CN114790492A - 一种基于葡萄糖信号的便携式核酸检测方法 - Google Patents
一种基于葡萄糖信号的便携式核酸检测方法 Download PDFInfo
- Publication number
- CN114790492A CN114790492A CN202110102222.4A CN202110102222A CN114790492A CN 114790492 A CN114790492 A CN 114790492A CN 202110102222 A CN202110102222 A CN 202110102222A CN 114790492 A CN114790492 A CN 114790492A
- Authority
- CN
- China
- Prior art keywords
- sequence
- nucleic acid
- seq
- namely
- glucose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/70—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
- C12Q1/701—Specific hybridization probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/14—Enzymes or microbial cells immobilised on or in an inorganic carrier
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2408—Glucanases acting on alpha -1,4-glucosidic bonds
- C12N9/2411—Amylases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2408—Glucanases acting on alpha -1,4-glucosidic bonds
- C12N9/2431—Beta-fructofuranosidase (3.2.1.26), i.e. invertase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2451—Glucanases acting on alpha-1,6-glucosidic bonds
- C12N9/2454—Dextranase (3.2.1.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2465—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on alpha-galactose-glycoside bonds, e.g. alpha-galactosidase (3.2.1.22)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2468—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
- C12N9/2471—Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01011—Dextranase (3.2.1.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01022—Alpha-galactosidase (3.2.1.22)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01023—Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01026—Beta-fructofuranosidase (3.2.1.26), i.e. invertase
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Inorganic Chemistry (AREA)
- Virology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明提供了一种基于葡萄糖信号的便携式核酸检测方法。该设计借助化学偶联的方式,利用ssDNA将产糖酶修饰至磁珠上,从而制备功能化磁珠传感器。具体检测流程包括:(1)借助等温扩增技术对核酸检测片段进行扩增;(2)通过CRISPR/Cas12a体系对扩增片段进行识别,利用其核酸酶活性释放功能化磁珠上的产葡萄糖酶类;(3)通过磁分离,游离的酶催化底物水解形成葡萄糖。(4)借助便携式血糖仪可对葡萄糖浓度进行测定,实现对于核酸的定量检测。该方法操作便携,无需大型仪器辅助,成本低廉,且选择性好、灵敏度高,具有一定的应用前景。
Description
技术领域
本发明属于生物和化学领域,涉及一种基于葡萄糖信号的便携式核酸检测方法。
背景技术
核酸检测是用分子生物学和生物化学的理论和技术,直接或间接探查核酸的存在状态或完整性,并从核酸的结构、复制、转录或翻译水平分析核酸的结构与功能。而研究表明,除朊病毒之外的已知生物体内都含有核酸分子,因而核酸检测在生命遗传研究、传染病检测、遗传病诊断、肿瘤研究等多领域具有重要的应用价值。
目前应用最为广泛的核酸检测方法包括测序技术和核酸扩增技术。以针对SARS-CoV-2的核酸检测为例,Wu等人利用测序技术对病毒全基因组进行了表征,并与其它冠状病毒基因组序列进行了比对,为后续病毒核酸检测技术的发展奠定了基础。但基于测序技术的核酸检测方法对样品质量要求高,依赖于大型仪器,且工作周期长,难以实现快速便携式的核酸检测。此外,核酸扩增技术主要针对病毒RNA进行,包括逆转录PCR(RT-PCR),实时逆转录PCR(rRT-PCR),逆转录环介导等温扩增(RT-LAMP)以及实时RT-LAMP等。例如Noh等于靶向SARS-CoV和MERS-CoV保守的S基因的引物和探针,开发了一种RT-PCR方法,可以实现高灵敏度的体外诊断,检出限达50-100copies/mL。Shirato等,分别针对MERS-CoV基因组中开放阅读框1ab基因和核壳蛋白N基因,构建了两套RT-LAMP检测系统,实现了对来自不同MERS-CoV株靶序列的高效扩增和检测。目前针对SARS-CoV-2的检测金标准也是通过实时荧光RT-PCR,虽然以之为代表的核酸扩增技术灵敏度高,特异性强,检测时间较短,但仍存在一些不容忽视的缺陷,如该技术必须依赖专业仪器和设备,而且对操作人员的要求较高,因此在条件受限的环境下很难得到广泛应用。(Nature,2020,579(7798):265-269.Archives ofVirology,2017,162(6):1617-1623.Journal of Virological Methods,2018,258:41-48.Clinical Chemistry,2020,66(7):975-977.Journal of Virological Methods,2020,283:113919.)
针对上述问题,张锋和Doudna等课题组于近年提出利用以CRISPR Cas系统为核心的核酸检测技术,利用其切割活性及报告基团可以对信号进行转导和放大,具有高灵敏度和高特异性。基于CRISPR Cas系统所构建的SHERLOCK和DETECTR等体系也被用于SARS-CoV-2的早期诊断中,但由于此类方法产生的荧光信号需要需荧光仪、酶标仪等大型仪器进行信号输出,难以广泛用于核酸靶标在基层上的即时检测。(Science,2017,356(6336):438-442.Science,2018,360(6387):436-439.New England Journal of Medicine,2020,383(15):1492-1494.Cell,https://doi.org/10.1016/j.cell.2020.12.001.)
发明内容
本发明的目的在于克服针对现有核酸检测技术的缺陷,借助CRISPR Cas系统以及功能化磁珠传感器,构建一种操作便携,无需大型仪器辅助,成本低廉,且选择性好、灵敏度高的新平台。为此,本发明采用的技术方案如下:
一种基于葡萄糖信号的便携式核酸检测方法,其特征在于包括如下步骤:
步骤一:借助核酸扩增技术(RT-RPA、RT-LAMP等)对核酸检测片段进行扩增;在对于SARS-CoV-2时,对NOS终止子中的检测片段进行扩增;
步骤二:在crRNA的介导下,Cas12a可特异性识别扩增产物,利用其核酸酶活性释放借助ssDNA偶联于磁珠上的各种具有催化水解产生葡萄糖功能的产糖酶(转化酶淀粉酶、半乳糖苷酶、葡聚糖酶等);
步骤三:通过磁分离,游离的产糖酶水解其对应底物(蔗糖、淀粉、乳糖、葡聚糖等),并产生葡萄糖。
步骤四:借助便携式血糖仪对葡萄糖信号进行快速读取。
其中,步骤二中,Cas12a浓度为25-150nM,Cas12a与crRNA的浓度比为1:1-1:4。
步骤三中,反应体系中底物浓度为0.10-2.00M,葡萄糖氧化酶的浓度为2-15U/mL。
步骤四中,市面上常见的血糖仪均能定量读取体系内的葡萄糖浓度。
进一步地,针对SARS-CoV-2基因组,RT-RPA所扩增的目标扩增片段序列包括:
N1-Target,即序列表SEQ ID No.1序列:
5’-AUUGGCCGCAAAUUGCACAAUUUGCCCCCAGCGCUUCAGCGUUCUUCGGA-3’;
N2-Target,即序列表SEQ ID No.2序列:
5’-UUGGAUGACAAAGAUCCAAAUUUCAAAGAUCAAGUCAUUUUGCUGAAUAA-3’;
M1-Target,即序列表SEQ ID No.3序列:
5’-CAAUGGAACCUAGUAAUAGGUUUCCUAUUCCUUACAUGGAUUUGUCUUCU-3’;
M2-Target,即序列表SEQ ID No.4序列:
5’-CUUGUUUUGUGCUUGCUGCUGUUUACAGAAUAAAUUGGAUCACCGGUGGA-3’;
S1-Target,即序列表SEQ ID No.5序列:
5’-CCCCCUGCAUACACUAAUUCUUUCACACGUGGUGUUUAUUACCCUGACAA-3’;
S2-Target,即序列表SEQ ID No.6序列:
5’-CGCCACCAGAUUUGCAUCUGUUUAUGCUUGGAACAGGAAGAGAAUCAGCA-3’;
E1-Target,即序列表SEQ ID No.7序列:
5’-UAGUUAAUAGCGUACUUCUUUUUCUUGCUUUCGUGGUAUUCUUGCUAGUU-3’;
E2-Target,即序列表SEQ ID No.8序列:
5’-AGCGUACUUCUUUUUCUUGCUUUCGUGGUAUUCUUGCUAGUUACACUAGC-3’。
进一步地,针对上述扩增片段,步骤二中所用的crRNA序列包括:
N1-crRNA,即序列表SEQ ID No.9序列:
5’-UAAUUUCUACUAAGUGUAGAUCCCCCAGCGCUUCAGCGUUC-3’;
N2-crRNA,即序列表SEQ ID No.10序列:
5’-UAAUUUCUACUAAGUGUAGAUAAAGAUCAAGUCAUUUUGCU-3’;
M1-crRNA,即序列表SEQ ID No.11序列:
5’-UAAUUUCUACUAAGUGUAGAUCUAUUCCUUACAUGGAUUUG-3’;
M2-crRNA,即序列表SEQ ID No.12序列:
5’-UAAUUUCUACUAAGUGUAGAUCAGAAUAAAUUGGAUCACCG-3’;
S1-crRNA,即序列表SEQ ID No.13序列:
5’-UAAUUUCUACUAAGUGUAGAUACACGUGGUGUUUAUUACCC-3’;
S2-crRNA,即序列表SEQ ID No.14序列:
5’-UAAUUUCUACUAAGUGUAGAUUGCUUGGAACAGGAAGAGAA-3’;
E1-crRNA,即序列表SEQ ID No.15序列:
5’-UAAUUUCUACUAAGUGUAGAUUUGCUUUCGUGGUAUUCUUG-3’;
E2-crRNA,即序列表SEQ ID No.16序列:
5’-UAAUUUCUACUAAGUGUAGAUGUGGUAUUCUUGCUAGUUAC-3’。
进一步地,体系构建过程中,荧光反应系统所使用的reporter序列为:F-Reporter-Q,即序列表SEQ ID No.17序列:
5’-HEX-NNNNNNNNNNNN-BHQ1-3’。
进一步地,功能化磁珠传感器制备所使用的ssDNA序列为:Bio-Linker-SH,即序列表SEQ ID No.18序列:
5’-Biotin-TTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATT-Thiol-3’。
对各步反应的温度和时间进行优化:步骤二中,CRISPR/Cas12a体系的反应温度为32-41℃,反应时间为15-90min;步骤三中,产糖酶反应体系的反应温度为25-37℃,反应时间为15-60min。
所用功能化磁珠传感器的制备方法为:通过4-(N-马来酰亚胺甲基)环己烷-1-羧酸磺酸基琥珀酰亚胺酯钠盐,各种产糖酶利用其氨基与Bio-Linker-SH进行连接,Bio-Linker-SH通过生物素基团与链霉亲和素修饰的磁珠进行偶联。
由上述对本发明的描述可知,本发明提出了一种基于葡萄糖信号的便携式核酸检测新方法。与现有核酸分析检测方法相比,该方法具有灵敏度高、特异性好、操作便捷、用户友好且价格低廉、无需专业设备等优点。
附图说明
图1为本发明的工作原理图。
图2为本发明中所使用的功能化磁珠制备原理图。
图3为SDS-PAGE表征Bio-Linker-SH与转化酶进行化学偶联的可行性,泳道1为未经偶联的转化酶,泳道2为偶联后的复合物,可见部分转化酶成功地与Bio-Linker-SH进行了偶联,使其分子量明显增大,验证了该化学偶联方法的可行性。
图4为利用CRISPR荧光检测体系对SARS-CoV-2基因组中各检测位点进行可行性表征。(A)SARS-CoV-2基因组中各检测位点荧光反应动力学表征;(B)各位点检测体系荧光信号表征(30min)。利用CRISPR荧光检测体系对10nM N1,N2,M1,M2,S1,S2,E1,E2基因片段进行检测,通过荧光反应动力学表征与荧光信号表征,由于N1基因片段检测体系在单位时间内产生更高的荧光信号,故后续选择N1基因片段作为本发明便携式检测平台的构建模型。
图5为利用本发明对SARS-CoV-2基因组中N基因片段以及生物样本中人源RNaseP的检测灵敏度,展示了(A)体系内葡萄糖浓度与N基因片段浓度的对应关系;(B)基于体系内葡萄糖浓度的N1基因片段检测线性范围(Y=7.040*log10(X)-4.785;Y:体系内葡萄糖浓度(mM);X:病毒基因组浓度(copies/μL));(C)体系内葡萄糖浓度与生物样本中人源RNaseP的对应关系。0,1,5,10,102,103,104copies/μL的病毒基因组经RT-RAA反转录与等温扩增后,利用本发明构建的便携式检测平台,可通过血糖仪可识别低至10copies/μL的N1基因片段,且在10-104copies/μL可实现其定量检测,满足临床的实际检测需求。为防止检测假阴性,以人源RNaseP作为检测内参,本发明构建的便携式检测平台也具备较好的检测表现。
图6为本发明检测特异性的表征,展示了(A)SARS-CoV-2临床检测标准;(B)本发明构建的便携式检测平台对不同病毒生物样本的响应。为考察本发明构建的便携式检测平台的检测特异性,对SARS-CoV-2和与之结构类似的冠状病毒,以及常见的季节性病毒进行了检测。具体的生物样本包括:2个SARS-CoV-2阳性样本,2个SARS-CoV-2阴性样本,1个SARS-CoV阳性样本,1个bat SARS-like coronavirus阳性样本,2个Influenza A virus(FluA)阳性样本,1个Coxsackievirus-A16(Cox-A16)阳性样本,1个Enterovirus-71阳性样本(EV-71)以及1个Enteric cytopathic human orphan virus-11(Echo-11)阳性样本。可见本发明构建的便携式检测平台仅对SARS-CoV-2具有良好的响应,而其余病毒均未产生明显的信号,反应了该检测平台良好的选择性。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述:
一、功能化磁珠传感器的制备
1.1偶联转化酶功能磁珠的制备
功能化磁珠的制备主要分为四个步骤:(1)Bio-Linker-SH中3’端巯基的活化:将5μL 1mM MBs-Linker,1μL 30mM三(2-羧乙基)膦(TCEP)以及1μL buffer A(1M磷酸盐缓冲液,pH 5.5)充分混合,并于室温孵育1h。利用Amicon-3K分离活化后的Bio-Linker-SH(即序列表SEQ ID No.18),并利用buffer B(0.1M NaCl,0.1M磷酸盐缓冲液,pH 7.3)清洗,重复8次。(2)转化酶的活化:配置2.0-60.0mg/mL转化酶水溶液,分别吸取400μL转化酶水溶液中加入1mg4-(N-马来酰亚胺甲基)环己烷-1-羧酸磺酸基琥珀酰亚胺酯钠盐(Sulfo-SMCC),充分混匀后于室温孵育1h。离心除去未反应的Sulfo-SMCC,并利用Amicon-100K分离活化后的转化酶,并利用buffer B清洗,重复8次。(3)转化酶-Linker复合物的形成:将上述活化的MBs-Linker与转化酶充分混匀,并于室温旋转孵育48h。利用Amicon-100K纯化产物,并利用buffer B清洗,重复8次。如图3所示,利用SDS-PAGE表征MBs-Linker与转化酶偶联情况,泳道1为未经偶联的转化酶,泳道2为偶联后的复合物,可见部分转化酶成功地与MBs-Linker进行了偶联,使其分子量明显增大,验证了该化学偶联方法的可行性。(4)复合物与磁珠的偶联:按每100pmol复合物加入1μL 10mg/mL链霉亲和素磁珠的比例进行混合,并于室温旋转孵育15min。通过磁分离弃去上清,并利用buffer B清洗5次,最重重悬于5倍体积的buffer B中,于4℃保存待用。
1.2偶联淀粉酶功能磁珠的制备
基本制备工艺如1.1,其中仅用8.0-50mg/mL淀粉酶水溶液液代替2.0-60.0mg/mL转化酶水溶液。
1.3偶联半乳糖苷酶功能磁珠的制备
基本制备工艺如1.1,其中仅用5.0-30mg/mL半乳糖苷酶水溶液液代替2.0-60.0mg/mL转化酶水溶液。
1.4偶联葡聚糖酶功能磁珠的制备
基本制备工艺如1.1,其中仅用8.0-60mg/mL葡聚糖酶水溶液液代替2.0-60.0mg/mL转化酶水溶液。
二、SARS-CoV-2基因组中各检测位点进行可行性表征
利用CRISPR荧光检测体系对SARS-CoV-2基因组中各检测位点进行可行性表征。N1,N2,M1,M2,S1,S2,E1,E2基因片段(即序列表SEQ ID No.1-No.8所示),经RT-RAA反转录与等温扩增后进行定量。各取10nM上述扩增产物,与50nM Cas12a、100nM crRNA(即序列表SEQ ID No.9-No.16所示),以及750nM F-Reporter-Q于37℃进行反应,利用酶标仪每3min测量体系内荧光变化。该荧光系统旨在展示CRISPR检测体系的普适性,及用于SARS-CoV-2基因组中多个片段检测的可行性,根据单位时间内产生荧光信号的强弱,选择N1片段作为模型进行后续实验。
三、便携式SARS-CoV-2检测体系灵敏度表征
以0,1,5,10,102,103,104copies/μL的病毒基因组作为模板,利用RT-RPA等温扩增技术,在41℃下反应30min,从而实现对N1目标片段的反转录和扩增。取10μL功能化磁珠,通过磁分离弃去保存液,加入50nM Cas12a、100nM crRNA(即序列表SEQ ID No.9)、0.5μL扩增产物、2μL buffer C(50mM NaCl,10mM Tris-HCl,10mM MgCl2,1mM DTT,pH 7.9)并用RNase-free水补足20μL。于37℃孵育30min,利用磁铁将磁珠与上清分离。取15μL上清,加入30μL 1M蔗糖,4.0μL 100U/mL RNase-free水,以及6μL Buffer D(100mM柠檬酸盐缓冲液,pH 5.6),于37℃孵育30min。借助家用血糖仪对体系内葡萄糖浓度进行测量,即可实现对于N1基因片段的定量检测,灵敏度达10copies/μL,检测范围为10-104copies/μL。利用同样的原理可对人源RNaseP进行检测,作为SARS-CoV-2检测的内参。
在以上检测过程中,可以分别用偶联淀粉酶,半乳糖苷酶,葡聚糖酶功能磁珠代替偶联转化酶功能磁珠,需要分别加入各种相应的反应底物(淀粉,乳糖和葡聚糖),浓度范围在0.10-2.00M,加样量相同,可取得类似的检测效果。可以分别用N2,M1,M2,S1,S2,E1,E2基因片段代替N1作为目标片段,同时换用响应的crRNA,可取得类似的检测效果。
四、便携式SARS-CoV-2检测体系实际样品检测
利用该便携式检测体系对2个SARS-CoV-2阳性样本,2个SARS-CoV-2阴性样本,1个SARS-CoV阳性样本,1个bat SARS-like coronavirus阳性样本,2个Influenza A virus(FluA)阳性样本,1个Coxsackievirus-A16(Cox-A16)阳性样本,1个Enterovirus-71阳性样本(EV-71)以及1个Enteric cytopathic human orphan virus-11(Echo-11)阳性样本进行了考察。首先利用商品化试剂盒对实际样本内病毒基因组进行提取,再通过RT-RPA等温扩增技术,在41℃下反应30min,从而实现对N1和RNaseP目标片段的反转录和扩增。取10μL功能化磁珠,通过磁分离弃去保存液,加入50nM Cas12a、100nM crRNA(即序列表SEQ IDNo.9)、0.5μL扩增产物、2μL buffer C(50mM NaCl,10mM Tris-HCl,10mM MgCl2,1mM DTT,pH 7.9)并用RNase-free水补足20μL。于37℃孵育30min,利用磁铁将磁珠与上清分离。取15μL上清,加入30μL 1M蔗糖,4.0μL 100U/mL RNase-free水,以及6μL Buffer D(100mM柠檬酸盐缓冲液,pH 5.6),于37℃孵育30min。借助家用血糖仪对体系内葡萄糖浓度进行测量,即可实现对于N1基因片段的定量检测,和对RNaseP的定性检测。本发明所构建的便携式检测体系仅对SARS-CoV-2具有良好的响应,其余病毒均为产生明显信号。该方法可在90min内完成检测全过程,且无需大型仪器辅助测试,优于qRT-PCR等检测金标准。如表1所示,针对2个SARS-CoV-2阳性样本,比较了本发明中便携式检测体系与qRT-PCR法的检测结果,体现了该方法较好的准确性。
表1
a,bn=3,mean±S.D.
五、便携式核酸检测方法在食源性微生物检测中的应用
利用该便携式核酸检测方法分别对金黄色葡萄球菌、副溶血弧菌、单增李斯特菌、创伤弧菌、沙门氏菌等常见食源性微生物进行检测。利用RPA等温扩增技术,在37℃下反应30min,从而实现对其16s rDNA目标片段的扩增。取10μL功能化磁珠,通过磁分离弃去保存液,加入50nM Cas12a、100nM crRNA(即序列表SEQ ID No.9)、0.5μL扩增产物、2μL bufferC(50mM NaCl,10mM Tris-HCl,10mM MgCl2,1mM DTT,pH 7.9)并用RNase-free水补足20μL。于37℃孵育30min,利用磁铁将磁珠与上清分离。取15μL上清,加入30μL 1M蔗糖,4.0μL100U/mL RNase-free水,以及6μL Buffer D(100mM柠檬酸盐缓冲液,pH 5.6),于37℃孵育30min。借助家用血糖仪对体系内葡萄糖浓度进行测量,即可实现对于多种食源性微生物待测核酸片段的定量检测,并取得了和SARS-CoV-2体系相当的检测灵敏度。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容进行非实质性的改动,均应属于侵犯本发明保护范围的行为。
序列表
<110> 浙江大学
<120> 一种基于葡萄糖信号的便携式核酸检测方法
<160> 18
<170> SIPOSequenceListing 1.0
<210> 1
<211> 50
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 1
auuggccgca aauugcacaa uuugccccca gcgcuucagc guucuucgga 50
<210> 2
<211> 50
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 2
uuggaugaca aagauccaaa uuucaaagau caagucauuu ugcugaauaa 50
<210> 3
<211> 50
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 3
caauggaacc uaguaauagg uuuccuauuc cuuacaugga uuugucuucu 50
<210> 5
<211> 50
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 5
cuuguuuugu gcuugcugcu guuuacagaa uaaauuggau caccggugga 50
<210> 5
<211> 50
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 5
cccccugcau acacuaauuc uuucacacgu gguguuuauu acccugacaa 50
<210> 6
<211> 50
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 6
cgccaccaga uuugcaucug uuuaugcuug gaacaggaag agaaucagca 50
<210> 7
<211> 50
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 7
uaguuaauag cguacuucuu uuucuugcuu ucgugguauu cuugcuaguu 50
<210> 8
<211> 50
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 8
agcguacuuc uuuuucuugc uuucguggua uucuugcuag uuacacuagc 50
<210> 9
<211> 41
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 9
uaauuucuac uaaguguaga ucccccagcg cuucagcguu c 41
<210> 10
<211> 41
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 10
uaauuucuac uaaguguaga uaaagaucaa gucauuuugc u 41
<210> 11
<211> 41
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 11
uaauuucuac uaaguguaga ucuauuccuu acauggauuu g 41
<210> 12
<211> 41
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 12
uaauuucuac uaaguguaga ucagaauaaa uuggaucacc g 41
<210> 13
<211> 41
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 13
uaauuucuac uaaguguaga uacacguggu guuuauuacc c 41
<210> 14
<211> 41
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 14
uaauuucuac uaaguguaga uugcuuggaa caggaagaga a 41
<210> 15
<211> 41
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 15
uaauuucuac uaaguguaga uuugcuuucg ugguauucuu g 41
<210> 16
<211> 41
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 16
uaauuucuac uaaguguaga ugugguauuc uugcuaguua c 41
<210> 17
<211> 12
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
nnnnnnnnnn nn 12
<210> 18
<211> 100
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
ttattttatt ttattttatt ttattttatt ttattttatt ttattttatt ttattttatt 60
ttattttatt ttattttatt ttattttatt ttattttatt 100
Claims (9)
1.一种基于葡萄糖信号的便携式核酸检测方法,其特征在于包括如下步骤:
步骤一:借助核酸扩增技术对核酸检测片段进行扩增;
步骤二:在crRNA的介导下,Cas12a可特异性识别扩增产物,利用其核酸酶活性释放借助ssDNA偶联于磁珠上的具有催化水解产生葡萄糖功能的产糖酶;
步骤三:通过磁分离,游离的产糖酶水解其对应底物,并产生葡萄糖;
步骤四:借助便携式血糖仪对葡萄糖信号进行快速读取。
2.如权利要求1所述的一种基于葡萄糖信号的便携式核酸检测方法,其特征在于:当用于SARS-CoV-2检测时,步骤一中所用的扩增方法为RT-RPA,目标扩增片段序列包括:
N1-Target,即序列表SEQ ID No.1序列:
5’-AUUGGCCGCAAAUUGCACAAUUUGCCCCCAGCGCUUCAGCGUUCUUCGGA-3’;
N2-Target,即序列表SEQ ID No.2序列:
5’-UUGGAUGACAAAGAUCCAAAUUUCAAAGAUCAAGUCAUUUUGCUGAAUAA-3’;
M1-Target,即序列表SEQ ID No.3序列:
5’-CAAUGGAACCUAGUAAUAGGUUUCCUAUUCCUUACAUGGAUUUGUCUUCU-3’;
M2-Target,即序列表SEQ ID No.4序列:
5’-CUUGUUUUGUGCUUGCUGCUGUUUACAGAAUAAAUUGGAUCACCGGUGGA-3’;
S1-Target,即序列表SEQ ID No.5序列:
5’-CCCCCUGCAUACACUAAUUCUUUCACACGUGGUGUUUAUUACCCUGACAA-3’;
S2-Target,即序列表SEQ ID No.6序列:
5’-CGCCACCAGAUUUGCAUCUGUUUAUGCUUGGAACAGGAAGAGAAUCAGCA-3’;
E1-Target,即序列表SEQ ID No.7序列:
5’-UAGUUAAUAGCGUACUUCUUUUUCUUGCUUUCGUGGUAUUCUUGCUAGUU-3’;
E2-Target,即序列表SEQ ID No.8序列:
5’-AGCGUACUUCUUUUUCUUGCUUUCGUGGUAUUCUUGCUAGUUACACUAGC-3’。
3.如权利要求1所述的一种基于葡萄糖信号的便携式核酸检测方法,其特征在于:当用于SARS-CoV-2检测时,步骤二中所用的crRNA序列包括:
N1-crRNA,即序列表SEQ ID No.9序列:
5’-UAAUUUCUACUAAGUGUAGAUCCCCCAGCGCUUCAGCGUUC-3’;
N2-crRNA,即序列表SEQ ID No.10序列:
5’-UAAUUUCUACUAAGUGUAGAUAAAGAUCAAGUCAUUUUGCU-3’;
M1-crRNA,即序列表SEQ ID No.11序列:
5’-UAAUUUCUACUAAGUGUAGAUCUAUUCCUUACAUGGAUUUG-3’;
M2-crRNA,即序列表SEQ ID No.12序列:
5’-UAAUUUCUACUAAGUGUAGAUCAGAAUAAAUUGGAUCACCG-3’;
S1-crRNA,即序列表SEQ ID No.13序列:
5’-UAAUUUCUACUAAGUGUAGAUACACGUGGUGUUUAUUACCC-3’;
S2-crRNA,即序列表SEQ ID No.14序列:
5’-UAAUUUCUACUAAGUGUAGAUUGCUUGGAACAGGAAGAGAA-3’;
E1-crRNA,即序列表SEQ ID No.15序列:
5’-UAAUUUCUACUAAGUGUAGAUUUGCUUUCGUGGUAUUCUUG-3’;
E2-crRNA,即序列表SEQ ID No.16序列:
5’-UAAUUUCUACUAAGUGUAGAUGUGGUAUUCUUGCUAGUUAC-3’。
4.如权利要求1所述的一种基于葡萄糖信号的便携式核酸检测方法,其特征在于:体系构建过程中,荧光反应系统所使用的reporter序列为:
F-Reporter-Q,即序列表SEQ ID No.17序列:
5’-HEX-NNNNNNNNNNNN-BHQ1-3’。
5.如权利要求1所述的一种基于葡萄糖信号的便携式核酸检测方法,其特征在于:功能化磁珠传感器制备所使用的ssDNA序列为:
Bio-Linker-SH,即序列表SEQ ID No.18序列:
5’-Biotin-TTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATT-Thiol-3’。
6.如权利要求1所述的一种基于葡萄糖信号的便携式核酸检测方法,其特征在于:步骤二中,Cas12a浓度为25-150nM,Cas12a与crRNA的浓度比为1:1-1:4。
7.如权利要求1所述的一种基于葡萄糖信号的便携式核酸检测方法,其特征在于:步骤三中,反应体系中底物浓度为0.10-2.00M,葡萄糖氧化酶的浓度为2-15U/mL。
8.如权利要求1所述的一种基于葡萄糖信号的便携式核酸检测方法,其特征在于:步骤二中,CRISPR/Cas12a体系的反应温度为32-41℃,反应时间为15-90min;步骤三中,产糖酶反应体系的反应温度为25-37℃,反应时间为15-60min。
9.如权利要求1所述的一种基于葡萄糖信号的便携式核酸检测方法,其特征在于:所用的产糖酶为转化酶,底物为蔗糖。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110102222.4A CN114790492A (zh) | 2021-01-26 | 2021-01-26 | 一种基于葡萄糖信号的便携式核酸检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110102222.4A CN114790492A (zh) | 2021-01-26 | 2021-01-26 | 一种基于葡萄糖信号的便携式核酸检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114790492A true CN114790492A (zh) | 2022-07-26 |
Family
ID=82459749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110102222.4A Pending CN114790492A (zh) | 2021-01-26 | 2021-01-26 | 一种基于葡萄糖信号的便携式核酸检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114790492A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116287133A (zh) * | 2023-05-16 | 2023-06-23 | 苏州中星医疗技术有限公司 | 核糖核酸生物传感器、及其制备方法和应用 |
-
2021
- 2021-01-26 CN CN202110102222.4A patent/CN114790492A/zh active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116287133A (zh) * | 2023-05-16 | 2023-06-23 | 苏州中星医疗技术有限公司 | 核糖核酸生物传感器、及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109207567B (zh) | 一种基于适配体和链置换扩增反应对金黄色葡萄球菌的测定方法 | |
CN113234856B (zh) | 一种基于CRISPR/Cas12a和恒温扩增的DENV一步法核酸检测方法 | |
CN113403424B (zh) | 基于CRISPR/Cas12a技术快速检测新冠病毒和突变株的方法及试剂盒 | |
CN113186341B (zh) | CRISPR介导的一步式恒温扩增检测SARS-CoV-2的方法 | |
CN113980957A (zh) | 基于CRISPR/Cas12a的单链DNA探针及检测目标核酸的方法 | |
CN113718045A (zh) | 用于检测4种鲍特菌和特异性检测百日咳鲍特菌的dna片段、引物、探针和试剂盒及应用 | |
CN116356079A (zh) | 一种基于RPA-CRISPR-Cas12a可视化检测盖塔病毒试剂盒及应用 | |
CN110964853A (zh) | 一种基于双扩增技术联合检测呼吸道合胞病毒、副流感病毒及腺病毒的试剂盒及其应用 | |
CN114790492A (zh) | 一种基于葡萄糖信号的便携式核酸检测方法 | |
US8409803B2 (en) | Respiratory syncytial virus (RSV) viral load detection assay | |
CN112501257B (zh) | 一种基于核酸自组装无酶催化的circRNA活细胞内成像的可视化传感器 | |
CN113249378A (zh) | 检测ALV-A/B/J的RPA特异性引物对、crRNA片段及其应用 | |
CN116042927B (zh) | 一种用于检测新型冠状病毒的CRISPR-Cas13系统及其试剂盒和方法 | |
CN104342487B (zh) | 支原体核酸恒温扩增方法 | |
CN115232865A (zh) | 基于适配体和CRISPR/Cas12a系统的生物传感器、组合物、试剂盒及其用途 | |
US20240229121A1 (en) | Micro-rna detection method and kit | |
CN117210584A (zh) | 一种用于肺炎链球菌、流感嗜血杆菌、肺炎衣原体和肺炎支原体核酸多重检测的试剂盒 | |
CN117368171A (zh) | 一种检测金黄色葡萄球菌的试剂盒及其应用 | |
Shen et al. | CRISPR Cas12a-enabled biosensors coupled with commercial pregnancy test strips for the visible point-of-care testing of SARS-CoV-2 | |
CN110923363A (zh) | 一种检测手足口病病原体核酸的试剂盒及其应用 | |
CN112553378B (zh) | 检测2019-nCoV的试剂、试剂盒及应用 | |
KR102525012B1 (ko) | 근접 단백질가수분해 반응에 기반한 표적 핵산 검출방법 | |
CN117344061B (zh) | 一种同时检测五种人源病毒ebv、hbv、hcv、hiv、hpv的方法、试剂盒、引物和探针及其应用 | |
CN116479175B (zh) | 用于检测人副流感病毒核酸的检测系统、试剂盒及方法 | |
CN112608913B (zh) | 一种基于C2c2的基因表达调控系统及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |