O353.5~56.5mol%、MnO32.5~35.5mol%、ZnO9.0~12.0mol%;添加剂包括0.06~0.12wt%CaCO3、0.01~0.04wt%V2O5、0.10~0.40wt%TiO2、0.02~0.08wt%SnO2、0.20~0.55wt%Co2O3、0.01~0.06wt%BaTiO3、0.1~0.3wt%CaCu3Ti4O12。其主要利用了BTO和CCTO的高电阻特性进行联合掺杂制备的MnZn功率铁氧体,并没有利用BTO的PTC效应对MnZn功率铁氧体高温高频特性进行改善研究。
中国科学技术大学公开了一种常温居里点陶瓷PTC的方法(宋嘉梁.常温PTC热控材料及其热控方法研究[D].2016.),其配方为下式0.7molBaCO3+0.3molSrCO3+1.01molTiO2+0.001~0.004molY2O3+0.005molAl2O3+0.024molSiO2。其制备工艺是:将BaCO3、SrCO3、TiO2和Y2O3按设定的摩尔百分比称量,一磨后在1150℃预烧,获得BaTiO3主晶相;二磨配料按设定的摩尔比将Al2O3、SiO2加入预烧料中,造粒成型后在1350℃空气烧结,获得居里温度点高于30℃的BaTiO3基陶瓷PTC材料。
华中科技大学公开了一种低温烧结PTC陶瓷的方法(孔明日,姜胜林,涂文芳.BaO-B2O3-SiO2玻璃助剂中SiO2对低温烧结PTCR陶瓷性能的影响[J].材料导报,2009,23(12):68-70+74.),其配方如下式所示:(Ba0.75Sr0.25)Ti1.02O3+0.6%(摩尔分数)Y2O3其制备工艺是:主配方将BaCO3、SrCO3、TiO2和Y2O3按设定的摩尔百分比称量,一磨后在1150℃预烧;二磨配料将3%玻璃助剂BaB2O4加入预烧料中,二磨料烘干造粒成型,在970~1250℃空气烧结,获得居里温度点约为97℃的BaTiO3基陶瓷PTC材料。
现有关于钛酸钡系PTC陶瓷的专利,如中国专利公开号CN 112694325 A公开的《一种PTC热敏电阻陶瓷材料及其制备方法、应用》,以及专利公开号CN 113651612 A公开的《钛酸钡系PTC热敏陶瓷材料及其在锂电池中的应用》,其材料配方均由钛酸钡基陶瓷粉料和添加剂构成,主要应用于PTC热敏电阻元件,利用其电阻率随温度上升而急剧增大的PTC效应起到阻断电子线路发生的热失控,起限流、热保护的作用,提高电子设备的安全可靠性。
从上述的所公开的专利申请或授权的专利文件可以总结出如下几点,一是主流提高MnZn铁氧体电阻率方法是通过加入CaCO3等高电阻物质提高其晶界电阻,很少有方法针对铁氧体电阻率随温度升高急剧下降的问题,因此在高频高温下难以保持低损耗;二是专利中BTO作为添加剂加入MnZn功率铁氧体中,仅利用了普通BTO的高电阻率特性,没有利用BTO介电陶瓷的PTC效应对MnZn功率铁氧体高温高频特性进行改善研究。因此本发明提供一种改善MnZn功率铁氧体高温高频特性的方法,利用BTO基PTC介电陶瓷高温时电阻率急剧增大的特点,改善铁氧体材料高温电阻率特性,从而有效降低MnZn功率铁氧体在高频高温下的损耗。三是目前对于BTO基PTC介电陶瓷的研究主要对其本身性质(居里温度等)及作为热敏电阻时的应用。鲜有将其电阻率随温度上升而迅速上升的特点与MnZn铁氧体NTC效应相联系,从而改善MnZn铁氧体损耗温度特性。
发明内容
本发明所要解决的技术问题是,针对MnZn功率铁氧体在高频高温下损耗过大的问题,提供一种高频高温低损耗MnZn功率铁氧体材料及其制备方法,从而有效降低磁心损耗,满足MHz级开关电源高频化、小型化、高效化的应用需求。
本发明解决所述技术问题采用的技术方案是,高温高频MnZn功率铁氧体材料的制备方法,其特征在于,包括下述步骤:
(1)BTO基PTC介电陶瓷粉体制备
按xmol%BaCO3、ymol%SrCO3、zmol%TiO2的比例称取原料,球磨后在1100~1200℃保温0.5~2h条件下完成预烧;其中x=30~40,y=10~20,z=45~55;
在预烧料中加入0.2~0.4mol%Al2O3、1~2mol%SiO2、0.2~0.4mol%Y2O3后进行二次球磨,经造粒成型后在1300~1400℃保温1~3h条件下完成空气烧结,得到BTO基PTC介电陶瓷,碾碎,磨粉为粒径为0.5~1μm的BTO基PTC介电陶瓷粉体;
(2)MnZn铁氧体预烧料制备
按照54.6~55.6mol%Fe2O3和8~10mol%ZnO,其余为MnO的比例称取主成分原料,球磨,在860~920℃的温度下预烧1~3h,获得MnZn功率铁氧体预烧料;
(3)掺杂
以步骤2)获得的MnZn功率铁氧体预烧料为重量参照基准,按预烧料重量百分比加入以下添加剂:0.01~0.03wt%V2O5、0.05~0.15wt%TiO2、0.1~0.3wt%Co2O3、0.01~0.03wt%NiO、0.02~0.08wt%BTO基PTC介电陶瓷粉体;将以上粉料作二次球磨;
(4)样品成型
将二次球磨所得的球磨料烘干后,按重量百分比加入8~15wt%的PVA有机粘合剂进行造粒,成型;
(5)烧结
将成型的生坯件置于气氛烧结装置中进行高温烧结。
进一步的,步骤2)中,主成分原料为55.3mol%Fe2O3和9.8mol%ZnO;
步骤3)中,BTO基PTC介电陶瓷含量为0.03~0.06wt%。
步骤5)中的烧结温度为1120~1200℃,保温时间6~10h;烧结氧分压控制为2~5%。
所述步骤1)中,z=50。
所述步骤3)中加入的添加剂为:
0.03wt%V2O5、0.06wt%TiO2、0.3wt%Co2O3、0.03wt%NiO、0.03wt%BTO基PTC介电陶瓷粉体。
所述步骤2)的预烧温度为900℃,时间2h。
所述步骤1)中,x=35,y=15,加入0.25mol%Al2O3、1.2mol%SiO2、0.25mol%Y2O3
本发明用“~”表示的数值范围包括范围的端值。
采用本发明技术的铁氧体材料在高频、高温下具有低损耗的优点:1MHz50mT、120℃下,损耗为600kW/m3,明显优于现有技术。
附图说明
图1为普通BaTiO3的电阻率温度特性图。
图2为具有PTC效应的BTO介电陶瓷的电阻率温度特性图。
图3为对比例的MnZn功率铁氧体材料扫描电镜照片图。
图4为实施例1的MnZn功率铁氧体材料扫描电镜照片图。
图5为实施例2的MnZn功率铁氧体材料扫描电镜照片图。
图6为本发明制备的MnZn功率铁氧体平均晶粒尺寸D随BTO介电陶瓷含量的变化情况图。
图7为本发明制备的MnZn功率铁氧体电阻率随具有PTC效应的BTO含量的变化情况图。
图8为实施例1-2和对比例制备所得MnZn功率铁氧体样品电阻率温度特性图。
图9为常温高频总损耗PL(1MHz 50mT)随BTO介电陶瓷含量的变化情况图。
图10为实施例1-2和对比例制备所得MnZn功率铁氧体样品高频总损耗PL(1MHz50mT)的温度特性曲线图。
图11为实施例1-2和对比例制备所得MnZn功率铁氧体样品高频涡流损耗Pe(1MHz50mT)的温度特性曲线图。
具体实施方式
本发明主要针对MnZn功率铁氧体在高频高温下损耗过大的问题,提供一种高频高温低损耗MnZn功率铁氧体材料及其制备方法,从而有效降低磁芯损耗,满足MHz级开关电源高频化、小型化、高效化的应用需求。
本发明的核心思想是:MHz级高频范围内铁氧体损耗主要来源于涡流损耗(Pe)和剩余损耗(Pr),而在高温下涡流损耗显著提高,进而导致总损耗的增高。因此制备高性能高温高频MnZn功率铁氧体的关键是降低涡流损耗。MnZn铁氧体涡流损耗与电阻率关系密切,而MnZn铁氧体电阻率具有负温度系数(Negitive Temperature Coefficient,NTC)特性,其电阻率随温度增高而急剧下降,因此在高频高温下MnZn铁氧体的损耗难以保持低损耗。传统提高MnZn铁氧体电阻率方法是通过加入CaCO3等高电阻物质提高其晶界电阻,能显著降低室温下的损耗,但无法解决铁氧体材料电阻率随温度升高急剧下降的关键技术难题。为此本发明采用BTO基PTC介电陶瓷进行掺杂,利用BTO基PTC介电陶瓷在高温时电阻率急剧增大来改善铁氧体的电阻率温度特性。在MnZn铁氧体中采用BTO基PTC介电陶瓷进行掺杂有以下优点。一是BTO基PTC介电陶瓷是钙钛矿结构,不能进入尖晶石结构的MnZn铁氧体晶格中,只能聚集在晶界处,且其具有高熔点,能阻碍晶粒生长,起到细化晶粒的作用;二是BTO基PTC介电陶瓷电阻率高达104Ω·m,当其富集在晶界处时能提高电阻率;三是完美利用BTO基PTC介电陶瓷的PTC效应,当温度超过其居里温度时,BTO基PTC介电陶瓷的介电常数ε变小,势垒高度变高,电阻率ρ急剧增大,其电阻随着温度的上升而增大,能减缓MnZn铁氧体电阻率随温度增高而下降的速率。
本发明的高温高频MnZn功率铁氧体材料原料包括主成分和添加剂,所述主成分包括54.6~55.6mol%Fe2O3和8~10mol%ZnO,其余为MnO;所述添加剂以主成分的重量为计算基准,包括:0.01~0.03wt%V2O5、0.05~0.15wt%TiO2、0.1~0.3wt%Co2O3、0.01~0.03wt%NiO、0.02~0.08wt%BTO基PTC介电陶瓷粉体。
本发明的MnZn功率铁氧体材料制备方法包括以下步骤:
(1)BTO基PTC介电陶瓷粉体制备
采用传统陶瓷制备工艺制备具有PTC效应的BTO基介电陶瓷。按主成分30~40mol%BaCO3:10~20mol%SrCO3:50mol%TiO2进行称取原料。一磨后在1100~1200℃保温0.5~2h条件下完成预烧。在预烧料中加入0.2~0.4mol%Al2O3、1~2mol%SiO2、0.2~0.4mol%Y2O3后进行二磨。经造粒成型后在1300~1400℃保温1~3h条件下完成空气烧结,得到BTO基PTC介电陶瓷。将得到的样品放入刚玉研钵中碾碎,磨成粉末,获得粒径为0.5~1μm的陶瓷粉体。。
MnZn铁氧体预烧料制备:以Fe2O3、ZnO和MnO作为原料,按照主成分54.6~55.6mol%Fe2O3和8~10mol%ZnO,其余为MnO的比例称取原料;将以上粉料在行星式球磨机中进行一次球磨1~3h;所得的球磨料烘干、过筛后,在860~920℃的温度下预烧1~3h,获得MnZn功率铁氧体预烧料。
(2)掺杂处理
以步骤2)获得的MnZn功率铁氧体预烧料为参照基准,同时准备好步骤1)所制备得到的BTO基PTC介电陶瓷粉体,按预烧料重量百分比加入以下添加剂:0.01~0.03wt%V2O5、0.05~0.15wt%TiO2、0.1~0.3wt%Co2O3、0.01~0.03wt%NiO、0.02~0.08wt%BTO基PTC介电陶瓷粉体;将以上粉料在行星式球磨机中进行二次球磨3~5h;
(3)样品成型
将二次球磨后得到的球磨料烘干,然后按重量百分比加入8~15wt%的PVA有机粘合剂进行造粒;根据所需要的样品形状,将获得的造粒料压制成所需的样品生坯,成型压力为5~10MPa。
(4)样品烧结
将成型的生坯件置于气氛烧结装置中进行高温烧结。烧结温度为1120~1200℃,保温时间6~10h;烧结氧分压控制为2~5%。
本发明中,按预烧料重量百分比加入添加剂是指以预烧料的重量作为分母,添加剂为分子计算,例如,预烧料的重量为100g,TiO2的重量为0.06g,以预烧料的重量为计算基准,TiO2的比例为0.06wt%。
以下通过具体的实施进行更详细的描述,但本发明的保护范围并不受限于这些实施例。
包括以下制备步骤:
(1)BTO基PTC介电陶瓷粉体制备
采用传统陶瓷制备工艺制备具有PTC效应的BTO基介电陶瓷。按主成分35mol%BaCO3:15mol%SrCO3:50mol%TiO2进行称取原料。一磨后在1150℃保温1h条件下完成预烧。在预烧料中加入0.25mol%Al2O3、1.2mol%SiO2、0.25mol%Y2O3后进行二磨。经造粒成型后在1350℃保温2h条件下完成空气烧结,得到BTO基PTC介电陶瓷。将得到的样品放入刚玉研钵中碾碎,磨成粉末,获得粒径为0.5~1μm的陶瓷粉体。
(2)MnZn铁氧体预烧料制备
以Fe2O3、ZnO和MnO作为原料,按照主成分55.3mol%Fe2O3和9.8mol%ZnO,其余为MnO的比例称取原料;将以上粉料在行星式球磨机中进行一次球磨2h;所得的球磨料烘干、过筛后,在900℃的温度下预烧2h,获得MnZn功率铁氧体预烧料。
(3)掺杂处理
以步骤2)获得的MnZn功率铁氧体预烧料为参照基准,进行实施例,添加剂含量如下表所示:
Figure BDA0003572883940000071
Figure BDA0003572883940000081
将预烧料和各组添加剂在行星式球磨机中进行二次球磨3h;
(4)样品成型
将二次球磨所得的球磨料烘干后,按重量百分比加入12wt%的PVA有机粘合剂进行造粒;
根据所需要的样品形状,将获得的造粒料压制成所需的样品生坯,成型压力为6MPa。
(5)样品烧结
将成型的生坯件置于气氛烧结装置中进行高温烧结。烧结温度为1180℃,保温时间6h;烧结氧分压控制为4%。
(6)测试
采用同惠TH2826精密LCR测试仪测试样品的电感L,换算成起始磁导率。采用阿基米德排水法测密度,磁性能采用岩崎SY8232 B-H分析仪进行测试。
实施例1-2和对比例的样品基本性能见下表:
Figure BDA0003572883940000082
参见图1,可见普通BaTiO3不具有PTC效应,高温段电阻率下降;而实施例1-2中所用BTO介电陶瓷存在PTC效应,其居里温度约为80℃,超过居里温度后其电阻率急剧增大。
参见图3,在不添加BTO介电陶瓷时平均晶粒尺寸为6~10μm之间,且不均匀。
由图4可见添加具有PTC效应的BTO时平均晶粒尺寸为4~6μm之间,体现具有PTC效应的BTO对晶粒生长的阻晶作用。
由图5可见添加具有PTC效应的BTO时平均晶粒尺寸为3~4μm之间,晶粒尺寸进一步减小。充分体现了具有PTC效应的BTO对晶粒生长的阻晶作用。
图6表明了具有PTC效应的BTO的阻晶作用。
图7表明了添加适量具有PTC效应的BTO可以提高电阻率。
图8表明了添加BTO介电陶瓷改善电阻率温度特性。
图9说明添加适量的BTO介电陶瓷可以降低常温高频损耗。
图10说明添加适量的BTO介电陶瓷可以有效降低在整个温度区间的损耗,尤其是可以明显抑制高温段损耗。
图11说明添加适量的BTO介电陶瓷可以有效降低高温段的涡流损耗。这也有力印证了该BTO发挥了其PTC效应,富集于晶界上,提高了铁氧体高温电阻率,有效缓冲了铁氧体电阻率在高温段急剧下降,进而改善高温高频涡流损耗。

Claims (8)

1.高温高频MnZn功率铁氧体材料的制备方法,其特征在于,包括下述步骤:
(1)BTO基PTC介电陶瓷粉体制备
按xmol%BaCO3、ymol%SrCO3、zmol%TiO2的比例称取原料,球磨后在1100~1200℃保温0.5~2h条件下完成预烧;其中x=30~40,y=10~20,z=45~55;
在预烧料中加入0.2~0.4mol%Al2O3、1~2mol%SiO2、0.2~0.4mol%Y2O3后进行二次球磨,经造粒成型后在1300~1400℃保温1~3h条件下完成空气烧结,得到BTO基PTC介电陶瓷,碾碎,磨粉为粒径为0.5~1μm的BTO基PTC介电陶瓷粉体;
(2)MnZn铁氧体预烧料制备
按照54.6~55.6mol%Fe2O3和8~10mol%ZnO,其余为MnO的比例称取主成分原料,球磨,在860~920℃的温度下预烧1~3h,获得MnZn功率铁氧体预烧料;
(3)掺杂
以步骤2)获得的MnZn功率铁氧体预烧料为重量参照基准,按预烧料重量百分比加入以下添加剂:0.01~0.03wt%V2O5、0.05~0.15wt%TiO2、0.1~0.3wt%Co2O3、0.01~0.03wt%NiO、0.02~0.08wt%BTO基PTC介电陶瓷粉体;将以上粉料作二次球磨;
(4)样品成型
将二次球磨所得的球磨料烘干后,按重量百分比加入8~15wt%的PVA有机粘合剂进行造粒,成型;
(5)烧结
将成型的生坯件置于气氛烧结装置中进行高温烧结。
2.如权利要求1所述的高温高频MnZn功率铁氧体材料的制备方法,其特征在于,
步骤2)中,主成分原料为55.3mol%Fe2O3和9.8mol%ZnO;
步骤3)中,BTO基PTC介电陶瓷含量为0.03~0.06wt%。
3.如权利要求1所述的高温高频MnZn功率铁氧体材料的制备方法,其特征在于,所述步骤5)中的烧结温度为1120~1200℃,保温时间6~10h;烧结氧分压控制为2~5%。
4.如权利要求1所述的高温高频MnZn功率铁氧体材料的制备方法,其特征在于,所述步骤1)中,z=50。
5.如权利要求1所述的MnZn功率铁氧体材料的制备方法,其特征在于,所述步骤3)中加入的添加剂为:
0.03wt%V2O5、0.06wt%TiO2、0.3wt%Co2O3、0.03wt%NiO、0.03wt%BTO基PTC介电陶瓷粉体。
6.如权利要求1所述的高温高频MnZn功率铁氧体材料的制备方法,其特征在于,所述步骤2)的预烧温度为900℃,时间2h。
7.如权利要求4所述的高温高频MnZn功率铁氧体材料的制备方法,其特征在于,所述步骤1)中,x=35,y=15。
8.如权利要求7所述的高温高频MnZn功率铁氧体材料的制备方法,其特征在于,所述步骤1)中,加入0.25mol%Al2O3、1.2mol%SiO2、0.25mol%Y2O3
CN202210324661.4A 2022-03-30 2022-03-30 高温高频MnZn功率铁氧体材料的制备方法 Active CN114835481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210324661.4A CN114835481B (zh) 2022-03-30 2022-03-30 高温高频MnZn功率铁氧体材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210324661.4A CN114835481B (zh) 2022-03-30 2022-03-30 高温高频MnZn功率铁氧体材料的制备方法

Publications (2)

Publication Number Publication Date
CN114835481A true CN114835481A (zh) 2022-08-02
CN114835481B CN114835481B (zh) 2023-01-03

Family

ID=82563462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210324661.4A Active CN114835481B (zh) 2022-03-30 2022-03-30 高温高频MnZn功率铁氧体材料的制备方法

Country Status (1)

Country Link
CN (1) CN114835481B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB923991A (en) * 1959-02-04 1963-04-18 Nippon Electric Co Oxide magnetic material
JPS59121168A (ja) * 1982-12-28 1984-07-13 住友特殊金属株式会社 酸化物の熱間静水圧プレス方法
EP0639541A1 (en) * 1993-08-19 1995-02-22 Ngk Spark Plug Co., Ltd Microwave dielectric ceramic composition and preparing method thereof
US6063719A (en) * 1997-09-04 2000-05-16 The United States Of America As Represented By The Secretary Of The Army Ceramic ferrite/ferroelectric composite material
GB0124851D0 (en) * 2000-10-24 2001-12-05 Murata Manufacturing Co Dielectric ceramic process for producing the same and multilayer ceramic capacitor
JP2002052644A (ja) * 2000-08-09 2002-02-19 Tdk Corp 電子部品
JP2002100505A (ja) * 2000-09-22 2002-04-05 Mitsubishi Materials Corp サーミスタ・キャパシタ複合積層セラミック電子部品
EP1675134A2 (en) * 2004-12-24 2006-06-28 Hengdian Group EMEGC Magnetics Co Ltd Sintered magnet and method for production thereof
US20060188755A1 (en) * 2005-02-23 2006-08-24 Meiji University Legal Person Spinel-type ferrimagnetic particles process for producing the same, and magnetic recording medium using the same
CN107056269A (zh) * 2017-05-04 2017-08-18 李聪 一种高频高电阻率铁氧体软磁材料的制备方法
CN108424136A (zh) * 2018-03-21 2018-08-21 电子科技大学 MHz级开关电源用MnZn功率铁氧体及其制备方法
CN108530050A (zh) * 2018-03-27 2018-09-14 电子科技大学 宽温低损耗高阻抗MnZn软磁铁氧体材料及制备方法
CN112142456A (zh) * 2020-09-04 2020-12-29 湖南航天磁电有限责任公司 一种铁氧体吸波材料及其制备方法
CN112979301A (zh) * 2021-02-25 2021-06-18 电子科技大学 高频高温低损耗MnZn功率铁氧体材料及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB923991A (en) * 1959-02-04 1963-04-18 Nippon Electric Co Oxide magnetic material
JPS59121168A (ja) * 1982-12-28 1984-07-13 住友特殊金属株式会社 酸化物の熱間静水圧プレス方法
EP0639541A1 (en) * 1993-08-19 1995-02-22 Ngk Spark Plug Co., Ltd Microwave dielectric ceramic composition and preparing method thereof
US6063719A (en) * 1997-09-04 2000-05-16 The United States Of America As Represented By The Secretary Of The Army Ceramic ferrite/ferroelectric composite material
JP2002052644A (ja) * 2000-08-09 2002-02-19 Tdk Corp 電子部品
JP2002100505A (ja) * 2000-09-22 2002-04-05 Mitsubishi Materials Corp サーミスタ・キャパシタ複合積層セラミック電子部品
GB0124851D0 (en) * 2000-10-24 2001-12-05 Murata Manufacturing Co Dielectric ceramic process for producing the same and multilayer ceramic capacitor
EP1675134A2 (en) * 2004-12-24 2006-06-28 Hengdian Group EMEGC Magnetics Co Ltd Sintered magnet and method for production thereof
US20060188755A1 (en) * 2005-02-23 2006-08-24 Meiji University Legal Person Spinel-type ferrimagnetic particles process for producing the same, and magnetic recording medium using the same
CN107056269A (zh) * 2017-05-04 2017-08-18 李聪 一种高频高电阻率铁氧体软磁材料的制备方法
CN108424136A (zh) * 2018-03-21 2018-08-21 电子科技大学 MHz级开关电源用MnZn功率铁氧体及其制备方法
CN108530050A (zh) * 2018-03-27 2018-09-14 电子科技大学 宽温低损耗高阻抗MnZn软磁铁氧体材料及制备方法
CN112142456A (zh) * 2020-09-04 2020-12-29 湖南航天磁电有限责任公司 一种铁氧体吸波材料及其制备方法
CN112979301A (zh) * 2021-02-25 2021-06-18 电子科技大学 高频高温低损耗MnZn功率铁氧体材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
G. KOGIAS: "Thermal instabilities of cobalt containing MnZn ferrite cores for medium (500 kHz) frequency applications", 《JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS》 *
XIAONA JIANG: "Tunable resonance frequency of NiFe thin films by oblique deposition", 《JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS》 *
吴国华: "高频MnZn功率铁氧体关键制备技术及损耗机理研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *

Also Published As

Publication number Publication date
CN114835481B (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
JP5332254B2 (ja) フェライト焼結体
CN102060521B (zh) 六方晶系钛酸钡粉末、其制造方法、电介质陶瓷组合物和电子部件
WO2006118274A1 (ja) 半導体磁器組成物とその製造方法
CN112979301B (zh) 高频高温低损耗MnZn功率铁氧体材料及其制备方法
JP2007070209A (ja) MnZn系フェライトの製造方法
JPWO2008053813A1 (ja) 半導体磁器組成物とその製造方法
JPWO2008050877A1 (ja) 半導体磁器組成物とその製造方法
JP5153069B2 (ja) 誘電体磁器
JP3907642B2 (ja) フェライト材料及びフェライト材料の製造方法
JP2007204349A (ja) 低損失酸化物磁性材料の製造方法
CN116761786A (zh) 介电陶瓷组合物和包含其的多层陶瓷电容器
JP2005132715A (ja) Ni−Cu−Zn系フェライト材料及びその製造方法
JP2002134312A (ja) 磁性材料とその磁性材料を用いたコイル部品
CN114835481B (zh) 高温高频MnZn功率铁氧体材料的制备方法
CN114716240B (zh) 高力学性能低损耗MnZn功率铁氧体材料制备方法
CN114685153B (zh) 宽温宽频MnZn功率铁氧体材料及制备方法
CN114907106B (zh) 高机械强度宽温宽频MnZn功率铁氧体的制备方法
JP3940419B2 (ja) 誘電体磁器組成物及びその製造方法
JP2014072374A (ja) チタン酸バリウム系半導体磁器組成物およびそれを用いたptcサーミスタ
GB2413127A (en) Microwave dielectric ceramic
JP3956676B2 (ja) 電圧依存性非直線抵抗体磁器の製造方法
JP3823876B2 (ja) 電圧依存性非直線抵抗体
JP3719135B2 (ja) 電圧依存性非直線抵抗体磁器の製造方法
JPH1022113A (ja) 低損失酸化物磁性材料の製造方法
JP3838026B2 (ja) 電圧依存性非直線抵抗体磁器の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant