CN114774341A - 一种生产乳清酸的基因工程菌及其构建方法与应用 - Google Patents

一种生产乳清酸的基因工程菌及其构建方法与应用 Download PDF

Info

Publication number
CN114774341A
CN114774341A CN202210417923.1A CN202210417923A CN114774341A CN 114774341 A CN114774341 A CN 114774341A CN 202210417923 A CN202210417923 A CN 202210417923A CN 114774341 A CN114774341 A CN 114774341A
Authority
CN
China
Prior art keywords
gene
orotic acid
fermentation
coli
genetically engineered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210417923.1A
Other languages
English (en)
Other versions
CN114774341B (zh
Inventor
徐庆阳
李长庚
孙鹏杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN202210417923.1A priority Critical patent/CN114774341B/zh
Publication of CN114774341A publication Critical patent/CN114774341A/zh
Application granted granted Critical
Publication of CN114774341B publication Critical patent/CN114774341B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1018Carboxy- and carbamoyl transferases (2.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/86Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in cyclic amides, e.g. penicillinase (3.5.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • C12P17/12Nitrogen as only ring hetero atom containing a six-membered hetero ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/05Oxidoreductases acting on the CH-CH group of donors (1.3) with a quinone or related compound as acceptor (1.3.5)
    • C12Y103/05002Dihydroorotate dehydrogenase (1.3.5.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/03Carboxy- and carbamoyltransferases (2.1.3)
    • C12Y201/03002Aspartate carbamoyltransferase (2.1.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/03Carboxy- and carbamoyltransferases (2.1.3)
    • C12Y201/03003Ornithine carbamoyltransferase (2.1.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/0201Orotate phosphoribosyltransferase (2.4.2.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/02Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amides (3.5.2)
    • C12Y305/02003Dihydroorotase (3.5.2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/04Other carbon-nitrogen ligases (6.3.4)
    • C12Y603/04016Carbamoyl-phosphate synthase (ammonia) (6.3.4.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了生产乳清酸的基因工程菌及其构建方法与应用,所述基因工程菌为不含质粒、从头合成高产乳清酸的基因工程菌E.coli Ora,与现有的乳清酸生产菌相比,该基因工程菌具有遗传稳定性好、发酵产率高、糖酸转化率高等优势,所述基因工程菌以葡萄糖等廉价碳源为底物从头高效合成乳清酸,乳清酸产量可高达135.6g/L,具有很好的工业应用前景;该基因工程菌对大肠杆菌中嘧啶类核苷酸代谢网络中与乳清酸相关代谢流进行分析重构,加强了乳清酸合成和积累;之后引入野生型枯草芽孢杆菌嘧啶核苷操纵子中的二氢乳酸脱氢酶,进一步加强乳清酸合成,适合规模化工业生产的需要。

Description

一种生产乳清酸的基因工程菌及其构建方法与应用
技术领域
本发明涉及化合物生物技术及发酵工程技术生产领域,尤其是一种生产乳清酸的基因工程菌及其构建方法与应用。
背景技术
乳清酸(Orotic acid,OA),化学名称尿嘧啶-6-羧酸。存在于各类哺乳动物的乳汁中,又称VB13。乳清酸及其衍生物广泛应用于医药、食品、饲料及化妆品领域。现如今,随着人们对乳清酸功能研究的逐渐深入,其市场需求还在不断扩大。
当前生产乳清酸方式以化学法生产为主,但化学制备乳清酸的工艺存在使用危险试剂,操作繁琐,原料成本高,而且“三废”多,不符合绿色环保要求等不足。所以亟需一种绿色清洁、原料成本低且安全的工业生产方式替代化学法。
微生物直接发酵法因其具有生产原料安全、成本低廉、过程简单、易于工业化等优势,成为代替目前生产方法的首选,酵母菌、谷氨酸棒杆菌、枯草芽孢杆菌和大肠杆菌等菌种常作为此方法的底盘细胞发酵工业产物。其中大肠杆菌因其遗传背景清晰、基因编辑方法完善,易于培养等优点,成为微生物直接发酵法生产乳清酸的最好选择。但工业生产中,携带质粒的工程菌具有遗传稳定性差和生长代谢负担大等缺点,会导致产物的产量极具下降、生产过程难以控制等工业问题。因此构建一株产酸效率高、遗传稳定性好的乳清酸生产菌种是目前亟待解决的问题。
发明内容
本发明所要解决的技术问题在于提供一种生产乳清酸的基因工程菌。
本发明所要解决的另一技术问题在于提供上述生产乳清酸的基因工程菌的构建方法。
本发明所要解决的另一技术问题在于提供上述生产乳清酸的基因工程菌的应用。
为解决上述技术问题,本发明的技术方案是:
一种生产乳清酸的基因工程菌,命名为E.coli Ora,所述基因工程菌E.coli Ora是在野生型大肠杆菌的染色体基因组上敲除鸟氨酸氨甲酰转移酶基因;染色体基因组上敲除乳清酸磷酸核糖转移酶基因,并在基因组ycgH位点上整合乳清酸磷酸核糖转移酶基因,并由Plac启动子(核苷酸序列如SEQ ID NO.9所示)启动;在基因组yciQ位点上串联整合氨基甲酰磷酸合成酶基因carA(NCBI-Gene ID:949025,核苷酸序列如SEQ ID NO.1所示)、carB(NCBI-Gene ID:944775,核苷酸序列如SEQ ID NO.2所示),并由同一个Ptrc启动子(核苷酸序列如SEQ ID NO.8)启动;在基因组ygaY位点上串联整合天冬氨酸氨基甲酰转移酶基因pyrB(NCBI-Gene ID:948767,核苷酸序列如SEQ ID NO.3所示)、二氢乳清酸酶基因pyrC(NCBI-Gene ID:945787,核苷酸序列如SEQ ID NO.4所示)和二氢乳清酸还原酶基因pyrD(NCBI-Gene ID:945556,核苷酸序列如SEQ ID NO.5所示),并由同一个Ptrc启动子启动;在基因组yghX位点上串联整合经密码子优化后的野生型枯草芽孢杆菌B.subtilis 168(ATCC23857)二氢乳酸脱氢酶B基因pyrK(NCBI-Gene ID:936854经密码子优化后核苷酸序列如SEQ ID NO.6所示)和pyrD(NCBI-Gene ID:938008经密码子优化后核苷酸序列如SEQ IDNO.7),并由同一个Ptrc启动子启动。
优选的,上述生产乳清酸的基因工程菌,所述野生型大肠杆菌为大肠杆菌E.coliW3110(ATCC 27325)。
优选的,上述生产乳清酸的基因工程菌,所述鸟氨酸氨甲酰转移酶基因为基因argF(NCBI-Gene ID:944844)。
优选的,上述生产乳清酸的基因工程菌,所述乳清酸磷酸核糖转移酶基因为基因pyrE(NCBI-Gene ID:948157)。
上述生产乳清酸的基因工程菌的构建方法,采用CRISPR/Cas9介导的基因编辑技术对E.coli W3110染色体基因组进行定向改造,具体步骤如下:
(1)为了进一步增加氨甲酰磷酸盐的供应,阻断精氨酸合成途径,对鸟氨酸氨甲酰转移酶编码基因argF进行敲除;
(2)为了弱化乳清酸消耗途径,将编码乳清酸磷酸核糖转移酶的pyrE基因敲除,并重新整合pyrE基因至基因组ycgH位点上,并由Plac弱启动子控制;
(3)为了加强前体氨甲酰磷酸盐的供应以强化HCO3 -与谷氨酰胺缩合生成氨基甲酰磷酸途径,将氨基甲酰磷酸合成酶基因carA和carB基因串联整合至大肠杆菌基因组的yciQ位点,用同一个Ptrc启动子控制转录;
(4)为了加强乳清酸合成代谢通路,增强天冬氨酸氨基甲酰转移酶(PyrB)、二氢乳清酸酶(PyrC)和二氢乳清酸还原酶(PyrD)三个关键酶的表达,将pyrB和pyrC和pyrD基因串联整合至大肠杆菌基因组的ygaY位点,用同一个Ptrc启动子控制转录;
(5)为了进一步加强乳清酸合成途径,引入野生型枯草芽孢杆菌B.subtilis 168嘧啶核苷(pyr)操纵子中的二氢乳酸脱氢酶B基因(pyrK和pyrD),经密码子优化后串联整合至大肠杆菌基因组yghX位点,用同一个Ptrc启动子控制转录。
上述基因工程菌在发酵生产乳清酸中的应用。
优选的,上述基因工程菌的应用,利用所述基因工程菌进行摇瓶发酵的调控方案为:按10%-15%接种量接种菌种活化后制备的种子液到装有发酵培养基的三角瓶中(终体积为30mL),九层纱布封口,36℃,200r/min振荡培养,发酵过程中通过补加氨水维持pH在7.0-7.2;添加60%(m/v)葡萄糖溶液维持发酵进行(以苯酚红做指示剂,发酵液颜色不再变化时即视为缺糖,缺糖时补加1-2mL 60%(m/v)葡萄糖溶液),发酵周期30-32h。
优选的,上述基因工程菌的应用,所述发酵培养基的组成为:葡萄糖10g/L,谷氨酸2g/L,酵母粉6g/L,KH2PO4 6.0g/L,VB1 1mg/L,VB3 1mg/L,VB5 1mg/L,VB12 1mg/L,VH 0.1mg/L,MgSO4·7H2O 1.5g/L,微量元素混合液1mL/L,FeSO4·7H2O 40mg/L,(NH4)2SO4 2.0g/L,苯酚红:需定容体积的2%,用NaOH调pH至7.0-7.2,消泡剂1滴,其余为水。
上述基因工程菌E.coli Ora利用摇瓶发酵30-32h后乳清酸的产量可达36-40g/L。
优选的,上述基因工程菌的应用,利用所述基因工程菌进行发酵罐发酵的调控方案为:
(1)种子培养:取适量无菌水重悬活化斜面中的一代种子,将菌悬液接入种子培养基中,pH稳定在7.0左右,温度恒定在36℃,溶氧在30%-60%之间,培养5.5-6h;
(2)发酵培养:等待种子菌体量OD600至20-25左右,按照20%接种量接入新鲜的发酵培养基,开始发酵,发酵过程中控制pH稳定在7.1左右,温度维持在36℃,溶氧在30%-60%之间;当培养基中的葡萄糖消耗完之后,流加80%(m/v)的葡萄糖溶液,维持发酵培养基中的葡萄糖浓度在0.1-1g/L;发酵周期38-42h。
优选的,上述基因工程菌的应用,所述发酵培养基的组成为:葡萄糖10g/L,谷氨酸2g/L,酵母粉6g/L,KH2PO4 6.0g/L,VB1 1mg/L,VB3 1mg/L,VB5 1mg/L,VB12 1mg/L,VH 0.1mg/L,MgSO4·7H2O 1.5g/L,微量元素混合液1mL/L,FeSO4·7H2O 40mg/L,(NH4)2SO4 2.0g/L,消泡剂2滴,其余为水。
上述基因工程菌E.coli Ora-6利用5L发酵罐发酵38-42h后乳清酸的产量可达135.6g/L。
优选的,上述基因工程菌的应用,所述微量元素混合液组分含量为:钼酸铵0.28mg/L,硼酸5mg/L,CoCl2·6H2O 1.4mg/L,MnSO4·H2O 0.5mg/L,CuSO4·7H2O 0.5mg/L,ZnSO4·7H2O 0.6mg/L,上述成分称量固体后溶解于1L水中,在4℃保存。
有益效果:
上述生产乳清酸的基因工程菌,为不含质粒、从头合成高产乳清酸的基因工程菌E.co l i Ora,与现有的乳清酸生产菌相比,该基因工程菌具有遗传稳定性好、发酵产率高、糖酸转化率高等优势,所述基因工程菌以葡萄糖等廉价碳源为底物从头高效合成乳清酸,乳清酸产量可高达135.6g/L,具有很好的工业应用前景;该基因工程菌构建方法简单,首先对大肠杆菌中嘧啶类核苷酸代谢网络中与乳清酸相关代谢流进行分析重构,加强了乳清酸合成和积累;之后引入野生型枯草芽孢杆菌嘧啶核苷(pyr)操纵子中的二氢乳酸脱氢酶,进一步加强乳清酸合成,适合规模化工业生产的需要。
附图说明
图1:(a)pRED/Cas9质粒图谱,(b)pGRB质粒图谱。
图2:一种产生乳清酸工程菌的构建方法图解。
图3:argF基因敲除片段构建及验证电泳图。其中:M:1kb DNA marker;1:上游同源臂;2:下游同源臂;3:重叠片段;4:阳性菌鉴定片段;5:原菌对照。
图4:pyrE基因敲除片段构建及验证电泳图。其中:M:1kb DNA marker;1:上游同源臂;2:下游同源臂;3:重叠片段;4:阳性菌鉴定片段;5:原菌对照。
图5:Plac-pyrE基因替换片段构建及验证电泳图。其中:M:1kb DNA marker;1:上游同源臂;2:pyrE基因;3:下游同源臂;4:重叠片段;5:阳性菌鉴定片段;6:原菌对照。
图6:Ptrc-carAB基因替换片段构建及验证电泳图。其中:M:1kb DNA marker;1:片段①上游同源臂;2:carAB基因片段①;3:片段①下游同源臂;4:重叠片段①;5:阳性菌鉴定片段①;6:片段②上游同源臂;7:片段②下游同源臂;8:重叠片段②;9:阳性菌鉴定片段;10:原菌对照。
图7:Ptrc-pyrBCD基因替换片段构建及验证电泳图。其中:M:1kb DNA marker;1:片段①上游同源臂;2:pyrBCD基因片段①;3:片段①下游同源臂;4:重叠片段①;5:阳性菌鉴定片段①;6:片段②上游同源臂;7:片段②下游同源臂;8:重叠片段②;9:阳性菌鉴定片段;10:原菌对照。
图8:Ptrc-pyrKD基因替换片段构建及验证电泳图。其中:M:1kb DNA marker;1:上游同源臂;2:pyrKD基因;3:下游同源臂;4:重叠片段;5:阳性菌鉴定片段;6:原菌对照。
图9:菌株E.coli Ora发酵过程曲线图。
具体实施方式
下面结合具体实施例对本发明所述技术方案作进一步的说明。除非特别说明,本发明中所用的技术手段均为本领域技术人员所公知的方法。
实施方案中涉及到的百分号“%”,若未特别说明,指体积百分比;溶液的百分比“%(m/v)”指100ml溶液中含有溶质的克数。
实施例1
如图2所示,菌株E.coli Ora6的构建:
1.基因编辑的方法
本发明中采用的基因编辑方法参照文献(Li Y,Lin Z,Huang C,et al.Metabolicengineering of Escherichia coli using CRISPR-Cas9 meditated genomeediting.Metabolic Engineering,2015,31:13-21.),该方法涉及的工程质粒pRED/Cas9、pGRB图谱见图1。其中pRED/Cas9携带gRNA表达质粒pGRB的消除系统、λ噬菌体的Red重组系统、Cas9蛋白表达系统以及奇霉素抗性(工作浓度:100mg/L),32℃培养;pGRB以pUC18为骨架,包括启动子J23100、gRNA-Cas9结合区域序列和终止子序列以及氨苄青霉素抗性(工作浓度:100mg/L),37℃培养。
该方法的具体步骤如下:
1.1pGRB质粒构建
采用包含靶序列的DNA片段与线性化的pGRB载体片段重组的方法构建得到pGRB质粒,目的是为了转录相应的gRNA,与Cas9蛋白形成的复合体,并通过碱基配对和PAM识别目的基因靶位点,实现目的DNA双链断裂。
1.1.1靶序列设计
使用CRISPR RGEN Tools设计靶序列(PAM:5'-NGG-3')
1.1.2包含靶序列的DNA片段的制备
设计引物:5'-线性化载体末端序列(15bp)-靶序列-线性化载体末端序列(15bp)-3',及其反向互补的引物,利用PCR退火程序得到DNA双链片段。反应条件:预变性95℃,5min;退火30-50℃,1min。退火体系如下表1:
表1退火体系
Figure BDA0003604957540000071
1.1.3线性载体的制备
载体的线性化采用反向PCR扩增的方法。
1.1.4重组连接靶序列与线性化载体
使用ClonExpress
Figure BDA0003604957540000072
II One Step Cloning Kit重组酶重组连接靶序列与线性化的pGRB载体(反应体系见表2),插入片段见1.1.2,线性化克隆载体见1.1.3,将得到了质粒化转至E.coli DH5α感受态细胞后筛选阳性转化子,菌株纯化后摇管扩大培养,使用试剂盒提取质粒,得到含靶序列的pGRB质粒。
表2质粒重组体系
Figure BDA0003604957540000081
1.2重组DNA片段的制备
重组DNA片段以整合位点的上下游同源臂及待整合的基因片段组成(仅作敲除目的则不需要目的片段)。以待敲除基因/目的基因的上同源臂的上游引物与下同源臂的下引物为扩增/重叠引物,以大肠杆菌基因组为模板,利用PCR扩增体系(如表3)得到同源臂/目的基因的DNA片段。以待敲除基因的上同源臂的上游引物与下同源臂的下游引物为重叠引物,以待整合基因为模板,利用PCR重叠体系(表4)制备重组片段。
表3HS酶PCR扩增体系
Figure BDA0003604957540000082
Figure BDA0003604957540000091
表4重叠PCR扩增体系
Figure BDA0003604957540000092
PCR反应条件(宝生物PrimeSTAR HS酶):预变性(95℃)5min;变性(98℃)10s,退火((Tm-3/5)℃)15s,72℃延伸(酶活力1min延伸约1kb)进行30轮循环;72℃继续延伸10min;维持(4℃)。
1.3质粒和重组DNA片段的转化
1.3.1pRED/Cas9的转化
利用电转的方法将pRED/Cas9质粒电转至目的菌株的电转感受态中,复苏培养后涂布在含奇霉素抗性的LB固体平板上,32℃培养12h。抗性平板上挑选单菌落用鉴定引物进行菌落PCR验证,筛选阳性转化子。
表5菌落PCR体系
Figure BDA0003604957540000093
Figure BDA0003604957540000101
1.3.2含pRED/Cas9的目的菌株电转化感受态制备
32℃培养至OD600nm=0.1~0.2时,添加0.1M的IPTG(使其终浓度为0.1mM),目的为诱导pRED/Cas9质粒上的重组酶表达。其他操作无特殊要求。
1.3.3pGRB和重组DNA片段的转化
将pGRB和供体DNA片段同时电转化至含有pRED/Cas9的电转感受态细胞中。将电转化后复苏培养的菌体涂布于含氨苄青霉素和奇霉素的LB平板上,32℃过夜培养。用上游同源臂上游引物和下游同源臂的下游引物,或设计专门的鉴定引物,进行菌落PCR验证,筛选阳性重组子并保菌。
1.4质粒的消除
1.4.1pGRB质粒的消除
将阳性重组子置于含有0.2%阿拉伯糖的LB培养基中培养12h,取适量菌液涂布于含有奇霉素抗性的LB平板上,32℃培养12h。使用含有氨苄青霉素和奇霉素抗性的LB平板(单抗平板,对照筛选阳性菌株),挑选氨苄青霉素平板不生长,奇霉素抗性平板生长的单菌落保菌。
1.4.2pRED/Cas9质粒的消除
将阳性重组子转接到无抗性的LB液体培养基中,42℃培养12h,取适量菌液涂布于无抗性的LB平板上,37℃培养12h。使用含有奇霉素抗性和无抗性的LB平板(单抗平板,对照筛选阳性菌株),挑选奇霉素抗性平板不生长,无抗性平板生长的单菌落保菌。
2.菌株构建过程中所涉及的引物如下表:
Figure BDA0003604957540000102
Figure BDA0003604957540000111
Figure BDA0003604957540000121
Figure BDA0003604957540000131
3.菌株构建的具体过程
3.1基因argF的敲除
以提取并稀释至可用浓度的大肠杆菌W3110基因组为模板,用引物argF-Q-1和argF-Q-2,argF-Q-3和argF-Q-4分别进行PCR扩增,得到上游同源臂和下游同源臂,大小分别为418bp和492bp,以回收的上下游同源臂为模板,用引物argF-Q-1和argF-Q-4进行重叠PCR,得到敲除基因argF所需的回补片段ΔargF,大小在910bp。之后,将引物pGRB-argF-S和pGRB-argF-A退火制得的DNA片段与质粒pGRB线载连接,构建pGRB-argF。制备E.coliW3110/pRed-Cas9的感受态细胞,按照1.3和1.4所示的方法操作,最终获得菌株E.coliOra-1。过程中片段扩增结果和阳性菌株的PCR验证的电泳图见图3,各片段大小均与理论值大小一致。
3.2基因pyrE的敲除
以提取并稀释至可用浓度的大肠杆菌W3110基因组为模板,用引物pyrE-Q-1和pyrE-Q-2,pyrE-Q-3和pyrE-Q-4分别进行PCR扩增,得到上游同源臂和下游同源臂,大小分别为689bp和403bp,以回收的上下游同源臂为模板,用引物pyrE-Q-1和pyrE-Q-4进行重叠PCR,得到敲除基因pyrE所需的回补片段ΔpyrE,大小在1092bp。之后,将引物pGRB-pyrE-S和pGRB-pyrE-A退火制得的DNA片段与质粒pGRB线载连接,构建pGRB-pyrE。制备E.coliOra-1/pRed-Cas9的感受态细胞,按照1.3和1.4所示的方法操作,最终获得菌株E.coliOra-2。过程中片段扩增结果和阳性菌株的PCR验证的电泳图见图4,各片段大小均与理论值大小一致。
3.3基因pyrE的弱化(基因Plac-pyrE的整合)
以大肠杆菌W3110为模板,用引物ycgH-UP-S和ycgH-lac-UP-A,ycgH-lac-DW-S和ycgH-DW-A,pyrE-lac-S和pyrE-lac-A进行PCR扩增,得到上下游同源臂和中间目的片段,其理论大小分别在573bp、630bp、783bp,以回收的上下游同源臂和中间目的片段为模板,用引物ycgH-UP-S和ycgH-DW-A经重叠PCR得到整合需要的目的片段Plac-pyrE理论大小在1905bp。之后,将引物pGRB-ycgH-S和pGRB-ycgH-A退火制得的DNA片段与质粒pGRB线载连接,构建pGRB-ycgH质粒。制备E.coli Ora-2/pRed-Cas9的感受态细胞,按照1.3和1.4所示的方法操作,最终获得菌株E.coli Ora-3。过程中片段扩增结果和阳性菌株的PCR验证的电泳图见图5,各片段大小均与理论值大小一致。
3.4基因Ptrc-carAB的分段整合
以大肠杆菌W3110为模板,用引物yciQ-UP-S和yciQ-trc-UP-A,yciQ-carAB①DW-S和yciQ-DW-A,trc-carAB-S和carAB-①-A进行PCR扩增,得到上下游同源臂和中间目的片段,其理论大小分别在632bp、604bp、2471bp,以回收的上下游同源臂和中间目的片段为模板,用引物yciQ-UP-S和yciQ-DW-A经重叠PCR得到整合需要的目的片段Ptrc-carAB-①,理论大小在3602bp之后,将引物pGRB-yciQ-S和pGRB-yciQ-A退火制得的DNA片段与质粒pGRB线载连接,构建pGRB-yciQ质粒。制备E.coli Ora-3/pRed-Cas9的感受态细胞,按照1.3和1.4所示的方法操作,将纯化后的Ptrc-carAB-①整合片段和质粒pGRB-yciQ同时经电转化方式转入菌株E.coli Ora-3/pRed-Cas9的感受态细胞中,挑选验证正确的菌株后,继续消除质粒pGRB-yciQ,获得菌株E.coli Ora-3.5/pRed-Cas9。再以大肠杆菌W3110为模板,用引物carAB-②-S和trc-carAB-②-A,yciQ-trc-DW-S和yciQ-DW-A进行PCR扩增,得到上下游同源臂,其理论大小分别在2213bp、604bp,以回收的上下游同源臂为模板,用引物carAB-②-S和yciQ-DW-A经重叠PCR得到整合需要的目的片段Ptrc-carAB-②,理论大小在2778bp之后,将引物pGRB-wy4-S和pGRB-wy4-A退火制得的DNA片段与质粒pGRB线载连接,构建pGRB-wy4质粒。制备E.coli Ora-3.5/pRed-Cas9的感受态细胞,按照1.3和1.4所示的方法操作,最终获得菌株E.coli Ora-4,过程中片段扩增结果和阳性菌株的PCR验证的电泳图见图6,各片段大小均与理论值大小一致。
3.5基因Ptrc-pyrBCD的分段整合
以大肠杆菌W3110为模板,用引物ygaY-UP-S和ygaY-trc-UP-A,ygaY-1-DW-S和ygaY-DW-A,pyrBCD-1-trc-S和pyrBCD-1-A进行PCR扩增,得到上下游同源臂和中间目的片段,其理论大小分别在510bp、680bp、1581bp,以回收的上下游同源臂和中间目的片段为模板,用引物ygaY-UP-S和ygaY-DW-A经重叠PCR得到整合需要的目的片段Ptrc-pyrBCD-1,理论大小在2666bp之后,将引物pGRB-ygaY-S和pGRB-ygaY-A退火制得的DNA片段与质粒pGRB线载连接,构建pGRB-ygaY质粒。制备E.coli Ora-4/pRed-Cas9的感受态细胞,按照1.3和1.4所示的方法操作,将纯化后的Ptrc-pyrBCD-1整合片段和质粒pGRB-ygaY同时经电转化方式转入菌株E.coli Ora-4/pRed-Cas9的感受态细胞中,挑选验证正确的菌株后,继续消除质粒pGRB-ygaY,获得菌株E.coli Ora-4.5/pRed-Cas9。再以大肠杆菌W3110为模板,用引物pyrBCD-2-S和pyrBCD-2-trc-A,ygaY-trc-DW-S和ygaY-DW-A进行PCR扩增,得到上下游同源臂,其理论大小分别在2036bp、680bp,以回收的上下游同源臂为模板,用引物pyrBCD-2-S和ygaY-DW-A经重叠PCR得到整合需要的目的片段Ptrc-pyrBCD-2,理论大小在2677bp。之后,制备E.coli Ora-4.5/pRed-Cas9的感受态细胞,按照1.3和1.4所示的方法操作,将纯化后的Ptrc-pyrBCD-2整合片段和质粒pGRB-wy4同时经电转化方式转入菌株E.coli Ora-4.5/pRed-Cas9的感受态细胞中,挑选验证正确的菌株后,消除质粒pGRB-wy4和pRed-Cas9,最终获得菌株E.coli Ora-5,过程中片段扩增结果和阳性菌株的PCR验证的电泳图见图7,各片段大小均与理论值大小一致。
3.6基因Ptrc-pyrKD的整合
以大肠杆菌W3110为模板,用引物yghX-UP-S和yghX-trc-UP-A,yghX-trc-DW-S和yghX-DW-A进行PCR扩增,得到上下游同源臂,其理论大小分别在551bp、526bp;再以枯草芽孢杆菌168中pyrKD基因经密码子优化后合成的基因片段为模板,用引物pyrKD-trc-S和pyrKD-trc-A进行PCR扩增,得到中间目的片段,理论大小为1829bp,以回收的上下游同源臂和中间目的片段为模板,用引物yghX-UP-S和yghX-DW-A经重叠PCR得到整合需要的目的片段Ptrc-pyrKD理论大小在2825bp之后,将引物pGRB-yghX-S和pGRB-yghX-A退火制得的DNA片段与质粒pGRB线载连接,构建pGRB-yghX质粒。制备E.coli Ora-5/pRed-Cas9的感受态细胞,按照1.3和1.4所示的方法操作,最终获得菌株E.coli Ora-6。过程中片段扩增结果和阳性菌株的PCR验证的电泳图见图8,各片段大小均与理论值大小一致。
实施例2
采用实施例1所述的大肠杆菌工程菌利用摇瓶发酵生产乳清酸。
1.培养基
1.1斜面培养基
葡萄糖2g/L,蛋白胨10g/L,酵母浸出粉5g/L,氯化钠2.5g/L,KH2PO41.0g/L,MgSO40.2g/L,琼脂粉25%,用水溶解并定容至所需体积,用氢氧化钠调pH至7.0-7.2,121℃高压蒸汽锅灭菌20min后分装至试管中。
1.2种子培养基
葡萄糖30g/L,酵母粉8g/L,蛋白胨2.0g/L,MgSO4·7H2O 0.5g/L,KH2PO43.0g/L,蛋氨酸2g/L,(NH4)2SO4 2.0g/L,VB1 2mg/L、VB3 2mg/L、VB5 2mg/L、VB12 2mg/L,VH 1mg/L,微量元素混合液1mL/L,苯酚红:需定容体积的2%,用NaOH调pH至7.0-7.2,消泡剂1滴,其余为水,高压蒸汽锅灭菌115℃,15min。所述微量元素混合液组分含量为:钼酸铵0.28mg/L,硼酸5mg/L,CoCl2·6H2O 1.4mg/L,MnSO4·H2O 0.5mg/L,CuSO4·7H2O 0.5mg/L,ZnSO4·7H2O0.6mg/L,上述成分称量固体后溶解于1L水中,在4℃保存。
1.3发酵培养基
葡萄糖10g/L,谷氨酸2g/L,酵母粉6g/L,KH2PO4 6.0g/L,VB1 1mg/L、VB3 1mg/L、VB51mg/L、VB12 1mg/L,VH 0.1mg/L,MgSO4·7H2O 1.5g/L,微量元素混合液1mL/L,FeSO4·7H2O40mg/L,(NH4)2SO4 2.0g/L,苯酚红:需定容体积的2%,用NaOH调pH至7.0-7.2,消泡剂1滴,其余为水,高压蒸汽锅灭菌115℃,15min。所述微量元素混合液组分含量为:钼酸铵0.28mg/L,硼酸5mg/L,CoCl2·6H2O 1.4mg/L,MnSO4·H2O 0.5mg/L,CuSO4·7H2O 0.5mg/L,ZnSO4·7H2O 0.6mg/L,上述成分称量固体后溶解于1L水中,在4℃保存。
2.培养方法
2.1斜面培养
取-80℃保藏的实施例1所述用于产生乳清酸的基因工程菌E.coli Ora-6划线接种于活化斜面,37℃培养12h,并传代一次。
2.2种子培养
用接种环刮取一环斜面种子接种于装有30mL种子培养基的500mL三角瓶中,九层纱布封口,36℃,200r/min培养10h。
2.3发酵培养
按15%接种量接种菌种活化后制备的种子液到装有发酵培养基的500mL三角瓶中(终体积为30mL),九层纱布封口,36℃,200r/min振荡培养,发酵过程中通过补加氨水维持pH在7.0-7.2;添加60%(m/v)葡萄糖溶液维持发酵进行(以苯酚红做指示剂,发酵液颜色不再变化时即视为缺糖,缺糖时补加1-2mL 60%(m/v)葡萄糖溶液)。发酵周期32h。
摇瓶发酵32h后乳清酸的产量可达40g/L。
实施例3
利用实施例1所述的大肠杆菌工程菌5L发酵罐发酵生产乳清酸。
1.培养基
1.1斜面培养基
葡萄糖2g/L,蛋白胨10g/L,酵母浸出粉5g/L,氯化钠2.5g/L,KH2PO4 1.0g/L,MgSO40.2g/L,琼脂粉25%,用水溶解并定容至所需体积,用氢氧化钠调pH至7.0-7.2,121℃高压蒸汽锅灭菌20min后分装至试管和茄形瓶中。
1.2种子培养基
葡萄糖30g/L,酵母粉8g/L,蛋白胨2.0g/L,MgSO4·7H2O 0.5g/L,KH2PO4 3.0g/L,蛋氨酸2g/L,(NH4)2SO4 2.0g/L,VB1 2mg/L、VB3 2mg/L、VB5 2mg/L、VB12 2mg/L,VH 1mg/L,微量元素混合液1mL/L,苯酚红:需定容体积的2%,用NaOH调pH至7.0-7.2,消泡剂2滴,其余为水。所述微量元素混合液组分含量为:钼酸铵0.28mg/L,硼酸5mg/L,CoCl2·6H2O 1.4mg/L,MnSO4·H2O 0.5mg/L,CuSO4·7H2O 0.5mg/L,ZnSO4·7H2O 0.6mg/L,上述成分称量固体后溶解于1L水中,在4℃保存。
1.3发酵培养基
葡萄糖10g/L,谷氨酸2g/L,酵母粉6g/L,KH2PO4 6.0g/L,VB1 1mg/L、VB3 1mg/L、VB51mg/L、VB12 1mg/L,VH 0.1mg/L,MgSO4·7H2O 1.5g/L,微量元素混合液1mL/L,FeSO4·7H2O40mg/L,(NH4)2SO4 2.0g/L,消泡剂2滴,其余为水。所述微量元素混合液组分含量为:钼酸铵0.28mg/L,硼酸5mg/L,CoCl2·6H2O 1.4mg/L,MnSO4·H2O 0.5mg/L,CuSO4·7H2O 0.5mg/L,ZnSO4·7H2O 0.6mg/L,上述成分称量固体后溶解于1L水中,在4℃保存。
2.培养方法
2.1斜面活化培养
从-80℃冰箱保菌管中刮一环菌种,均匀涂布于活化斜面,37℃培养12h,转接茄形瓶继续培养12h;
2.2种子培养
取适量无菌水于茄形瓶中,将菌悬液接入种子培养基中,pH稳定在7.0左右,温度恒定在36℃,溶氧在30%-60%之间,培养6h;
2.3发酵培养
等待种子菌体量OD600至25左右,按照20%接种量接入新鲜的发酵培养基,开始发酵,发酵过程中控制pH稳定在7.0左右,温度维持在36℃,溶氧在30%-60%之间;当培养基中的葡萄糖消耗完之后,流加80%(m/v)的葡萄糖溶液,维持发酵培养基中的葡萄糖浓度在0.1-1g/L;发酵周期42h;
5L发酵罐发酵42h后乳清酸的产量达到了135.6g/L。发酵过程曲线见附图9。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
序列表
<110> 天津科技大学
<120> 一种生产乳清酸的基因工程菌及其构建方法与应用
<160> 9
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1149
<212> DNA
<213> Escherichia coli
<220>
<221> gene
<222> (1)..(1149)
<400> 1
atgattaagt cagcgctatt ggttctggaa gacggaaccc agtttcacgg tcgggccata 60
ggggcaacag gttcggcggt tggggaagtc gttttcaata cttcaatgac cggttatcaa 120
gaaatcctca ctgatccttc ctattctcgt caaatcgtta ctcttactta tccccatatt 180
ggcaatgtcg gcaccaatga cgccgatgaa gaatcttctc aggtacatgc acaaggtctg 240
gtgattcgcg acctgccgct gattgccagc aacttccgta ataccgaaga cctctcttct 300
tacctgaaac gccataacat cgtggcgatt gccgatatcg atacccgtaa gctgacgcgt 360
ttactgcgcg agaaaggcgc acagaatggc tgcattatcg cgggcgataa cccggatgcg 420
gcgctggcgt tagaaaaagc ccgcgcgttc ccaggtctga atggcatgga tctggcaaaa 480
gaagtgacca ccgcagaagc ctatagctgg acacaaggga gctggacgtt gaccggtggc 540
ctgccagaag cgaaaaaaga agacgagctg ccgttccacg tcgtggctta tgattttggt 600
gccaagcgca acatcctgcg gatgctggtg gatagaggct gtcgcctgac catcgttccg 660
gcgcaaactt ctgcggaaga tgtgctgaaa atgaatccag acggcatctt cctctccaac 720
ggtcctggcg acccggcccc gtgcgattac gccattaccg ccatccagaa attcctcgaa 780
accgatattc cggtattcgg catctgtctc ggtcatcagc tgctggcgct ggcgagcggt 840
gcgaagactg tcaaaatgaa atttggtcac cacggcggca accatccggt taaagatgtg 900
gagaaaaacg tggtaatgat caccgcccag aaccacggtt ttgcggtgga cgaagcaaca 960
ttacctgcaa acctgcgtgt cacgcataaa tccctgttcg acggtacgtt acagggcatt 1020
catcgcaccg ataaaccggc attcagcttc caggggcacc ctgaagccag ccctggtcca 1080
cacgacgccg cgccgttgtt cgaccacttt atcgagttaa ttgagcagta ccgtaaaacc 1140
gctaagtaa 1149
<210> 2
<211> 3222
<212> DNA
<213> Escherichia coli
<220>
<221> gene
<222> (1)..(3222)
<400> 2
atgccaaaac gtacagatat aaaaagtatc ctgattctgg gtgcgggccc gattgttatc 60
ggtcaggcgt gtgagtttga ctactctggc gcgcaagcgt gtaaagccct gcgtgaagag 120
ggttaccgcg tcattctggt gaactccaac ccggcgacca tcatgaccga cccggaaatg 180
gctgatgcaa cctacatcga gccgattcac tgggaagttg tacgcaagat tattgaaaaa 240
gagcgcccgg acgcggtgct gccaacgatg ggcggtcaga cggcgctgaa ctgcgcgctg 300
gagctggaac gtcagggcgt gttggaagag ttcggtgtca ccatgattgg tgccactgcc 360
gatgcgattg ataaagcaga agaccgccgt cgtttcgacg tagcgatgaa gaaaattggt 420
ctggaaaccg cgcgttccgg tatcgcacac acgatggaag aagcgctggc ggttgccgct 480
gacgtgggct tcccgtgcat tattcgccca tcctttacca tgggcggtag cggcggcggt 540
atcgcttata accgtgaaga gtttgaagaa atttgcgccc gcggtctgga tctctctccg 600
accaaagagt tgctgattga tgagtcgctg atcggctgga aagagtacga gatggaagtg 660
gtgcgtgata aaaacgacaa ctgcatcatc gtctgctcta tcgaaaactt cgatgcgatg 720
ggcatccaca ccggtgactc catcactgtc gcgccagccc aaacgctgac cgacaaagaa 780
tatcaaatca tgcgtaacgc ctcgatggcg gtgctgcgtg aaatcggcgt tgaaaccggt 840
ggttccaacg ttcagtttgc ggtgaacccg aaaaacggtc gtctgattgt tatcgaaatg 900
aacccacgcg tgtcccgttc ttcggcgctg gcgtcgaaag cgaccggttt cccgattgct 960
aaagtggcgg cgaaactggc ggtgggttac accctcgacg aactgatgaa cgacatcact 1020
ggcggacgta ctccggcctc cttcgagccg tccatcgact atgtggttac taaaattcct 1080
cgcttcaact tcgaaaaatt cgccggtgct aacgaccgtc tgaccactca gatgaaatcg 1140
gttggcgaag tgatggcgat tggtcgcacg cagcaggaat ccctgcaaaa agcgctgcgc 1200
ggcctggaag tcggtgcgac tggattcgac ccgaaagtga gcctggatga cccggaagcg 1260
ttaaccaaaa tccgtcgcga actgaaagac gcaggcgcag atcgtatctg gtacatcgcc 1320
gatgcgttcc gtgcgggcct gtctgtggac ggcgtcttca acctgaccaa cattgaccgc 1380
tggttcctgg tacagattga agagctggtg cgtctggaag agaaagtggc ggaagtgggc 1440
atcactggcc tgaacgctga cttcctgcgc cagctgaaac gcaaaggctt tgccgatgcg 1500
cgcttggcaa aactggcggg cgtacgcgaa gcggaaatcc gtaagctgcg tgaccagtat 1560
gacctgcacc cggtttataa gcgcgtggat acctgtgcgg cagagttcgc caccgacacc 1620
gcttacatgt actccactta tgaagaagag tgcgaagcga atccgtctac cgaccgtgaa 1680
aaaatcatgg tgcttggcgg cggcccgaac cgtatcggtc agggtatcga attcgactac 1740
tgttgcgtac acgcctcgct ggcgctgcgc gaagacggtt acgaaaccat tatggttaac 1800
tgtaacccgg aaaccgtctc caccgactac gacacttccg accgcctcta cttcgagccg 1860
gtaactctgg aagatgtgct ggaaatcgtg cgtatcgaga agccgaaagg cgttatcgtc 1920
cagtacggcg gtcagacccc gctgaaactg gcgcgcgcgc tggaagctgc tggcgtaccg 1980
gttatcggca ccagcccgga tgctatcgac cgtgcagaag accgtgaacg cttccagcat 2040
gcggttgagc gtctgaaact gaaacaaccg gcgaacgcca ccgttaccgc tattgaaatg 2100
gcggtagaga aggcgaaaga gattggctac ccgctggtgg tacgtccgtc ttacgttctc 2160
ggcggtcggg cgatggaaat cgtctatgac gaagctgacc tgcgtcgcta cttccagacg 2220
gcggtcagcg tgtctaacga tgcgccagtg ttgctggacc acttcctcga tgacgcggta 2280
gaagttgacg tggatgccat ctgcgacggc gaaatggtgc tgattggcgg catcatggag 2340
catattgagc aggcgggcgt gcactccggt gactccgcat gttctctgcc agcctacacc 2400
ttaagtcagg aaattcagga tgtgatgcgc cagcaggtgc agaaactggc cttcgaattg 2460
caggtgcgcg gcctgatgaa cgtgcagttt gcggtgaaaa acaacgaagt ctacctgatt 2520
gaagttaacc cgcgtgcggc gcgtaccgtt ccgttcgtct ccaaagccac cggcgtaccg 2580
ctggcaaaag tggcggcgcg cgtgatggct ggcaaatcgc tggctgagca gggcgtaacc 2640
aaagaagtta tcccgccgta ctactcggtg aaagaagtgg tgctgccgtt caataaattc 2700
ccgggcgttg acccgctgtt agggccagaa atgcgctcta ccggggaagt catgggcgtg 2760
ggccgcacct tcgctgaagc gtttgccaaa gcgcagctgg gcagcaactc caccatgaag 2820
aaacacggtc gtgcgctgct ttccgtgcgc gaaggcgata aagaacgcgt ggtggacctg 2880
gcggcaaaac tgctgaaaca gggcttcgag ctggatgcga cccacggcac ggcgattgtg 2940
ctgggcgaag caggtatcaa cccgcgtctg gtaaacaagg tgcatgaagg ccgtccgcac 3000
attcaggacc gtatcaagaa tggcgaatat acctacatca tcaacaccac ctcaggccgt 3060
cgtgcgattg aagactcccg cgtgattcgt cgcagtgcgc tgcaatataa agtgcattac 3120
gacaccaccc tgaacggcgg ctttgccacc gcgatggcgc tgaatgccga tgcgactgaa 3180
aaagtaattt cggtgcagga aatgcacgca cagatcaaat aa 3222
<210> 3
<211> 936
<212> DNA
<213> Escherichia coli
<220>
<221> gene
<222> (1)..(936)
<400> 3
atggctaatc cgctatatca gaaacatatc atttccataa acgaccttag tcgcgatgac 60
cttaatctgg tgctggcgac agcggcgaaa ctgaaagcaa acccgcaacc agagctgttg 120
aagcacaaag tcattgccag ctgtttcttc gaagcctcta cccgtacccg cctctctttc 180
gaaacatcta tgcaccgcct gggggccagc gtggtgggct tctccgacag cgccaataca 240
tcactgggta aaaagggcga aacgctggcc gataccattt cggttatcag cacttacgtc 300
gatgcgatag tgatgcgtca tccgcaggaa ggtgcggcgc gcctggccac cgagttttcc 360
ggcaatgtac cggtactgaa tgccggtgat ggctccaacc aacatccgac gcaaaccttg 420
ctggacttat tcactattca ggaaacccag gggcgtctgg acaatctcca cgtcgcaatg 480
gttggtgacc tgaaatatgg ccgcaccgtt cactccctga ctcaggcgtt agcgaagttc 540
gacggcaacc gtttttactt catcgcgccg gacgcgctgg caatgccgca atacattctg 600
gatatgctcg atgaaaaagg gatcgcatgg agtctgcaca gctctattga agaagtgatg 660
gcggaagtag acatcctgta catgacccgc gtgcaaaaag agcgtctgga cccgtccgag 720
tacgccaacg tgaaagcgca gtttgttctt cgcgccagcg atctccacaa cgccaaagcc 780
aatatgaaag tgctgcatcc gctgccgcgt gttgatgaga ttgcgacgga tgttgataaa 840
acgccacacg cctggtactt ccagcaggca ggcaacggga ttttcgctcg ccaggcgtta 900
ctggcactgg ttctgaatcg cgatctggta ctgtaa 936
<210> 4
<211> 1047
<212> DNA
<213> Escherichia coli
<220>
<221> gene
<222> (1)..(1047)
<400> 4
atgactgcac catcccaggt attaaagatc cgccgcccag acgactggca ccttcacctc 60
cgcgatggcg acatgttaaa aactgtcgtg ccatatacca gcgaaattta tggacgggct 120
atcgtaatgc ccaatctggc tccgcccgtg accaccgttg aggctgccgt ggcgtatcgc 180
cagcgtattc ttgacgccgt acctgccggg cacgatttca ccccattgat gacctgttat 240
ttaacagatt cgctggatcc taatgagctg gagcgcggat ttaacgaagg cgtgttcacc 300
gctgcaaaac tttacccggc aaacgcaacc actaactcca gccacggcgt gacgtcaatt 360
gacgcaatca tgccggtact tgagcgcatg gaaaaaatcg gtatgccgct actggtgcat 420
ggtgaagtga cacatgcaga tatcgacatt tttgatcgtg aagcgcgctt tatagaaagc 480
gtgatggaac ctctgcgcca gcgcctgact gcgctgaaag tcgtttttga gcacatcacc 540
accaaagatg ctgccgacta tgtccgtgac ggaaatgaac ggctggctgc caccatcact 600
ccgcagcatc tgatgtttaa ccgcaaccat atgctggttg gaggcgtgcg tccgcacctg 660
tattgtctac ccatcctcaa acgtaatatt caccaacagg cattgcgtga actggtcgcc 720
agcggtttta atcgagtatt cctcggtacg gattctgcgc cacatgcacg tcatcgcaaa 780
gagagcagtt gcggctgcgc gggctgcttc aacgccccaa ccgcgctggg cagttacgct 840
accgtctttg aagaaatgaa tgctttgcag cactttgaag cattctgttc tgtaaacggc 900
ccgcagttct atgggttgcc ggtcaacgac acattcatcg aactggtacg tgaagagcaa 960
caggttgctg aaagcatcgc actgactgat gacacgctgg tgccattcct cgccggggaa 1020
acggtacgct ggtccgttaa acaataa 1047
<210> 5
<211> 1011
<212> DNA
<213> Escherichia coli
<220>
<221> gene
<222> (1)..(1011)
<400> 5
atgtactacc ccttcgttcg taaagccctt ttccagctcg atccagagcg cgctcatgag 60
tttacttttc agcaattacg ccgtattaca ggaacgccgt ttgaagcact ggtgcggcag 120
aaagtgcctg cgaaacctgt taactgcatg ggcctgacgt ttaaaaatcc gcttggtctg 180
gcagccggtc ttgataaaga cggggagtgc attgacgcgt taggcgcgat gggatttgga 240
tcgatcgaga tcggtaccgt cacgccacgt ccacagccag gtaatgacaa gccgcgtctc 300
tttcgtctgg tagatgccga aggtttgatc aaccgtatgg gctttaataa tcttggcgtt 360
gataacctcg tagagaacgt aaaaaaggcc cattatgacg gcgtcctggg tattaacatc 420
ggcaaaaata aagatacgcc agtggagcag ggcaaagatg actatctgat ttgtatggaa 480
aaaatctatg cctatgcggg atatatcgcc atcaatattt catcgccgaa taccccagga 540
ttacgcacgc tgcaatatgg tgaagcgctg gatgatctct taaccgcgat taaaaataag 600
caaaatgatt tgcaagcgat gcaccataaa tatgtgccga tcgcagtgaa gatcgcgccg 660
gatctttctg aagaagaatt gatccaggtt gccgatagtt tagttcgcca taatattgat 720
ggcgttattg caaccaatac cacactcgat cgttctcttg ttcagggaat gaaaaattgc 780
gatcaaaccg gtggcttaag tggtcgtccg cttcagttaa aaagcaccga aattattcgc 840
cgcttgtcac tggaattaaa cggtcgctta ccgatcatcg gtgttggcgg catcgactcg 900
gttatcgctg cgcgtgaaaa gattgctgcg ggtgcctcac tggtgcaaat ttattctggt 960
tttattttta aaggtccgcc gctgattaaa gaaatcgtta cccatatcta a 1011
<210> 6
<211> 771
<212> DNA
<213> Bacillus subtilis
<220>
<221> gene
<222> (1)..(771)
<400> 6
atgaaaaaag cgtatctgac cgtgtgcagc aatcagcaga ttgcggatcg cgtgtttcag 60
atggtgctga aaggcgagtt agttcaaggc tttaccaccc cgggtcagtt tctgcatctg 120
aaagtgagcg aagcggtgac cccgctgctg cgccgcccga ttagcattgc ggatgtgaac 180
tttgaaaaaa acgaagtgac cattatttat cgcgtggatg gcgaaggcac ccgcctgctg 240
agcctgaaac agcaaggcga actggtggat gtgctgggcc cgctgggcaa cggctttccg 300
gtgaacgaag tgcaaccggg taagaccgcg ctgctggttg gcggtggcgt gggtgtgccg 360
ccgctgcaag aactgagcaa acgcctgatt gaaaaaggcg tgaacgtgat tcatgtgctg 420
ggctttcaga gcgcgaaaga tgtgttttat gaagaggaat gccgtcagta tggcgatacc 480
tatgtggcga ccgcggatgg cagctatggc gaaaccggct ttgtgaccga tgtgattaaa 540
cgcaaaaaac tggaatttga tattctgctg agctgcggcc cgaccccgat gctgaaagcg 600
ctgaaacaag aatatgcgca taaagaagtg tatctgagca tggaagaacg catgggctgc 660
ggcattggcg cgtgctttgc gtgcgtgtgc cataccaacg aaagcgaaac gagctatgtg 720
aaagtgtgcc tggatggccc ggtgtttaaa gcgcaagaag tggcgctgta a 771
<210> 7
<211> 936
<212> DNA
<213> Bacillus subtilis
<220>
<221> gene
<222> (1)..(936)
<400> 7
atgctggaag tgaaactgcc gggtctggat ctgaaaaacc cgattattcc ggcgagcggc 60
tgctttggct ttggcaaaga atttagccgc ttttatgatc tgagctgcct gggcgcgatt 120
atgattaaag cgaccaccaa agaaccgcgc tttggcaacc cgaccccgcg cgtggcggaa 180
accggcgcgg gcatgctgaa cgcgattggc ctgcagaacc cgggcctgga tagcgtgctg 240
catcatgaac tgccgtggct ggaacagttt gataccccga ttattgcgaa cgtggcgggc 300
agccaagtgg atgattatgt ggaagtggcg gaacatatta gcaaagcgcc gaacgtgcat 360
gcgctggaac tgaacattag ctgcccgaac gtgaaaacgg gcggcattgc gtttggcacc 420
aacccggaaa tggcggcgga tctgaccaaa gcggtgaaag aagtgagcga tgtgccggtg 480
tatgtgaaac tgagcccgaa cgtggcgaac attaccgaaa ttgcgctggc gattgaagaa 540
gcgggcgcgg atggcctgac catgattaac accctgattg gcatgcgcct ggacttaaaa 600
accggcaaac cgattctggc gaacaaaacc ggcggcctga gcggcccggc ggtgaaaccg 660
gtggcgattc gcatggtgta tgaagtgagt cagatggtga acattccgat tattggcatg 720
ggcggcgtgc agaccgcgga agatgcgctg gaatttctgc tggcgggcgc gagcgcggtg 780
gcggtgggca ccgcgaactt tgtgaacccg tttgcgtgcc cggaaattat tgaacagctg 840
ccgagcgtgc tgctgcagta tggctatcag agcattgaag aatgcattgg ccgcagctgg 900
aaccatgaaa aacagccggc gcatcatcgc gcgtaa 936
<210> 8
<211> 74
<212> DNA
<213> Promoter
<220>
<221> promoter
<222> (1)..(74)
<400> 8
ttgacaatta atcatccggc tcgtataatg tgtggaattg tgagcggata acaatttcac 60
acaggaaaca gacc 74
<210> 9
<211> 74
<212> DNA
<213> Promoter
<220>
<221> promoter
<222> (1)..(74)
<400> 9
tttacacttt atgcttccgg ctcgtatgtt gtgtggaatt gtgagcggat aacaatttca 60
cacaggaaac agct 74

Claims (10)

1.一种生产乳清酸的基因工程菌,其特征在于:命名为E.coli Ora,所述基因工程菌E.coli Ora是在野生型大肠杆菌的染色体基因组上敲除鸟氨酸氨甲酰转移酶基因;染色体基因组上敲除乳清酸磷酸核糖转移酶基因,并在基因组ycgH位点上整合乳清酸磷酸核糖转移酶基因,并由Plac启动子启动;在基因组yciQ位点上串联整合氨基甲酰磷酸合成酶基因carA、carB,并由同一个Ptrc启动子启动;在基因组ygaY位点上串联整合天冬氨酸氨基甲酰转移酶基因pyrB、二氢乳清酸酶基因pyrC和二氢乳清酸还原酶基因pyrD,并由同一个Ptrc启动子启动;在基因组yghX位点上串联整合经密码子优化后的野生型枯草芽孢杆菌B.subtilis 168二氢乳酸脱氢酶B基因pyrK和pyrD,并由同一个Ptrc启动子启动。
2.根据权利要求1所述的生产乳清酸的基因工程菌,其特征在于:所述野生型大肠杆菌为大肠杆菌E.coliW3110。
3.根据权利要求1所述的生产乳清酸的基因工程菌,其特征在于:所述鸟氨酸氨甲酰转移酶基因为基因argF。
4.根据权利要求1所述的生产乳清酸的基因工程菌,其特征在于:所述乳清酸磷酸核糖转移酶基因为基因pyrE。
5.权利要求1所述生产乳清酸的基因工程菌的构建方法,其特征在于:采用CRISPR/Cas9介导的基因编辑技术对E.coli W3110染色体基因组进行定向改造,具体步骤如下:
(1)对鸟氨酸氨甲酰转移酶编码基因argF进行敲除;
(2)将编码乳清酸磷酸核糖转移酶的pyrE基因敲除,并重新整合pyrE基因至基因组ycgH位点上,并由Plac弱启动子控制;
(3)将氨基甲酰磷酸合成酶基因carA和carB基因串联整合至大肠杆菌基因组的yciQ位点,用同一个Ptrc启动子控制转录;
(4)将pyrB基因、pyrC基因和pyrD基因串联整合至大肠杆菌基因组的ygaY位点,用同一个Ptrc启动子控制转录;
(5)引入野生型枯草芽孢杆菌B.subtilis 168嘧啶核苷pyr操纵子中的二氢乳酸脱氢酶B基因pyrK和pyrD,经密码子优化后串联整合至大肠杆菌基因组yghX位点,用同一个Ptrc启动子控制转录。
6.权利要求1所述基因工程菌在发酵生产乳清酸中的应用。
7.根据权利要求6所述的基因工程菌的应用,其特征在于:利用所述基因工程菌进行摇瓶发酵的调控方案为:按10%-15%接种量接种菌种活化后制备的种子液到装有发酵培养基的三角瓶中,九层纱布封口,36℃,200r/min振荡培养,发酵过程中通过补加氨水维持pH在7.0-7.2;添加60%葡萄糖溶液维持发酵进行,发酵周期30-32h。
8.根据权利要求7所述的基因工程菌的应用,其特征在于:所述发酵培养基的组成为:葡萄糖10g/L,谷氨酸2g/L,酵母粉6g/L,KH2PO4 6.0g/L,VB1 1mg/L,VB3 1mg/L,VB5 1mg/L,VB12 1mg/L,VH 0.1mg/L,MgSO4·7H2O 1.5g/L,微量元素混合液1mL/L,FeSO4·7H2O 40mg/L,(NH4)2SO4 2.0g/L,苯酚红:需定容体积的2%,用NaOH调pH至7.0-7.2,消泡剂1滴,其余为水;所述微量元素混合液组分含量为:钼酸铵0.28mg/L,硼酸5mg/L,CoCl2·6H2O 1.4mg/L,MnSO4·H2O 0.5mg/L,CuSO4·7H2O 0.5mg/L,ZnSO4·7H2O 0.6mg/L,上述成分称量固体后溶解于1L水中,在4℃保存。
9.根据权利要求6所述的基因工程菌的应用,其特征在于:利用所述基因工程菌进行发酵罐发酵的调控方案为:
(1)种子培养:取适量无菌水重悬活化斜面中的一代种子,将菌悬液接入种子培养基中,pH稳定在7.0左右,温度恒定在36℃,溶氧在30%-60%之间,培养5.5-6h;
(2)发酵培养:等待种子菌体量OD600至20-25左右,按照20%接种量接入新鲜的发酵培养基,开始发酵,发酵过程中控制pH稳定在7.1左右,温度维持在36℃,溶氧在30%-60%之间;当培养基中的葡萄糖消耗完之后,流加80%的葡萄糖溶液,维持发酵培养基中的葡萄糖浓度在0.1-1g/L;发酵周期38-42h。
10.根据权利要求9所述的基因工程菌的应用,其特征在于:所述发酵培养基的组成为:葡萄糖10g/L,谷氨酸2g/L,酵母粉6g/L,KH2PO4 6.0g/L,VB1 1mg/L,VB3 1mg/L,VB5 1mg/L,VB12 1mg/L,VH 0.1mg/L,MgSO4·7H2O 1.5g/L,微量元素混合液1mL/L,FeSO4·7H2O 40mg/L,(NH4)2SO4 2.0g/L,消泡剂2滴,其余为水;所述微量元素混合液组分含量为:钼酸铵0.28mg/L,硼酸5mg/L,CoCl2·6H2O 1.4mg/L,MnSO4·H2O 0.5mg/L,CuSO4·7H2O 0.5mg/L,ZnSO4·7H2O 0.6mg/L,上述成分称量固体后溶解于1L水中,在4℃保存。
CN202210417923.1A 2022-04-20 2022-04-20 一种生产乳清酸的基因工程菌及其构建方法与应用 Active CN114774341B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210417923.1A CN114774341B (zh) 2022-04-20 2022-04-20 一种生产乳清酸的基因工程菌及其构建方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210417923.1A CN114774341B (zh) 2022-04-20 2022-04-20 一种生产乳清酸的基因工程菌及其构建方法与应用

Publications (2)

Publication Number Publication Date
CN114774341A true CN114774341A (zh) 2022-07-22
CN114774341B CN114774341B (zh) 2023-11-03

Family

ID=82430390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210417923.1A Active CN114774341B (zh) 2022-04-20 2022-04-20 一种生产乳清酸的基因工程菌及其构建方法与应用

Country Status (1)

Country Link
CN (1) CN114774341B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116144560A (zh) * 2022-09-28 2023-05-23 天津科技大学 一种苯丙氨酸大肠杆菌生产菌及其应用
CN117887652A (zh) * 2024-03-14 2024-04-16 天津科技大学 一种乳清酸生产菌株及其定向改造方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106754602A (zh) * 2017-01-04 2017-05-31 苏州华赛生物工程技术有限公司 一种生产胞苷的重组微生物及生产胞苷的方法
CN108130306A (zh) * 2018-01-10 2018-06-08 天津科技大学 高产尿苷的基因工程菌及其构建方法与应用
CN110564660A (zh) * 2019-09-18 2019-12-13 苏州华赛生物工程技术有限公司 生产乳清酸的重组微生物及方法
CN113549588A (zh) * 2021-06-25 2021-10-26 天津科技大学 用于产生5-羟基色氨酸的基因工程菌及其构建方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106754602A (zh) * 2017-01-04 2017-05-31 苏州华赛生物工程技术有限公司 一种生产胞苷的重组微生物及生产胞苷的方法
CN108130306A (zh) * 2018-01-10 2018-06-08 天津科技大学 高产尿苷的基因工程菌及其构建方法与应用
CN110564660A (zh) * 2019-09-18 2019-12-13 苏州华赛生物工程技术有限公司 生产乳清酸的重组微生物及方法
CN113549588A (zh) * 2021-06-25 2021-10-26 天津科技大学 用于产生5-羟基色氨酸的基因工程菌及其构建方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116144560A (zh) * 2022-09-28 2023-05-23 天津科技大学 一种苯丙氨酸大肠杆菌生产菌及其应用
CN117887652A (zh) * 2024-03-14 2024-04-16 天津科技大学 一种乳清酸生产菌株及其定向改造方法与应用

Also Published As

Publication number Publication date
CN114774341B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
CN110964683B (zh) 生产l-精氨酸的基因工程菌及其构建方法与应用
CN110468092B (zh) 一株高产l-缬氨酸的基因工程菌及其构建方法与应用
CN110607268A (zh) 一株高产l-缬氨酸的基因工程菌及发酵生产l-缬氨酸方法
CN114774341A (zh) 一种生产乳清酸的基因工程菌及其构建方法与应用
WO2018205563A1 (zh) 一种利用重组谷氨酸棒杆菌发酵生产四氢嘧啶的方法
CN109777763B (zh) 一株用于l-茶氨酸生产的基因工程菌及其构建与应用
CN113151127B (zh) 一种l-高丝氨酸生产菌株及其构建方法和应用
CN113549588B (zh) 用于产生5-羟基色氨酸的基因工程菌及其构建方法与应用
CN108949661B (zh) 一种产o-琥珀酰-l-高丝氨酸重组大肠杆菌及其应用
CN108949706B (zh) 一种l-脯氨酸-4-羟化酶及其基因工程菌、构建方法与应用
CN112877270B (zh) 一种生产羟基四氢嘧啶的基因工程菌及其应用
CN111321102B (zh) 一种生产l-组氨酸的基因工程菌及其应用
CN111394288B (zh) 重组谷氨酸棒杆菌、其构建方法及其生产四氢嘧啶的方法
WO2022174597A1 (zh) 一种用于l-肌氨酸生产的基因工程菌及构建方法与应用
CN115806929A (zh) 一种生产l-精氨酸的基因工程菌及其应用
US11124780B2 (en) Genetically engineered bacterium used for producing uridine with high-yield
CN116121161A (zh) 一种生产麦角硫因的基因工程菌及其构建方法与应用
CN116555145A (zh) 重组大肠杆菌及其构建方法和生产2′-岩藻糖基乳糖的方法
CN109456987B (zh) 高产l-亮氨酸的相关基因及工程菌构建方法与应用
CN105400801B (zh) 解除反馈抑制的thrA基因突变体及其应用
CN108588108B (zh) 一种高效代谢甘油的芽胞杆菌的制备方法和应用
CN116121160A (zh) 过表达pyrB基因的基因工程菌及其生产L-精氨酸的方法
CN116064345A (zh) 高效生产岩藻糖基乳糖的无抗基因工程菌及其应用
CN111748564B (zh) 经过遗传改造的紫色杆菌素生物合成基因簇、重组表达载体、工程菌及其应用
CN115806927A (zh) 用于生产反式-4-羟基脯氨酸的基因工程菌及其构建方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant